/* * Copyright (C) 2014 The Android Open Source Project * * Licensed under the Apache License, Version 2.0 (the "License"); * you may not use this file except in compliance with the License. * You may obtain a copy of the License at * * http://www.apache.org/licenses/LICENSE-2.0 * * Unless required by applicable law or agreed to in writing, software * distributed under the License is distributed on an "AS IS" BASIS, * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. * See the License for the specific language governing permissions and * limitations under the License. */ #ifndef ART_RUNTIME_STACK_MAP_H_ #define ART_RUNTIME_STACK_MAP_H_ #include "base/bit_vector.h" #include "memory_region.h" #include "utils.h" namespace art { // Size of a frame slot, in bytes. This constant is a signed value, // to please the compiler in arithmetic operations involving int32_t // (signed) values. static ssize_t constexpr kFrameSlotSize = 4; // Word alignment required on ARM, in bytes. static constexpr size_t kWordAlignment = 4; // Size of Dex virtual registers. static size_t constexpr kVRegSize = 4; class CodeInfo; /** * Classes in the following file are wrapper on stack map information backed * by a MemoryRegion. As such they read and write to the region, they don't have * their own fields. */ /** * Inline information for a specific PC. The information is of the form: * [inlining_depth, [method_dex reference]+] */ class InlineInfo { public: explicit InlineInfo(MemoryRegion region) : region_(region) {} uint8_t GetDepth() const { return region_.LoadUnaligned(kDepthOffset); } void SetDepth(uint8_t depth) { region_.StoreUnaligned(kDepthOffset, depth); } uint32_t GetMethodReferenceIndexAtDepth(uint8_t depth) const { return region_.LoadUnaligned(kFixedSize + depth * SingleEntrySize()); } void SetMethodReferenceIndexAtDepth(uint8_t depth, uint32_t index) { region_.StoreUnaligned(kFixedSize + depth * SingleEntrySize(), index); } static size_t SingleEntrySize() { return sizeof(uint32_t); } private: // TODO: Instead of plain types such as "uint8_t", introduce // typedefs (and document the memory layout of InlineInfo). static constexpr int kDepthOffset = 0; static constexpr int kFixedSize = kDepthOffset + sizeof(uint8_t); MemoryRegion region_; friend class CodeInfo; friend class StackMap; friend class StackMapStream; }; // Dex register location container used by DexRegisterMap and StackMapStream. class DexRegisterLocation { public: /* * The location kind used to populate the Dex register information in a * StackMapStream can either be: * - kNone: the register has no location yet, meaning it has not been set; * - kConstant: value holds the constant; * - kStack: value holds the stack offset; * - kRegister: value holds the physical register number; * - kFpuRegister: value holds the physical register number. * * In addition, DexRegisterMap also uses these values: * - kInStackLargeOffset: value holds a "large" stack offset (greater than * 128 bytes); * - kConstantLargeValue: value holds a "large" constant (lower than or * equal to -16, or greater than 16). */ enum class Kind : uint8_t { // Short location kinds, for entries fitting on one byte (3 bits // for the kind, 5 bits for the value) in a DexRegisterMap. kNone = 0, // 0b000 kInStack = 1, // 0b001 kInRegister = 2, // 0b010 kInFpuRegister = 3, // 0b011 kConstant = 4, // 0b100 // Large location kinds, requiring a 5-byte encoding (1 byte for the // kind, 4 bytes for the value). // Stack location at a large offset, meaning that the offset value // divided by the stack frame slot size (4 bytes) cannot fit on a // 5-bit unsigned integer (i.e., this offset value is greater than // or equal to 2^5 * 4 = 128 bytes). kInStackLargeOffset = 5, // 0b101 // Large constant, that cannot fit on a 5-bit signed integer (i.e., // lower than -2^(5-1) = -16, or greater than or equal to // 2^(5-1) - 1 = 15). kConstantLargeValue = 6, // 0b110 kLastLocationKind = kConstantLargeValue }; static_assert( sizeof(Kind) == 1u, "art::DexRegisterLocation::Kind has a size different from one byte."); static const char* PrettyDescriptor(Kind kind) { switch (kind) { case Kind::kNone: return "none"; case Kind::kInStack: return "in stack"; case Kind::kInRegister: return "in register"; case Kind::kInFpuRegister: return "in fpu register"; case Kind::kConstant: return "as constant"; case Kind::kInStackLargeOffset: return "in stack (large offset)"; case Kind::kConstantLargeValue: return "as constant (large value)"; default: UNREACHABLE(); } } static bool IsShortLocationKind(Kind kind) { switch (kind) { case Kind::kNone: case Kind::kInStack: case Kind::kInRegister: case Kind::kInFpuRegister: case Kind::kConstant: return true; case Kind::kInStackLargeOffset: case Kind::kConstantLargeValue: return false; default: UNREACHABLE(); } } // Convert `kind` to a "surface" kind, i.e. one that doesn't include // any value with a "large" qualifier. // TODO: Introduce another enum type for the surface kind? static Kind ConvertToSurfaceKind(Kind kind) { switch (kind) { case Kind::kNone: case Kind::kInStack: case Kind::kInRegister: case Kind::kInFpuRegister: case Kind::kConstant: return kind; case Kind::kInStackLargeOffset: return Kind::kInStack; case Kind::kConstantLargeValue: return Kind::kConstant; default: UNREACHABLE(); } } DexRegisterLocation(Kind kind, int32_t value) : kind_(kind), value_(value) {} static DexRegisterLocation None() { return DexRegisterLocation(Kind::kNone, 0); } // Get the "surface" kind of the location, i.e., the one that doesn't // include any value with a "large" qualifier. Kind GetKind() const { return ConvertToSurfaceKind(kind_); } // Get the value of the location. int32_t GetValue() const { return value_; } // Get the actual kind of the location. Kind GetInternalKind() const { return kind_; } bool operator==(DexRegisterLocation other) const { return kind_ == other.kind_ && value_ == other.value_; } bool operator!=(DexRegisterLocation other) const { return !(*this == other); } private: Kind kind_; int32_t value_; }; /** * Information on dex register values for a specific PC. The information is * of the form: * [live_bit_mask, DexRegisterLocation+]. * DexRegisterLocations are either 1- or 5-byte wide (see art::DexRegisterLocation::Kind). */ class DexRegisterMap { public: explicit DexRegisterMap(MemoryRegion region) : region_(region) {} // Short (compressed) location, fitting on one byte. typedef uint8_t ShortLocation; static size_t LiveBitMaskSize(uint16_t number_of_dex_registers) { return RoundUp(number_of_dex_registers, kBitsPerByte) / kBitsPerByte; } void SetLiveBitMask(size_t offset, uint16_t number_of_dex_registers, const BitVector& live_dex_registers_mask) { for (uint16_t i = 0; i < number_of_dex_registers; i++) { region_.StoreBit(offset + i, live_dex_registers_mask.IsBitSet(i)); } } void SetRegisterInfo(size_t offset, const DexRegisterLocation& dex_register_location) { DexRegisterLocation::Kind kind = ComputeCompressedKind(dex_register_location); int32_t value = dex_register_location.GetValue(); if (DexRegisterLocation::IsShortLocationKind(kind)) { // Short location. Compress the kind and the value as a single byte. if (kind == DexRegisterLocation::Kind::kInStack) { // Instead of storing stack offsets expressed in bytes for // short stack locations, store slot offsets. A stack offset // is a multiple of 4 (kFrameSlotSize). This means that by // dividing it by 4, we can fit values from the [0, 128) // interval in a short stack location, and not just values // from the [0, 32) interval. DCHECK_EQ(value % kFrameSlotSize, 0); value /= kFrameSlotSize; } DCHECK(IsUint(value)) << value; region_.StoreUnaligned(offset, MakeShortLocation(kind, value)); } else { // Large location. Write the location on one byte and the value // on 4 bytes. DCHECK(!IsUint(value)) << value; if (kind == DexRegisterLocation::Kind::kInStackLargeOffset) { // Also divide large stack offsets by 4 for the sake of consistency. DCHECK_EQ(value % kFrameSlotSize, 0); value /= kFrameSlotSize; } // Data can be unaligned as the written Dex register locations can // either be 1-byte or 5-byte wide. Use // art::MemoryRegion::StoreUnaligned instead of // art::MemoryRegion::Store to prevent unligned word accesses on ARM. region_.StoreUnaligned(offset, kind); region_.StoreUnaligned(offset + sizeof(DexRegisterLocation::Kind), value); } } bool IsDexRegisterLive(uint16_t dex_register_index) const { size_t offset = kFixedSize; return region_.LoadBit(offset + dex_register_index); } static constexpr size_t kNoDexRegisterLocationOffset = -1; static size_t GetDexRegisterMapLocationsOffset(uint16_t number_of_dex_registers) { return kLiveBitMaskOffset + LiveBitMaskSize(number_of_dex_registers); } // Find the offset of the Dex register location number `dex_register_index`. size_t FindLocationOffset(uint16_t dex_register_index, uint16_t number_of_dex_registers) const { if (!IsDexRegisterLive(dex_register_index)) return kNoDexRegisterLocationOffset; size_t offset = GetDexRegisterMapLocationsOffset(number_of_dex_registers); // Skip the first `dex_register_index - 1` entries. for (uint16_t i = 0; i < dex_register_index; ++i) { if (IsDexRegisterLive(i)) { // Read the first next byte and inspect its first 3 bits to decide // whether it is a short or a large location. DexRegisterLocation::Kind kind = ExtractKindAtOffset(offset); if (DexRegisterLocation::IsShortLocationKind(kind)) { // Short location. Skip the current byte. offset += SingleShortEntrySize(); } else { // Large location. Skip the 5 next bytes. offset += SingleLargeEntrySize(); } } } return offset; } // Get the surface kind. DexRegisterLocation::Kind GetLocationKind(uint16_t dex_register_index, uint16_t number_of_dex_registers) const { return IsDexRegisterLive(dex_register_index) ? DexRegisterLocation::ConvertToSurfaceKind( GetLocationInternalKind(dex_register_index, number_of_dex_registers)) : DexRegisterLocation::Kind::kNone; } // Get the internal kind. DexRegisterLocation::Kind GetLocationInternalKind(uint16_t dex_register_index, uint16_t number_of_dex_registers) const { return IsDexRegisterLive(dex_register_index) ? ExtractKindAtOffset(FindLocationOffset(dex_register_index, number_of_dex_registers)) : DexRegisterLocation::Kind::kNone; } // TODO: Rename as GetDexRegisterLocation? DexRegisterLocation GetLocationKindAndValue(uint16_t dex_register_index, uint16_t number_of_dex_registers) const { if (!IsDexRegisterLive(dex_register_index)) { return DexRegisterLocation::None(); } size_t offset = FindLocationOffset(dex_register_index, number_of_dex_registers); // Read the first byte and inspect its first 3 bits to get the location. ShortLocation first_byte = region_.LoadUnaligned(offset); DexRegisterLocation::Kind kind = ExtractKindFromShortLocation(first_byte); if (DexRegisterLocation::IsShortLocationKind(kind)) { // Short location. Extract the value from the remaining 5 bits. int32_t value = ExtractValueFromShortLocation(first_byte); if (kind == DexRegisterLocation::Kind::kInStack) { // Convert the stack slot (short) offset to a byte offset value. value *= kFrameSlotSize; } return DexRegisterLocation(kind, value); } else { // Large location. Read the four next bytes to get the value. int32_t value = region_.LoadUnaligned(offset + sizeof(DexRegisterLocation::Kind)); if (kind == DexRegisterLocation::Kind::kInStackLargeOffset) { // Convert the stack slot (large) offset to a byte offset value. value *= kFrameSlotSize; } return DexRegisterLocation(kind, value); } } int32_t GetStackOffsetInBytes(uint16_t dex_register_index, uint16_t number_of_dex_registers) const { DexRegisterLocation location = GetLocationKindAndValue(dex_register_index, number_of_dex_registers); DCHECK(location.GetKind() == DexRegisterLocation::Kind::kInStack); // GetLocationKindAndValue returns the offset in bytes. return location.GetValue(); } int32_t GetConstant(uint16_t dex_register_index, uint16_t number_of_dex_registers) const { DexRegisterLocation location = GetLocationKindAndValue(dex_register_index, number_of_dex_registers); DCHECK(location.GetKind() == DexRegisterLocation::Kind::kConstant); return location.GetValue(); } int32_t GetMachineRegister(uint16_t dex_register_index, uint16_t number_of_dex_registers) const { DexRegisterLocation location = GetLocationKindAndValue(dex_register_index, number_of_dex_registers); DCHECK(location.GetInternalKind() == DexRegisterLocation::Kind::kInRegister || location.GetInternalKind() == DexRegisterLocation::Kind::kInFpuRegister) << DexRegisterLocation::PrettyDescriptor(location.GetInternalKind()); return location.GetValue(); } // Compute the compressed kind of `location`. static DexRegisterLocation::Kind ComputeCompressedKind(const DexRegisterLocation& location) { switch (location.GetInternalKind()) { case DexRegisterLocation::Kind::kNone: DCHECK_EQ(location.GetValue(), 0); return DexRegisterLocation::Kind::kNone; case DexRegisterLocation::Kind::kInRegister: DCHECK_GE(location.GetValue(), 0); DCHECK_LT(location.GetValue(), 1 << DexRegisterMap::kValueBits); return DexRegisterLocation::Kind::kInRegister; case DexRegisterLocation::Kind::kInFpuRegister: DCHECK_GE(location.GetValue(), 0); DCHECK_LT(location.GetValue(), 1 << DexRegisterMap::kValueBits); return DexRegisterLocation::Kind::kInFpuRegister; case DexRegisterLocation::Kind::kInStack: DCHECK_EQ(location.GetValue() % kFrameSlotSize, 0); return IsUint(location.GetValue() / kFrameSlotSize) ? DexRegisterLocation::Kind::kInStack : DexRegisterLocation::Kind::kInStackLargeOffset; case DexRegisterLocation::Kind::kConstant: return IsUint(location.GetValue()) ? DexRegisterLocation::Kind::kConstant : DexRegisterLocation::Kind::kConstantLargeValue; default: LOG(FATAL) << "Unexpected location kind" << DexRegisterLocation::PrettyDescriptor(location.GetInternalKind()); UNREACHABLE(); } } // Can `location` be turned into a short location? static bool CanBeEncodedAsShortLocation(const DexRegisterLocation& location) { switch (location.GetInternalKind()) { case DexRegisterLocation::Kind::kNone: case DexRegisterLocation::Kind::kInRegister: case DexRegisterLocation::Kind::kInFpuRegister: return true; case DexRegisterLocation::Kind::kInStack: DCHECK_EQ(location.GetValue() % kFrameSlotSize, 0); return IsUint(location.GetValue() / kFrameSlotSize); case DexRegisterLocation::Kind::kConstant: return IsUint(location.GetValue()); default: UNREACHABLE(); } } static size_t EntrySize(const DexRegisterLocation& location) { return CanBeEncodedAsShortLocation(location) ? DexRegisterMap::SingleShortEntrySize() : DexRegisterMap::SingleLargeEntrySize(); } static size_t SingleShortEntrySize() { return sizeof(ShortLocation); } static size_t SingleLargeEntrySize() { return sizeof(DexRegisterLocation::Kind) + sizeof(int32_t); } size_t Size() const { return region_.size(); } static constexpr int kLiveBitMaskOffset = 0; static constexpr int kFixedSize = kLiveBitMaskOffset; private: // Width of the kind "field" in a short location, in bits. static constexpr size_t kKindBits = 3; // Width of the value "field" in a short location, in bits. static constexpr size_t kValueBits = 5; static constexpr uint8_t kKindMask = (1 << kKindBits) - 1; static constexpr int32_t kValueMask = (1 << kValueBits) - 1; static constexpr size_t kKindOffset = 0; static constexpr size_t kValueOffset = kKindBits; static ShortLocation MakeShortLocation(DexRegisterLocation::Kind kind, int32_t value) { DCHECK(IsUint(static_cast(kind))) << static_cast(kind); DCHECK(IsUint(value)) << value; return (static_cast(kind) & kKindMask) << kKindOffset | (value & kValueMask) << kValueOffset; } static DexRegisterLocation::Kind ExtractKindFromShortLocation(ShortLocation location) { uint8_t kind = (location >> kKindOffset) & kKindMask; DCHECK_LE(kind, static_cast(DexRegisterLocation::Kind::kLastLocationKind)); // We do not encode kNone locations in the stack map. DCHECK_NE(kind, static_cast(DexRegisterLocation::Kind::kNone)); return static_cast(kind); } static int32_t ExtractValueFromShortLocation(ShortLocation location) { return (location >> kValueOffset) & kValueMask; } // Extract a location kind from the byte at position `offset`. DexRegisterLocation::Kind ExtractKindAtOffset(size_t offset) const { ShortLocation first_byte = region_.LoadUnaligned(offset); return ExtractKindFromShortLocation(first_byte); } MemoryRegion region_; friend class CodeInfo; friend class StackMapStream; }; /** * A Stack Map holds compilation information for a specific PC necessary for: * - Mapping it to a dex PC, * - Knowing which stack entries are objects, * - Knowing which registers hold objects, * - Knowing the inlining information, * - Knowing the values of dex registers. * * The information is of the form: * [dex_pc, native_pc_offset, dex_register_map_offset, inlining_info_offset, register_mask, stack_mask]. * * Note that register_mask is fixed size, but stack_mask is variable size, depending on the * stack size of a method. */ class StackMap { public: explicit StackMap(MemoryRegion region) : region_(region) {} uint32_t GetDexPc(const CodeInfo& info) const; void SetDexPc(const CodeInfo& info, uint32_t dex_pc); uint32_t GetNativePcOffset(const CodeInfo& info) const; void SetNativePcOffset(const CodeInfo& info, uint32_t native_pc_offset); uint32_t GetDexRegisterMapOffset(const CodeInfo& info) const; void SetDexRegisterMapOffset(const CodeInfo& info, uint32_t offset); uint32_t GetInlineDescriptorOffset(const CodeInfo& info) const; void SetInlineDescriptorOffset(const CodeInfo& info, uint32_t offset); uint32_t GetRegisterMask(const CodeInfo& info) const; void SetRegisterMask(const CodeInfo& info, uint32_t mask); MemoryRegion GetStackMask(const CodeInfo& info) const; void SetStackMask(const CodeInfo& info, const BitVector& sp_map) { MemoryRegion region = GetStackMask(info); for (size_t i = 0; i < region.size_in_bits(); i++) { region.StoreBit(i, sp_map.IsBitSet(i)); } } bool HasDexRegisterMap(const CodeInfo& info) const { return GetDexRegisterMapOffset(info) != kNoDexRegisterMap; } bool HasInlineInfo(const CodeInfo& info) const { return GetInlineDescriptorOffset(info) != kNoInlineInfo; } bool Equals(const StackMap& other) const { return region_.pointer() == other.region_.pointer() && region_.size() == other.region_.size(); } static size_t ComputeStackMapSize(size_t stack_mask_size, bool has_inline_info, bool is_small_inline_info, bool is_small_dex_map, bool is_small_dex_pc, bool is_small_native_pc); static size_t ComputeStackMapSize(size_t stack_mask_size, size_t inline_info_size, size_t dex_register_map_size, size_t dex_pc_max, size_t native_pc_max); // TODO: Revisit this abstraction if we allow 3 bytes encoding. typedef uint8_t kSmallEncoding; typedef uint32_t kLargeEncoding; static constexpr size_t kBytesForSmallEncoding = sizeof(kSmallEncoding); static constexpr size_t kBitsForSmallEncoding = kBitsPerByte * kBytesForSmallEncoding; static constexpr size_t kBytesForLargeEncoding = sizeof(kLargeEncoding); static constexpr size_t kBitsForLargeEncoding = kBitsPerByte * kBytesForLargeEncoding; // Special (invalid) offset for the DexRegisterMapOffset field meaning // that there is no Dex register map for this stack map. static constexpr uint32_t kNoDexRegisterMap = -1; static constexpr uint32_t kNoDexRegisterMapSmallEncoding = std::numeric_limits::max(); // Special (invalid) offset for the InlineDescriptorOffset field meaning // that there is no inline info for this stack map. static constexpr uint32_t kNoInlineInfo = -1; static constexpr uint32_t kNoInlineInfoSmallEncoding = std::numeric_limits::max(); // Returns the number of bytes needed for an entry in the StackMap. static size_t NumberOfBytesForEntry(bool small_encoding) { return small_encoding ? kBytesForSmallEncoding : kBytesForLargeEncoding; } private: // TODO: Instead of plain types such as "uint32_t", introduce // typedefs (and document the memory layout of StackMap). static constexpr int kRegisterMaskOffset = 0; static constexpr int kFixedSize = kRegisterMaskOffset + sizeof(uint32_t); static constexpr int kStackMaskOffset = kFixedSize; MemoryRegion region_; friend class CodeInfo; friend class StackMapStream; }; /** * Wrapper around all compiler information collected for a method. * The information is of the form: * [overall_size, number_of_stack_maps, stack_mask_size, StackMap+, DexRegisterInfo+, InlineInfo*]. */ class CodeInfo { public: explicit CodeInfo(MemoryRegion region) : region_(region) {} explicit CodeInfo(const void* data) { uint32_t size = reinterpret_cast(data)[0]; region_ = MemoryRegion(const_cast(data), size); } void SetEncoding(size_t inline_info_size, size_t dex_register_map_size, size_t dex_pc_max, size_t native_pc_max) { if (inline_info_size != 0) { region_.StoreBit(kHasInlineInfoBitOffset, 1); region_.StoreBit(kHasSmallInlineInfoBitOffset, IsUint( // + 1 to also encode kNoInlineInfo: if an inline info offset // is at 0xFF, we want to overflow to a larger encoding, because it will // conflict with kNoInlineInfo. // The offset is relative to the dex register map. TODO: Change this. inline_info_size + dex_register_map_size + 1)); } else { region_.StoreBit(kHasInlineInfoBitOffset, 0); region_.StoreBit(kHasSmallInlineInfoBitOffset, 0); } region_.StoreBit(kHasSmallDexRegisterMapBitOffset, // + 1 to also encode kNoDexRegisterMap: if a dex register map offset // is at 0xFF, we want to overflow to a larger encoding, because it will // conflict with kNoDexRegisterMap. IsUint(dex_register_map_size + 1)); region_.StoreBit(kHasSmallDexPcBitOffset, IsUint(dex_pc_max)); region_.StoreBit(kHasSmallNativePcBitOffset, IsUint(native_pc_max)); } bool HasInlineInfo() const { return region_.LoadBit(kHasInlineInfoBitOffset); } bool HasSmallInlineInfo() const { return region_.LoadBit(kHasSmallInlineInfoBitOffset); } bool HasSmallDexRegisterMap() const { return region_.LoadBit(kHasSmallDexRegisterMapBitOffset); } bool HasSmallNativePc() const { return region_.LoadBit(kHasSmallNativePcBitOffset); } bool HasSmallDexPc() const { return region_.LoadBit(kHasSmallDexPcBitOffset); } size_t ComputeStackMapRegisterMaskOffset() const { return StackMap::kRegisterMaskOffset; } size_t ComputeStackMapStackMaskOffset() const { return StackMap::kStackMaskOffset; } size_t ComputeStackMapDexPcOffset() const { return ComputeStackMapStackMaskOffset() + GetStackMaskSize(); } size_t ComputeStackMapNativePcOffset() const { return ComputeStackMapDexPcOffset() + (HasSmallDexPc() ? sizeof(uint8_t) : sizeof(uint32_t)); } size_t ComputeStackMapDexRegisterMapOffset() const { return ComputeStackMapNativePcOffset() + (HasSmallNativePc() ? sizeof(uint8_t) : sizeof(uint32_t)); } size_t ComputeStackMapInlineInfoOffset() const { CHECK(HasInlineInfo()); return ComputeStackMapDexRegisterMapOffset() + (HasSmallDexRegisterMap() ? sizeof(uint8_t) : sizeof(uint32_t)); } StackMap GetStackMapAt(size_t i) const { size_t size = StackMapSize(); return StackMap(GetStackMaps().Subregion(i * size, size)); } uint32_t GetOverallSize() const { return region_.LoadUnaligned(kOverallSizeOffset); } void SetOverallSize(uint32_t size) { region_.StoreUnaligned(kOverallSizeOffset, size); } uint32_t GetStackMaskSize() const { return region_.LoadUnaligned(kStackMaskSizeOffset); } void SetStackMaskSize(uint32_t size) { region_.StoreUnaligned(kStackMaskSizeOffset, size); } size_t GetNumberOfStackMaps() const { return region_.LoadUnaligned(kNumberOfStackMapsOffset); } void SetNumberOfStackMaps(uint32_t number_of_stack_maps) { region_.StoreUnaligned(kNumberOfStackMapsOffset, number_of_stack_maps); } // Get the size of one stack map of this CodeInfo object, in bytes. // All stack maps of a CodeInfo have the same size. size_t StackMapSize() const { return StackMap::ComputeStackMapSize(GetStackMaskSize(), HasInlineInfo(), HasSmallInlineInfo(), HasSmallDexRegisterMap(), HasSmallDexPc(), HasSmallNativePc()); } // Get the size all the stack maps of this CodeInfo object, in bytes. size_t StackMapsSize() const { return StackMapSize() * GetNumberOfStackMaps(); } size_t GetDexRegisterMapsOffset() const { return CodeInfo::kFixedSize + StackMapsSize(); } uint32_t GetStackMapsOffset() const { return kFixedSize; } DexRegisterMap GetDexRegisterMapOf(StackMap stack_map, uint32_t number_of_dex_registers) const { DCHECK(stack_map.HasDexRegisterMap(*this)); uint32_t offset = stack_map.GetDexRegisterMapOffset(*this) + GetDexRegisterMapsOffset(); size_t size = ComputeDexRegisterMapSize(offset, number_of_dex_registers); return DexRegisterMap(region_.Subregion(offset, size)); } InlineInfo GetInlineInfoOf(StackMap stack_map) const { DCHECK(stack_map.HasInlineInfo(*this)); uint32_t offset = stack_map.GetInlineDescriptorOffset(*this) + GetDexRegisterMapsOffset(); uint8_t depth = region_.LoadUnaligned(offset); return InlineInfo(region_.Subregion(offset, InlineInfo::kFixedSize + depth * InlineInfo::SingleEntrySize())); } StackMap GetStackMapForDexPc(uint32_t dex_pc) const { for (size_t i = 0, e = GetNumberOfStackMaps(); i < e; ++i) { StackMap stack_map = GetStackMapAt(i); if (stack_map.GetDexPc(*this) == dex_pc) { return stack_map; } } LOG(FATAL) << "Unreachable"; UNREACHABLE(); } StackMap GetStackMapForNativePcOffset(uint32_t native_pc_offset) const { // TODO: stack maps are sorted by native pc, we can do a binary search. for (size_t i = 0, e = GetNumberOfStackMaps(); i < e; ++i) { StackMap stack_map = GetStackMapAt(i); if (stack_map.GetNativePcOffset(*this) == native_pc_offset) { return stack_map; } } LOG(FATAL) << "Unreachable"; UNREACHABLE(); } void Dump(std::ostream& os, uint16_t number_of_dex_registers) const; void DumpStackMapHeader(std::ostream& os, size_t stack_map_num) const; private: // TODO: Instead of plain types such as "uint32_t", introduce // typedefs (and document the memory layout of CodeInfo). static constexpr int kOverallSizeOffset = 0; static constexpr int kEncodingInfoOffset = kOverallSizeOffset + sizeof(uint32_t); static constexpr int kNumberOfStackMapsOffset = kEncodingInfoOffset + sizeof(uint8_t); static constexpr int kStackMaskSizeOffset = kNumberOfStackMapsOffset + sizeof(uint32_t); static constexpr int kFixedSize = kStackMaskSizeOffset + sizeof(uint32_t); static constexpr int kHasInlineInfoBitOffset = (kEncodingInfoOffset * kBitsPerByte); static constexpr int kHasSmallInlineInfoBitOffset = kHasInlineInfoBitOffset + 1; static constexpr int kHasSmallDexRegisterMapBitOffset = kHasSmallInlineInfoBitOffset + 1; static constexpr int kHasSmallDexPcBitOffset = kHasSmallDexRegisterMapBitOffset + 1; static constexpr int kHasSmallNativePcBitOffset = kHasSmallDexPcBitOffset + 1; MemoryRegion GetStackMaps() const { return region_.size() == 0 ? MemoryRegion() : region_.Subregion(kFixedSize, StackMapsSize()); } // Compute the size of a Dex register map starting at offset `origin` in // `region_` and containing `number_of_dex_registers` locations. size_t ComputeDexRegisterMapSize(uint32_t origin, uint32_t number_of_dex_registers) const { // TODO: Ideally, we would like to use art::DexRegisterMap::Size or // art::DexRegisterMap::FindLocationOffset, but the DexRegisterMap is not // yet built. Try to factor common code. size_t offset = origin + DexRegisterMap::GetDexRegisterMapLocationsOffset(number_of_dex_registers); // Create a temporary DexRegisterMap to be able to call DexRegisterMap.IsDexRegisterLive. DexRegisterMap only_live_mask(MemoryRegion(region_.Subregion(origin, offset - origin))); // Skip the first `number_of_dex_registers - 1` entries. for (uint16_t i = 0; i < number_of_dex_registers; ++i) { if (only_live_mask.IsDexRegisterLive(i)) { // Read the first next byte and inspect its first 3 bits to decide // whether it is a short or a large location. DexRegisterMap::ShortLocation first_byte = region_.LoadUnaligned(offset); DexRegisterLocation::Kind kind = DexRegisterMap::ExtractKindFromShortLocation(first_byte); if (DexRegisterLocation::IsShortLocationKind(kind)) { // Short location. Skip the current byte. offset += DexRegisterMap::SingleShortEntrySize(); } else { // Large location. Skip the 5 next bytes. offset += DexRegisterMap::SingleLargeEntrySize(); } } } size_t size = offset - origin; return size; } MemoryRegion region_; friend class StackMapStream; }; } // namespace art #endif // ART_RUNTIME_STACK_MAP_H_