/* * Copyright (C) 2011 The Android Open Source Project * * Licensed under the Apache License, Version 2.0 (the "License"); * you may not use this file except in compliance with the License. * You may obtain a copy of the License at * * http://www.apache.org/licenses/LICENSE-2.0 * * Unless required by applicable law or agreed to in writing, software * distributed under the License is distributed on an "AS IS" BASIS, * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. * See the License for the specific language governing permissions and * limitations under the License. */ #define ATRACE_TAG ATRACE_TAG_DALVIK #include "thread.h" #include #include #include #include #include #include #include #include #include #include #include "arch/context.h" #include "base/mutex.h" #include "class_linker.h" #include "class_linker-inl.h" #include "cutils/atomic.h" #include "cutils/atomic-inline.h" #include "debugger.h" #include "dex_file-inl.h" #include "entrypoints/entrypoint_utils.h" #include "gc_map.h" #include "gc/accounting/card_table-inl.h" #include "gc/heap.h" #include "gc/space/space.h" #include "invoke_arg_array_builder.h" #include "jni_internal.h" #include "mirror/art_field-inl.h" #include "mirror/art_method-inl.h" #include "mirror/class-inl.h" #include "mirror/class_loader.h" #include "mirror/object_array-inl.h" #include "mirror/stack_trace_element.h" #include "monitor.h" #include "object_utils.h" #include "reflection.h" #include "runtime.h" #include "scoped_thread_state_change.h" #include "ScopedLocalRef.h" #include "ScopedUtfChars.h" #include "sirt_ref.h" #include "stack.h" #include "stack_indirect_reference_table.h" #include "thread-inl.h" #include "thread_list.h" #include "utils.h" #include "verifier/dex_gc_map.h" #include "verifier/method_verifier.h" #include "vmap_table.h" #include "well_known_classes.h" namespace art { bool Thread::is_started_ = false; pthread_key_t Thread::pthread_key_self_; ConditionVariable* Thread::resume_cond_ = NULL; static const char* kThreadNameDuringStartup = ""; void Thread::InitCardTable() { card_table_ = Runtime::Current()->GetHeap()->GetCardTable()->GetBiasedBegin(); } #if !defined(__APPLE__) static void UnimplementedEntryPoint() { UNIMPLEMENTED(FATAL); } #endif void InitEntryPoints(InterpreterEntryPoints* ipoints, JniEntryPoints* jpoints, PortableEntryPoints* ppoints, QuickEntryPoints* qpoints); void Thread::InitTlsEntryPoints() { #if !defined(__APPLE__) // The Mac GCC is too old to accept this code. // Insert a placeholder so we can easily tell if we call an unimplemented entry point. uintptr_t* begin = reinterpret_cast(&interpreter_entrypoints_); uintptr_t* end = reinterpret_cast(reinterpret_cast(begin) + sizeof(quick_entrypoints_)); for (uintptr_t* it = begin; it != end; ++it) { *it = reinterpret_cast(UnimplementedEntryPoint); } begin = reinterpret_cast(&interpreter_entrypoints_); end = reinterpret_cast(reinterpret_cast(begin) + sizeof(portable_entrypoints_)); for (uintptr_t* it = begin; it != end; ++it) { *it = reinterpret_cast(UnimplementedEntryPoint); } #endif InitEntryPoints(&interpreter_entrypoints_, &jni_entrypoints_, &portable_entrypoints_, &quick_entrypoints_); } void ResetQuickAllocEntryPoints(QuickEntryPoints* qpoints); void Thread::ResetQuickAllocEntryPointsForThread() { ResetQuickAllocEntryPoints(&quick_entrypoints_); } void Thread::SetDeoptimizationShadowFrame(ShadowFrame* sf) { deoptimization_shadow_frame_ = sf; } void Thread::SetDeoptimizationReturnValue(const JValue& ret_val) { deoptimization_return_value_.SetJ(ret_val.GetJ()); } ShadowFrame* Thread::GetAndClearDeoptimizationShadowFrame(JValue* ret_val) { ShadowFrame* sf = deoptimization_shadow_frame_; deoptimization_shadow_frame_ = NULL; ret_val->SetJ(deoptimization_return_value_.GetJ()); return sf; } void Thread::InitTid() { tid_ = ::art::GetTid(); } void Thread::InitAfterFork() { // One thread (us) survived the fork, but we have a new tid so we need to // update the value stashed in this Thread*. InitTid(); } void* Thread::CreateCallback(void* arg) { Thread* self = reinterpret_cast(arg); Runtime* runtime = Runtime::Current(); if (runtime == NULL) { LOG(ERROR) << "Thread attaching to non-existent runtime: " << *self; return NULL; } { // TODO: pass self to MutexLock - requires self to equal Thread::Current(), which is only true // after self->Init(). MutexLock mu(NULL, *Locks::runtime_shutdown_lock_); // Check that if we got here we cannot be shutting down (as shutdown should never have started // while threads are being born). CHECK(!runtime->IsShuttingDownLocked()); self->Init(runtime->GetThreadList(), runtime->GetJavaVM()); Runtime::Current()->EndThreadBirth(); } { ScopedObjectAccess soa(self); // Copy peer into self, deleting global reference when done. CHECK(self->jpeer_ != NULL); self->opeer_ = soa.Decode(self->jpeer_); self->GetJniEnv()->DeleteGlobalRef(self->jpeer_); self->jpeer_ = NULL; { SirtRef thread_name(self, self->GetThreadName(soa)); self->SetThreadName(thread_name->ToModifiedUtf8().c_str()); } Dbg::PostThreadStart(self); // Invoke the 'run' method of our java.lang.Thread. mirror::Object* receiver = self->opeer_; jmethodID mid = WellKnownClasses::java_lang_Thread_run; mirror::ArtMethod* m = receiver->GetClass()->FindVirtualMethodForVirtualOrInterface(soa.DecodeMethod(mid)); JValue result; ArgArray arg_array(NULL, 0); arg_array.Append(reinterpret_cast(receiver)); m->Invoke(self, arg_array.GetArray(), arg_array.GetNumBytes(), &result, 'V'); } // Detach and delete self. Runtime::Current()->GetThreadList()->Unregister(self); return NULL; } Thread* Thread::FromManagedThread(const ScopedObjectAccessUnchecked& soa, mirror::Object* thread_peer) { mirror::ArtField* f = soa.DecodeField(WellKnownClasses::java_lang_Thread_nativePeer); Thread* result = reinterpret_cast(static_cast(f->GetInt(thread_peer))); // Sanity check that if we have a result it is either suspended or we hold the thread_list_lock_ // to stop it from going away. if (kIsDebugBuild) { MutexLock mu(soa.Self(), *Locks::thread_suspend_count_lock_); if (result != NULL && !result->IsSuspended()) { Locks::thread_list_lock_->AssertHeld(soa.Self()); } } return result; } Thread* Thread::FromManagedThread(const ScopedObjectAccessUnchecked& soa, jobject java_thread) { return FromManagedThread(soa, soa.Decode(java_thread)); } static size_t FixStackSize(size_t stack_size) { // A stack size of zero means "use the default". if (stack_size == 0) { stack_size = Runtime::Current()->GetDefaultStackSize(); } // Dalvik used the bionic pthread default stack size for native threads, // so include that here to support apps that expect large native stacks. stack_size += 1 * MB; // It's not possible to request a stack smaller than the system-defined PTHREAD_STACK_MIN. if (stack_size < PTHREAD_STACK_MIN) { stack_size = PTHREAD_STACK_MIN; } // It's likely that callers are trying to ensure they have at least a certain amount of // stack space, so we should add our reserved space on top of what they requested, rather // than implicitly take it away from them. stack_size += Thread::kStackOverflowReservedBytes; // Some systems require the stack size to be a multiple of the system page size, so round up. stack_size = RoundUp(stack_size, kPageSize); return stack_size; } void Thread::CreateNativeThread(JNIEnv* env, jobject java_peer, size_t stack_size, bool is_daemon) { CHECK(java_peer != NULL); Thread* self = static_cast(env)->self; Runtime* runtime = Runtime::Current(); // Atomically start the birth of the thread ensuring the runtime isn't shutting down. bool thread_start_during_shutdown = false; { MutexLock mu(self, *Locks::runtime_shutdown_lock_); if (runtime->IsShuttingDownLocked()) { thread_start_during_shutdown = true; } else { runtime->StartThreadBirth(); } } if (thread_start_during_shutdown) { ScopedLocalRef error_class(env, env->FindClass("java/lang/InternalError")); env->ThrowNew(error_class.get(), "Thread starting during runtime shutdown"); return; } Thread* child_thread = new Thread(is_daemon); // Use global JNI ref to hold peer live while child thread starts. child_thread->jpeer_ = env->NewGlobalRef(java_peer); stack_size = FixStackSize(stack_size); // Thread.start is synchronized, so we know that nativePeer is 0, and know that we're not racing to // assign it. env->SetIntField(java_peer, WellKnownClasses::java_lang_Thread_nativePeer, reinterpret_cast(child_thread)); pthread_t new_pthread; pthread_attr_t attr; CHECK_PTHREAD_CALL(pthread_attr_init, (&attr), "new thread"); CHECK_PTHREAD_CALL(pthread_attr_setdetachstate, (&attr, PTHREAD_CREATE_DETACHED), "PTHREAD_CREATE_DETACHED"); CHECK_PTHREAD_CALL(pthread_attr_setstacksize, (&attr, stack_size), stack_size); int pthread_create_result = pthread_create(&new_pthread, &attr, Thread::CreateCallback, child_thread); CHECK_PTHREAD_CALL(pthread_attr_destroy, (&attr), "new thread"); if (pthread_create_result != 0) { // pthread_create(3) failed, so clean up. { MutexLock mu(self, *Locks::runtime_shutdown_lock_); runtime->EndThreadBirth(); } // Manually delete the global reference since Thread::Init will not have been run. env->DeleteGlobalRef(child_thread->jpeer_); child_thread->jpeer_ = NULL; delete child_thread; child_thread = NULL; // TODO: remove from thread group? env->SetIntField(java_peer, WellKnownClasses::java_lang_Thread_nativePeer, 0); { std::string msg(StringPrintf("pthread_create (%s stack) failed: %s", PrettySize(stack_size).c_str(), strerror(pthread_create_result))); ScopedObjectAccess soa(env); soa.Self()->ThrowOutOfMemoryError(msg.c_str()); } } } void Thread::Init(ThreadList* thread_list, JavaVMExt* java_vm) { // This function does all the initialization that must be run by the native thread it applies to. // (When we create a new thread from managed code, we allocate the Thread* in Thread::Create so // we can handshake with the corresponding native thread when it's ready.) Check this native // thread hasn't been through here already... CHECK(Thread::Current() == NULL); SetUpAlternateSignalStack(); InitCpu(); InitTlsEntryPoints(); InitCardTable(); InitTid(); // Set pthread_self_ ahead of pthread_setspecific, that makes Thread::Current function, this // avoids pthread_self_ ever being invalid when discovered from Thread::Current(). pthread_self_ = pthread_self(); CHECK(is_started_); CHECK_PTHREAD_CALL(pthread_setspecific, (Thread::pthread_key_self_, this), "attach self"); DCHECK_EQ(Thread::Current(), this); thin_lock_thread_id_ = thread_list->AllocThreadId(this); InitStackHwm(); jni_env_ = new JNIEnvExt(this, java_vm); thread_list->Register(this); } Thread* Thread::Attach(const char* thread_name, bool as_daemon, jobject thread_group, bool create_peer) { Thread* self; Runtime* runtime = Runtime::Current(); if (runtime == NULL) { LOG(ERROR) << "Thread attaching to non-existent runtime: " << thread_name; return NULL; } { MutexLock mu(NULL, *Locks::runtime_shutdown_lock_); if (runtime->IsShuttingDownLocked()) { LOG(ERROR) << "Thread attaching while runtime is shutting down: " << thread_name; return NULL; } else { Runtime::Current()->StartThreadBirth(); self = new Thread(as_daemon); self->Init(runtime->GetThreadList(), runtime->GetJavaVM()); Runtime::Current()->EndThreadBirth(); } } CHECK_NE(self->GetState(), kRunnable); self->SetState(kNative); // If we're the main thread, ClassLinker won't be created until after we're attached, // so that thread needs a two-stage attach. Regular threads don't need this hack. // In the compiler, all threads need this hack, because no-one's going to be getting // a native peer! if (create_peer) { self->CreatePeer(thread_name, as_daemon, thread_group); } else { // These aren't necessary, but they improve diagnostics for unit tests & command-line tools. if (thread_name != NULL) { self->name_->assign(thread_name); ::art::SetThreadName(thread_name); } } return self; } void Thread::CreatePeer(const char* name, bool as_daemon, jobject thread_group) { Runtime* runtime = Runtime::Current(); CHECK(runtime->IsStarted()); JNIEnv* env = jni_env_; if (thread_group == NULL) { thread_group = runtime->GetMainThreadGroup(); } ScopedLocalRef thread_name(env, env->NewStringUTF(name)); jint thread_priority = GetNativePriority(); jboolean thread_is_daemon = as_daemon; ScopedLocalRef peer(env, env->AllocObject(WellKnownClasses::java_lang_Thread)); if (peer.get() == NULL) { CHECK(IsExceptionPending()); return; } { ScopedObjectAccess soa(this); opeer_ = soa.Decode(peer.get()); } env->CallNonvirtualVoidMethod(peer.get(), WellKnownClasses::java_lang_Thread, WellKnownClasses::java_lang_Thread_init, thread_group, thread_name.get(), thread_priority, thread_is_daemon); AssertNoPendingException(); Thread* self = this; DCHECK_EQ(self, Thread::Current()); jni_env_->SetIntField(peer.get(), WellKnownClasses::java_lang_Thread_nativePeer, reinterpret_cast(self)); ScopedObjectAccess soa(self); SirtRef peer_thread_name(soa.Self(), GetThreadName(soa)); if (peer_thread_name.get() == NULL) { // The Thread constructor should have set the Thread.name to a // non-null value. However, because we can run without code // available (in the compiler, in tests), we manually assign the // fields the constructor should have set. soa.DecodeField(WellKnownClasses::java_lang_Thread_daemon)-> SetBoolean(opeer_, thread_is_daemon); soa.DecodeField(WellKnownClasses::java_lang_Thread_group)-> SetObject(opeer_, soa.Decode(thread_group)); soa.DecodeField(WellKnownClasses::java_lang_Thread_name)-> SetObject(opeer_, soa.Decode(thread_name.get())); soa.DecodeField(WellKnownClasses::java_lang_Thread_priority)-> SetInt(opeer_, thread_priority); peer_thread_name.reset(GetThreadName(soa)); } // 'thread_name' may have been null, so don't trust 'peer_thread_name' to be non-null. if (peer_thread_name.get() != NULL) { SetThreadName(peer_thread_name->ToModifiedUtf8().c_str()); } } void Thread::SetThreadName(const char* name) { name_->assign(name); ::art::SetThreadName(name); Dbg::DdmSendThreadNotification(this, CHUNK_TYPE("THNM")); } void Thread::InitStackHwm() { void* stack_base; size_t stack_size; GetThreadStack(pthread_self_, &stack_base, &stack_size); // TODO: include this in the thread dumps; potentially useful in SIGQUIT output? VLOG(threads) << StringPrintf("Native stack is at %p (%s)", stack_base, PrettySize(stack_size).c_str()); stack_begin_ = reinterpret_cast(stack_base); stack_size_ = stack_size; if (stack_size_ <= kStackOverflowReservedBytes) { LOG(FATAL) << "Attempt to attach a thread with a too-small stack (" << stack_size_ << " bytes)"; } // TODO: move this into the Linux GetThreadStack implementation. #if !defined(__APPLE__) // If we're the main thread, check whether we were run with an unlimited stack. In that case, // glibc will have reported a 2GB stack for our 32-bit process, and our stack overflow detection // will be broken because we'll die long before we get close to 2GB. bool is_main_thread = (::art::GetTid() == getpid()); if (is_main_thread) { rlimit stack_limit; if (getrlimit(RLIMIT_STACK, &stack_limit) == -1) { PLOG(FATAL) << "getrlimit(RLIMIT_STACK) failed"; } if (stack_limit.rlim_cur == RLIM_INFINITY) { // Find the default stack size for new threads... pthread_attr_t default_attributes; size_t default_stack_size; CHECK_PTHREAD_CALL(pthread_attr_init, (&default_attributes), "default stack size query"); CHECK_PTHREAD_CALL(pthread_attr_getstacksize, (&default_attributes, &default_stack_size), "default stack size query"); CHECK_PTHREAD_CALL(pthread_attr_destroy, (&default_attributes), "default stack size query"); // ...and use that as our limit. size_t old_stack_size = stack_size_; stack_size_ = default_stack_size; stack_begin_ += (old_stack_size - stack_size_); VLOG(threads) << "Limiting unlimited stack (reported as " << PrettySize(old_stack_size) << ")" << " to " << PrettySize(stack_size_) << " with base " << reinterpret_cast(stack_begin_); } } #endif // Set stack_end_ to the bottom of the stack saving space of stack overflows ResetDefaultStackEnd(); // Sanity check. int stack_variable; CHECK_GT(&stack_variable, reinterpret_cast(stack_end_)); } void Thread::ShortDump(std::ostream& os) const { os << "Thread["; if (GetThreadId() != 0) { // If we're in kStarting, we won't have a thin lock id or tid yet. os << GetThreadId() << ",tid=" << GetTid() << ','; } os << GetState() << ",Thread*=" << this << ",peer=" << opeer_ << ",\"" << *name_ << "\"" << "]"; } void Thread::Dump(std::ostream& os) const { DumpState(os); DumpStack(os); } mirror::String* Thread::GetThreadName(const ScopedObjectAccessUnchecked& soa) const { mirror::ArtField* f = soa.DecodeField(WellKnownClasses::java_lang_Thread_name); return (opeer_ != NULL) ? reinterpret_cast(f->GetObject(opeer_)) : NULL; } void Thread::GetThreadName(std::string& name) const { name.assign(*name_); } uint64_t Thread::GetCpuMicroTime() const { #if defined(HAVE_POSIX_CLOCKS) clockid_t cpu_clock_id; pthread_getcpuclockid(pthread_self_, &cpu_clock_id); timespec now; clock_gettime(cpu_clock_id, &now); return static_cast(now.tv_sec) * 1000000LL + now.tv_nsec / 1000LL; #else UNIMPLEMENTED(WARNING); return -1; #endif } void Thread::AtomicSetFlag(ThreadFlag flag) { android_atomic_or(flag, &state_and_flags_.as_int); } void Thread::AtomicClearFlag(ThreadFlag flag) { android_atomic_and(-1 ^ flag, &state_and_flags_.as_int); } // Attempt to rectify locks so that we dump thread list with required locks before exiting. static void UnsafeLogFatalForSuspendCount(Thread* self, Thread* thread) NO_THREAD_SAFETY_ANALYSIS { LOG(ERROR) << *thread << " suspend count already zero."; Locks::thread_suspend_count_lock_->Unlock(self); if (!Locks::mutator_lock_->IsSharedHeld(self)) { Locks::mutator_lock_->SharedTryLock(self); if (!Locks::mutator_lock_->IsSharedHeld(self)) { LOG(WARNING) << "Dumping thread list without holding mutator_lock_"; } } if (!Locks::thread_list_lock_->IsExclusiveHeld(self)) { Locks::thread_list_lock_->TryLock(self); if (!Locks::thread_list_lock_->IsExclusiveHeld(self)) { LOG(WARNING) << "Dumping thread list without holding thread_list_lock_"; } } std::ostringstream ss; Runtime::Current()->GetThreadList()->DumpLocked(ss); LOG(FATAL) << ss.str(); } void Thread::ModifySuspendCount(Thread* self, int delta, bool for_debugger) { DCHECK(delta == -1 || delta == +1 || delta == -debug_suspend_count_) << delta << " " << debug_suspend_count_ << " " << this; DCHECK_GE(suspend_count_, debug_suspend_count_) << this; Locks::thread_suspend_count_lock_->AssertHeld(self); if (this != self && !IsSuspended()) { Locks::thread_list_lock_->AssertHeld(self); } if (UNLIKELY(delta < 0 && suspend_count_ <= 0)) { UnsafeLogFatalForSuspendCount(self, this); return; } suspend_count_ += delta; if (for_debugger) { debug_suspend_count_ += delta; } if (suspend_count_ == 0) { AtomicClearFlag(kSuspendRequest); } else { AtomicSetFlag(kSuspendRequest); } } void Thread::RunCheckpointFunction() { CHECK(checkpoint_function_ != NULL); ATRACE_BEGIN("Checkpoint function"); checkpoint_function_->Run(this); ATRACE_END(); checkpoint_function_ = NULL; AtomicClearFlag(kCheckpointRequest); } bool Thread::RequestCheckpoint(Closure* function) { union StateAndFlags old_state_and_flags = state_and_flags_; if (old_state_and_flags.as_struct.state != kRunnable) { return false; // Fail, thread is suspended and so can't run a checkpoint. } if ((old_state_and_flags.as_struct.flags & kCheckpointRequest) != 0) { return false; // Fail, already a checkpoint pending. } CHECK(checkpoint_function_ == NULL); checkpoint_function_ = function; // Checkpoint function installed now install flag bit. // We must be runnable to request a checkpoint. old_state_and_flags.as_struct.state = kRunnable; union StateAndFlags new_state_and_flags = old_state_and_flags; new_state_and_flags.as_struct.flags |= kCheckpointRequest; int succeeded = android_atomic_cmpxchg(old_state_and_flags.as_int, new_state_and_flags.as_int, &state_and_flags_.as_int); if (UNLIKELY(succeeded != 0)) { // The thread changed state before the checkpoint was installed. CHECK(checkpoint_function_ == function); checkpoint_function_ = NULL; } return succeeded == 0; } void Thread::FullSuspendCheck() { VLOG(threads) << this << " self-suspending"; ATRACE_BEGIN("Full suspend check"); // Make thread appear suspended to other threads, release mutator_lock_. TransitionFromRunnableToSuspended(kSuspended); // Transition back to runnable noting requests to suspend, re-acquire share on mutator_lock_. TransitionFromSuspendedToRunnable(); ATRACE_END(); VLOG(threads) << this << " self-reviving"; } void Thread::DumpState(std::ostream& os, const Thread* thread, pid_t tid) { std::string group_name; int priority; bool is_daemon = false; Thread* self = Thread::Current(); if (self != NULL && thread != NULL && thread->opeer_ != NULL) { ScopedObjectAccessUnchecked soa(self); priority = soa.DecodeField(WellKnownClasses::java_lang_Thread_priority)->GetInt(thread->opeer_); is_daemon = soa.DecodeField(WellKnownClasses::java_lang_Thread_daemon)->GetBoolean(thread->opeer_); mirror::Object* thread_group = soa.DecodeField(WellKnownClasses::java_lang_Thread_group)->GetObject(thread->opeer_); if (thread_group != NULL) { mirror::ArtField* group_name_field = soa.DecodeField(WellKnownClasses::java_lang_ThreadGroup_name); mirror::String* group_name_string = reinterpret_cast(group_name_field->GetObject(thread_group)); group_name = (group_name_string != NULL) ? group_name_string->ToModifiedUtf8() : ""; } } else { priority = GetNativePriority(); } std::string scheduler_group_name(GetSchedulerGroupName(tid)); if (scheduler_group_name.empty()) { scheduler_group_name = "default"; } if (thread != NULL) { os << '"' << *thread->name_ << '"'; if (is_daemon) { os << " daemon"; } os << " prio=" << priority << " tid=" << thread->GetThreadId() << " " << thread->GetState(); if (thread->IsStillStarting()) { os << " (still starting up)"; } os << "\n"; } else { os << '"' << ::art::GetThreadName(tid) << '"' << " prio=" << priority << " (not attached)\n"; } if (thread != NULL) { MutexLock mu(self, *Locks::thread_suspend_count_lock_); os << " | group=\"" << group_name << "\"" << " sCount=" << thread->suspend_count_ << " dsCount=" << thread->debug_suspend_count_ << " obj=" << reinterpret_cast(thread->opeer_) << " self=" << reinterpret_cast(thread) << "\n"; } os << " | sysTid=" << tid << " nice=" << getpriority(PRIO_PROCESS, tid) << " cgrp=" << scheduler_group_name; if (thread != NULL) { int policy; sched_param sp; CHECK_PTHREAD_CALL(pthread_getschedparam, (thread->pthread_self_, &policy, &sp), __FUNCTION__); os << " sched=" << policy << "/" << sp.sched_priority << " handle=" << reinterpret_cast(thread->pthread_self_); } os << "\n"; // Grab the scheduler stats for this thread. std::string scheduler_stats; if (ReadFileToString(StringPrintf("/proc/self/task/%d/schedstat", tid), &scheduler_stats)) { scheduler_stats.resize(scheduler_stats.size() - 1); // Lose the trailing '\n'. } else { scheduler_stats = "0 0 0"; } char native_thread_state = '?'; int utime = 0; int stime = 0; int task_cpu = 0; GetTaskStats(tid, &native_thread_state, &utime, &stime, &task_cpu); os << " | state=" << native_thread_state << " schedstat=( " << scheduler_stats << " )" << " utm=" << utime << " stm=" << stime << " core=" << task_cpu << " HZ=" << sysconf(_SC_CLK_TCK) << "\n"; if (thread != NULL) { os << " | stack=" << reinterpret_cast(thread->stack_begin_) << "-" << reinterpret_cast(thread->stack_end_) << " stackSize=" << PrettySize(thread->stack_size_) << "\n"; } } void Thread::DumpState(std::ostream& os) const { Thread::DumpState(os, this, GetTid()); } struct StackDumpVisitor : public StackVisitor { StackDumpVisitor(std::ostream& os, Thread* thread, Context* context, bool can_allocate) SHARED_LOCKS_REQUIRED(Locks::mutator_lock_) : StackVisitor(thread, context), os(os), thread(thread), can_allocate(can_allocate), last_method(NULL), last_line_number(0), repetition_count(0), frame_count(0) { } virtual ~StackDumpVisitor() { if (frame_count == 0) { os << " (no managed stack frames)\n"; } } bool VisitFrame() SHARED_LOCKS_REQUIRED(Locks::mutator_lock_) { mirror::ArtMethod* m = GetMethod(); if (m->IsRuntimeMethod()) { return true; } const int kMaxRepetition = 3; mirror::Class* c = m->GetDeclaringClass(); const mirror::DexCache* dex_cache = c->GetDexCache(); int line_number = -1; if (dex_cache != NULL) { // be tolerant of bad input const DexFile& dex_file = *dex_cache->GetDexFile(); line_number = dex_file.GetLineNumFromPC(m, GetDexPc()); } if (line_number == last_line_number && last_method == m) { repetition_count++; } else { if (repetition_count >= kMaxRepetition) { os << " ... repeated " << (repetition_count - kMaxRepetition) << " times\n"; } repetition_count = 0; last_line_number = line_number; last_method = m; } if (repetition_count < kMaxRepetition) { os << " at " << PrettyMethod(m, false); if (m->IsNative()) { os << "(Native method)"; } else { mh.ChangeMethod(m); const char* source_file(mh.GetDeclaringClassSourceFile()); os << "(" << (source_file != NULL ? source_file : "unavailable") << ":" << line_number << ")"; } os << "\n"; if (frame_count == 0) { Monitor::DescribeWait(os, thread); } if (can_allocate) { Monitor::VisitLocks(this, DumpLockedObject, &os); } } ++frame_count; return true; } static void DumpLockedObject(mirror::Object* o, void* context) SHARED_LOCKS_REQUIRED(Locks::mutator_lock_) { std::ostream& os = *reinterpret_cast(context); os << " - locked <" << o << "> (a " << PrettyTypeOf(o) << ")\n"; } std::ostream& os; const Thread* thread; const bool can_allocate; MethodHelper mh; mirror::ArtMethod* last_method; int last_line_number; int repetition_count; int frame_count; }; static bool ShouldShowNativeStack(const Thread* thread) SHARED_LOCKS_REQUIRED(Locks::mutator_lock_) { ThreadState state = thread->GetState(); // In native code somewhere in the VM (one of the kWaitingFor* states)? That's interesting. if (state > kWaiting && state < kStarting) { return true; } // In an Object.wait variant or Thread.sleep? That's not interesting. if (state == kTimedWaiting || state == kSleeping || state == kWaiting) { return false; } // In some other native method? That's interesting. // We don't just check kNative because native methods will be in state kSuspended if they're // calling back into the VM, or kBlocked if they're blocked on a monitor, or one of the // thread-startup states if it's early enough in their life cycle (http://b/7432159). mirror::ArtMethod* current_method = thread->GetCurrentMethod(NULL); return current_method != NULL && current_method->IsNative(); } void Thread::DumpStack(std::ostream& os) const { // TODO: we call this code when dying but may not have suspended the thread ourself. The // IsSuspended check is therefore racy with the use for dumping (normally we inhibit // the race with the thread_suspend_count_lock_). // No point dumping for an abort in debug builds where we'll hit the not suspended check in stack. bool dump_for_abort = (gAborting > 0) && !kIsDebugBuild; if (this == Thread::Current() || IsSuspended() || dump_for_abort) { // If we're currently in native code, dump that stack before dumping the managed stack. if (dump_for_abort || ShouldShowNativeStack(this)) { DumpKernelStack(os, GetTid(), " kernel: ", false); DumpNativeStack(os, GetTid(), " native: ", false); } UniquePtr context(Context::Create()); StackDumpVisitor dumper(os, const_cast(this), context.get(), !throwing_OutOfMemoryError_); dumper.WalkStack(); } else { os << "Not able to dump stack of thread that isn't suspended"; } } void Thread::ThreadExitCallback(void* arg) { Thread* self = reinterpret_cast(arg); if (self->thread_exit_check_count_ == 0) { LOG(WARNING) << "Native thread exiting without having called DetachCurrentThread (maybe it's going to use a pthread_key_create destructor?): " << *self; CHECK(is_started_); CHECK_PTHREAD_CALL(pthread_setspecific, (Thread::pthread_key_self_, self), "reattach self"); self->thread_exit_check_count_ = 1; } else { LOG(FATAL) << "Native thread exited without calling DetachCurrentThread: " << *self; } } void Thread::Startup() { CHECK(!is_started_); is_started_ = true; { // MutexLock to keep annotalysis happy. // // Note we use NULL for the thread because Thread::Current can // return garbage since (is_started_ == true) and // Thread::pthread_key_self_ is not yet initialized. // This was seen on glibc. MutexLock mu(NULL, *Locks::thread_suspend_count_lock_); resume_cond_ = new ConditionVariable("Thread resumption condition variable", *Locks::thread_suspend_count_lock_); } // Allocate a TLS slot. CHECK_PTHREAD_CALL(pthread_key_create, (&Thread::pthread_key_self_, Thread::ThreadExitCallback), "self key"); // Double-check the TLS slot allocation. if (pthread_getspecific(pthread_key_self_) != NULL) { LOG(FATAL) << "Newly-created pthread TLS slot is not NULL"; } } void Thread::FinishStartup() { Runtime* runtime = Runtime::Current(); CHECK(runtime->IsStarted()); // Finish attaching the main thread. ScopedObjectAccess soa(Thread::Current()); Thread::Current()->CreatePeer("main", false, runtime->GetMainThreadGroup()); Runtime::Current()->GetClassLinker()->RunRootClinits(); } void Thread::Shutdown() { CHECK(is_started_); is_started_ = false; CHECK_PTHREAD_CALL(pthread_key_delete, (Thread::pthread_key_self_), "self key"); MutexLock mu(Thread::Current(), *Locks::thread_suspend_count_lock_); if (resume_cond_ != NULL) { delete resume_cond_; resume_cond_ = NULL; } } Thread::Thread(bool daemon) : suspend_count_(0), card_table_(NULL), exception_(NULL), stack_end_(NULL), managed_stack_(), jni_env_(NULL), self_(NULL), opeer_(NULL), jpeer_(NULL), stack_begin_(NULL), stack_size_(0), thin_lock_thread_id_(0), stack_trace_sample_(NULL), trace_clock_base_(0), tid_(0), wait_mutex_(new Mutex("a thread wait mutex")), wait_cond_(new ConditionVariable("a thread wait condition variable", *wait_mutex_)), wait_monitor_(NULL), interrupted_(false), wait_next_(NULL), monitor_enter_object_(NULL), top_sirt_(NULL), runtime_(NULL), class_loader_override_(NULL), long_jump_context_(NULL), throwing_OutOfMemoryError_(false), debug_suspend_count_(0), debug_invoke_req_(new DebugInvokeReq), deoptimization_shadow_frame_(NULL), instrumentation_stack_(new std::deque), name_(new std::string(kThreadNameDuringStartup)), daemon_(daemon), pthread_self_(0), no_thread_suspension_(0), last_no_thread_suspension_cause_(NULL), checkpoint_function_(0), thread_exit_check_count_(0) { CHECK_EQ((sizeof(Thread) % 4), 0U) << sizeof(Thread); state_and_flags_.as_struct.flags = 0; state_and_flags_.as_struct.state = kNative; memset(&held_mutexes_[0], 0, sizeof(held_mutexes_)); } bool Thread::IsStillStarting() const { // You might think you can check whether the state is kStarting, but for much of thread startup, // the thread is in kNative; it might also be in kVmWait. // You might think you can check whether the peer is NULL, but the peer is actually created and // assigned fairly early on, and needs to be. // It turns out that the last thing to change is the thread name; that's a good proxy for "has // this thread _ever_ entered kRunnable". return (jpeer_ == NULL && opeer_ == NULL) || (*name_ == kThreadNameDuringStartup); } void Thread::AssertNoPendingException() const { if (UNLIKELY(IsExceptionPending())) { ScopedObjectAccess soa(Thread::Current()); mirror::Throwable* exception = GetException(NULL); LOG(FATAL) << "No pending exception expected: " << exception->Dump(); } } static mirror::Object* MonitorExitVisitor(mirror::Object* object, void* arg) NO_THREAD_SAFETY_ANALYSIS { Thread* self = reinterpret_cast(arg); mirror::Object* entered_monitor = object; if (self->HoldsLock(entered_monitor)) { LOG(WARNING) << "Calling MonitorExit on object " << object << " (" << PrettyTypeOf(object) << ")" << " left locked by native thread " << *Thread::Current() << " which is detaching"; entered_monitor->MonitorExit(self); } return object; } void Thread::Destroy() { Thread* self = this; DCHECK_EQ(self, Thread::Current()); if (opeer_ != NULL) { ScopedObjectAccess soa(self); // We may need to call user-supplied managed code, do this before final clean-up. HandleUncaughtExceptions(soa); RemoveFromThreadGroup(soa); // this.nativePeer = 0; soa.DecodeField(WellKnownClasses::java_lang_Thread_nativePeer)->SetInt(opeer_, 0); Dbg::PostThreadDeath(self); // Thread.join() is implemented as an Object.wait() on the Thread.lock object. Signal anyone // who is waiting. mirror::Object* lock = soa.DecodeField(WellKnownClasses::java_lang_Thread_lock)->GetObject(opeer_); // (This conditional is only needed for tests, where Thread.lock won't have been set.) if (lock != NULL) { ObjectLock locker(self, lock); locker.Notify(); } } // On thread detach, all monitors entered with JNI MonitorEnter are automatically exited. if (jni_env_ != NULL) { jni_env_->monitors.VisitRoots(MonitorExitVisitor, self); } } Thread::~Thread() { if (jni_env_ != NULL && jpeer_ != NULL) { // If pthread_create fails we don't have a jni env here. jni_env_->DeleteGlobalRef(jpeer_); jpeer_ = NULL; } opeer_ = NULL; delete jni_env_; jni_env_ = NULL; CHECK_NE(GetState(), kRunnable); // We may be deleting a still born thread. SetStateUnsafe(kTerminated); delete wait_cond_; delete wait_mutex_; if (long_jump_context_ != NULL) { delete long_jump_context_; } delete debug_invoke_req_; delete instrumentation_stack_; delete name_; delete stack_trace_sample_; TearDownAlternateSignalStack(); } void Thread::HandleUncaughtExceptions(ScopedObjectAccess& soa) { if (!IsExceptionPending()) { return; } ScopedLocalRef peer(jni_env_, soa.AddLocalReference(opeer_)); ScopedThreadStateChange tsc(this, kNative); // Get and clear the exception. ScopedLocalRef exception(jni_env_, jni_env_->ExceptionOccurred()); jni_env_->ExceptionClear(); // If the thread has its own handler, use that. ScopedLocalRef handler(jni_env_, jni_env_->GetObjectField(peer.get(), WellKnownClasses::java_lang_Thread_uncaughtHandler)); if (handler.get() == NULL) { // Otherwise use the thread group's default handler. handler.reset(jni_env_->GetObjectField(peer.get(), WellKnownClasses::java_lang_Thread_group)); } // Call the handler. jni_env_->CallVoidMethod(handler.get(), WellKnownClasses::java_lang_Thread$UncaughtExceptionHandler_uncaughtException, peer.get(), exception.get()); // If the handler threw, clear that exception too. jni_env_->ExceptionClear(); } void Thread::RemoveFromThreadGroup(ScopedObjectAccess& soa) { // this.group.removeThread(this); // group can be null if we're in the compiler or a test. mirror::Object* ogroup = soa.DecodeField(WellKnownClasses::java_lang_Thread_group)->GetObject(opeer_); if (ogroup != NULL) { ScopedLocalRef group(soa.Env(), soa.AddLocalReference(ogroup)); ScopedLocalRef peer(soa.Env(), soa.AddLocalReference(opeer_)); ScopedThreadStateChange tsc(soa.Self(), kNative); jni_env_->CallVoidMethod(group.get(), WellKnownClasses::java_lang_ThreadGroup_removeThread, peer.get()); } } size_t Thread::NumSirtReferences() { size_t count = 0; for (StackIndirectReferenceTable* cur = top_sirt_; cur; cur = cur->GetLink()) { count += cur->NumberOfReferences(); } return count; } bool Thread::SirtContains(jobject obj) const { mirror::Object** sirt_entry = reinterpret_cast(obj); for (StackIndirectReferenceTable* cur = top_sirt_; cur; cur = cur->GetLink()) { if (cur->Contains(sirt_entry)) { return true; } } // JNI code invoked from portable code uses shadow frames rather than the SIRT. return managed_stack_.ShadowFramesContain(sirt_entry); } void Thread::SirtVisitRoots(RootVisitor* visitor, void* arg) { for (StackIndirectReferenceTable* cur = top_sirt_; cur; cur = cur->GetLink()) { size_t num_refs = cur->NumberOfReferences(); for (size_t j = 0; j < num_refs; j++) { mirror::Object* object = cur->GetReference(j); if (object != nullptr) { const mirror::Object* new_obj = visitor(object, arg); DCHECK(new_obj != nullptr); if (new_obj != object) { cur->SetReference(j, const_cast(new_obj)); } } } } } mirror::Object* Thread::DecodeJObject(jobject obj) const { Locks::mutator_lock_->AssertSharedHeld(this); if (obj == NULL) { return NULL; } IndirectRef ref = reinterpret_cast(obj); IndirectRefKind kind = GetIndirectRefKind(ref); mirror::Object* result; // The "kinds" below are sorted by the frequency we expect to encounter them. if (kind == kLocal) { IndirectReferenceTable& locals = jni_env_->locals; result = const_cast(locals.Get(ref)); } else if (kind == kSirtOrInvalid) { // TODO: make stack indirect reference table lookup more efficient // Check if this is a local reference in the SIRT if (LIKELY(SirtContains(obj))) { result = *reinterpret_cast(obj); // Read from SIRT } else if (Runtime::Current()->GetJavaVM()->work_around_app_jni_bugs) { // Assume an invalid local reference is actually a direct pointer. result = reinterpret_cast(obj); } else { result = kInvalidIndirectRefObject; } } else if (kind == kGlobal) { JavaVMExt* vm = Runtime::Current()->GetJavaVM(); IndirectReferenceTable& globals = vm->globals; ReaderMutexLock mu(const_cast(this), vm->globals_lock); result = const_cast(globals.Get(ref)); } else { DCHECK_EQ(kind, kWeakGlobal); result = Runtime::Current()->GetJavaVM()->DecodeWeakGlobal(const_cast(this), ref); if (result == kClearedJniWeakGlobal) { // This is a special case where it's okay to return NULL. return NULL; } } if (UNLIKELY(result == NULL)) { JniAbortF(NULL, "use of deleted %s %p", ToStr(kind).c_str(), obj); } else { if (kIsDebugBuild && (result != kInvalidIndirectRefObject)) { Runtime::Current()->GetHeap()->VerifyObject(result); } } return result; } // Implements java.lang.Thread.interrupted. bool Thread::Interrupted() { MutexLock mu(Thread::Current(), *wait_mutex_); bool interrupted = interrupted_; interrupted_ = false; return interrupted; } // Implements java.lang.Thread.isInterrupted. bool Thread::IsInterrupted() { MutexLock mu(Thread::Current(), *wait_mutex_); return interrupted_; } void Thread::Interrupt() { Thread* self = Thread::Current(); MutexLock mu(self, *wait_mutex_); if (interrupted_) { return; } interrupted_ = true; NotifyLocked(self); } void Thread::Notify() { Thread* self = Thread::Current(); MutexLock mu(self, *wait_mutex_); NotifyLocked(self); } void Thread::NotifyLocked(Thread* self) { if (wait_monitor_ != NULL) { wait_cond_->Signal(self); } } class CountStackDepthVisitor : public StackVisitor { public: explicit CountStackDepthVisitor(Thread* thread) SHARED_LOCKS_REQUIRED(Locks::mutator_lock_) : StackVisitor(thread, NULL), depth_(0), skip_depth_(0), skipping_(true) {} bool VisitFrame() SHARED_LOCKS_REQUIRED(Locks::mutator_lock_) { // We want to skip frames up to and including the exception's constructor. // Note we also skip the frame if it doesn't have a method (namely the callee // save frame) mirror::ArtMethod* m = GetMethod(); if (skipping_ && !m->IsRuntimeMethod() && !mirror::Throwable::GetJavaLangThrowable()->IsAssignableFrom(m->GetDeclaringClass())) { skipping_ = false; } if (!skipping_) { if (!m->IsRuntimeMethod()) { // Ignore runtime frames (in particular callee save). ++depth_; } } else { ++skip_depth_; } return true; } int GetDepth() const { return depth_; } int GetSkipDepth() const { return skip_depth_; } private: uint32_t depth_; uint32_t skip_depth_; bool skipping_; }; class BuildInternalStackTraceVisitor : public StackVisitor { public: explicit BuildInternalStackTraceVisitor(Thread* self, Thread* thread, int skip_depth) : StackVisitor(thread, NULL), self_(self), skip_depth_(skip_depth), count_(0), dex_pc_trace_(NULL), method_trace_(NULL) {} bool Init(int depth) SHARED_LOCKS_REQUIRED(Locks::mutator_lock_) { // Allocate method trace with an extra slot that will hold the PC trace SirtRef > method_trace(self_, Runtime::Current()->GetClassLinker()->AllocObjectArray(self_, depth + 1)); if (method_trace.get() == NULL) { return false; } mirror::IntArray* dex_pc_trace = mirror::IntArray::Alloc(self_, depth); if (dex_pc_trace == NULL) { return false; } // Save PC trace in last element of method trace, also places it into the // object graph. method_trace->Set(depth, dex_pc_trace); // Set the Object*s and assert that no thread suspension is now possible. const char* last_no_suspend_cause = self_->StartAssertNoThreadSuspension("Building internal stack trace"); CHECK(last_no_suspend_cause == NULL) << last_no_suspend_cause; method_trace_ = method_trace.get(); dex_pc_trace_ = dex_pc_trace; return true; } virtual ~BuildInternalStackTraceVisitor() { if (method_trace_ != NULL) { self_->EndAssertNoThreadSuspension(NULL); } } bool VisitFrame() SHARED_LOCKS_REQUIRED(Locks::mutator_lock_) { if (method_trace_ == NULL || dex_pc_trace_ == NULL) { return true; // We're probably trying to fillInStackTrace for an OutOfMemoryError. } if (skip_depth_ > 0) { skip_depth_--; return true; } mirror::ArtMethod* m = GetMethod(); if (m->IsRuntimeMethod()) { return true; // Ignore runtime frames (in particular callee save). } method_trace_->Set(count_, m); dex_pc_trace_->Set(count_, GetDexPc()); ++count_; return true; } mirror::ObjectArray* GetInternalStackTrace() const { return method_trace_; } private: Thread* const self_; // How many more frames to skip. int32_t skip_depth_; // Current position down stack trace. uint32_t count_; // Array of dex PC values. mirror::IntArray* dex_pc_trace_; // An array of the methods on the stack, the last entry is a reference to the PC trace. mirror::ObjectArray* method_trace_; }; jobject Thread::CreateInternalStackTrace(const ScopedObjectAccessUnchecked& soa) const { // Compute depth of stack CountStackDepthVisitor count_visitor(const_cast(this)); count_visitor.WalkStack(); int32_t depth = count_visitor.GetDepth(); int32_t skip_depth = count_visitor.GetSkipDepth(); // Build internal stack trace. BuildInternalStackTraceVisitor build_trace_visitor(soa.Self(), const_cast(this), skip_depth); if (!build_trace_visitor.Init(depth)) { return NULL; // Allocation failed. } build_trace_visitor.WalkStack(); mirror::ObjectArray* trace = build_trace_visitor.GetInternalStackTrace(); if (kIsDebugBuild) { for (int32_t i = 0; i < trace->GetLength(); ++i) { CHECK(trace->Get(i) != NULL); } } return soa.AddLocalReference(trace); } jobjectArray Thread::InternalStackTraceToStackTraceElementArray(JNIEnv* env, jobject internal, jobjectArray output_array, int* stack_depth) { // Transition into runnable state to work on Object*/Array* ScopedObjectAccess soa(env); // Decode the internal stack trace into the depth, method trace and PC trace int32_t depth = soa.Decode*>(internal)->GetLength() - 1; ClassLinker* class_linker = Runtime::Current()->GetClassLinker(); jobjectArray result; if (output_array != NULL) { // Reuse the array we were given. result = output_array; // ...adjusting the number of frames we'll write to not exceed the array length. const int32_t traces_length = soa.Decode*>(result)->GetLength(); depth = std::min(depth, traces_length); } else { // Create java_trace array and place in local reference table mirror::ObjectArray* java_traces = class_linker->AllocStackTraceElementArray(soa.Self(), depth); if (java_traces == NULL) { return NULL; } result = soa.AddLocalReference(java_traces); } if (stack_depth != NULL) { *stack_depth = depth; } for (int32_t i = 0; i < depth; ++i) { mirror::ObjectArray* method_trace = soa.Decode*>(internal); // Prepare parameters for StackTraceElement(String cls, String method, String file, int line) mirror::ArtMethod* method = down_cast(method_trace->Get(i)); MethodHelper mh(method); mirror::IntArray* pc_trace = down_cast(method_trace->Get(depth)); uint32_t dex_pc = pc_trace->Get(i); int32_t line_number = mh.GetLineNumFromDexPC(dex_pc); // Allocate element, potentially triggering GC // TODO: reuse class_name_object via Class::name_? const char* descriptor = mh.GetDeclaringClassDescriptor(); CHECK(descriptor != NULL); std::string class_name(PrettyDescriptor(descriptor)); SirtRef class_name_object(soa.Self(), mirror::String::AllocFromModifiedUtf8(soa.Self(), class_name.c_str())); if (class_name_object.get() == NULL) { return NULL; } const char* method_name = mh.GetName(); CHECK(method_name != NULL); SirtRef method_name_object(soa.Self(), mirror::String::AllocFromModifiedUtf8(soa.Self(), method_name)); if (method_name_object.get() == NULL) { return NULL; } const char* source_file = mh.GetDeclaringClassSourceFile(); SirtRef source_name_object(soa.Self(), mirror::String::AllocFromModifiedUtf8(soa.Self(), source_file)); mirror::StackTraceElement* obj = mirror::StackTraceElement::Alloc( soa.Self(), class_name_object, method_name_object, source_name_object, line_number); if (obj == NULL) { return NULL; } soa.Decode*>(result)->Set(i, obj); } return result; } void Thread::ThrowNewExceptionF(const ThrowLocation& throw_location, const char* exception_class_descriptor, const char* fmt, ...) { va_list args; va_start(args, fmt); ThrowNewExceptionV(throw_location, exception_class_descriptor, fmt, args); va_end(args); } void Thread::ThrowNewExceptionV(const ThrowLocation& throw_location, const char* exception_class_descriptor, const char* fmt, va_list ap) { std::string msg; StringAppendV(&msg, fmt, ap); ThrowNewException(throw_location, exception_class_descriptor, msg.c_str()); } void Thread::ThrowNewException(const ThrowLocation& throw_location, const char* exception_class_descriptor, const char* msg) { AssertNoPendingException(); // Callers should either clear or call ThrowNewWrappedException. ThrowNewWrappedException(throw_location, exception_class_descriptor, msg); } void Thread::ThrowNewWrappedException(const ThrowLocation& throw_location, const char* exception_class_descriptor, const char* msg) { DCHECK_EQ(this, Thread::Current()); // Ensure we don't forget arguments over object allocation. SirtRef saved_throw_this(this, throw_location.GetThis()); SirtRef saved_throw_method(this, throw_location.GetMethod()); // Ignore the cause throw location. TODO: should we report this as a re-throw? SirtRef cause(this, GetException(NULL)); ClearException(); Runtime* runtime = Runtime::Current(); mirror::ClassLoader* cl = NULL; if (throw_location.GetMethod() != NULL) { cl = throw_location.GetMethod()->GetDeclaringClass()->GetClassLoader(); } SirtRef class_loader(this, cl); SirtRef exception_class(this, runtime->GetClassLinker()->FindClass(exception_class_descriptor, class_loader)); if (UNLIKELY(exception_class.get() == NULL)) { CHECK(IsExceptionPending()); LOG(ERROR) << "No exception class " << PrettyDescriptor(exception_class_descriptor); return; } if (UNLIKELY(!runtime->GetClassLinker()->EnsureInitialized(exception_class.get(), true, true))) { DCHECK(IsExceptionPending()); return; } DCHECK(!runtime->IsStarted() || exception_class->IsThrowableClass()); SirtRef exception(this, down_cast(exception_class->AllocObject(this))); // If we couldn't allocate the exception, throw the pre-allocated out of memory exception. if (exception.get() == nullptr) { SetException(throw_location, Runtime::Current()->GetPreAllocatedOutOfMemoryError()); return; } // Choose an appropriate constructor and set up the arguments. const char* signature; SirtRef msg_string(this, NULL); if (msg != NULL) { // Ensure we remember this and the method over the String allocation. msg_string.reset(mirror::String::AllocFromModifiedUtf8(this, msg)); if (UNLIKELY(msg_string.get() == NULL)) { CHECK(IsExceptionPending()); // OOME. return; } if (cause.get() == NULL) { signature = "(Ljava/lang/String;)V"; } else { signature = "(Ljava/lang/String;Ljava/lang/Throwable;)V"; } } else { if (cause.get() == NULL) { signature = "()V"; } else { signature = "(Ljava/lang/Throwable;)V"; } } mirror::ArtMethod* exception_init_method = exception_class->FindDeclaredDirectMethod("", signature); CHECK(exception_init_method != NULL) << "No " << signature << " in " << PrettyDescriptor(exception_class_descriptor); if (UNLIKELY(!runtime->IsStarted())) { // Something is trying to throw an exception without a started runtime, which is the common // case in the compiler. We won't be able to invoke the constructor of the exception, so set // the exception fields directly. if (msg != NULL) { exception->SetDetailMessage(msg_string.get()); } if (cause.get() != NULL) { exception->SetCause(cause.get()); } ThrowLocation gc_safe_throw_location(saved_throw_this.get(), saved_throw_method.get(), throw_location.GetDexPc()); SetException(gc_safe_throw_location, exception.get()); } else { ArgArray args("VLL", 3); args.Append(reinterpret_cast(exception.get())); if (msg != NULL) { args.Append(reinterpret_cast(msg_string.get())); } if (cause.get() != NULL) { args.Append(reinterpret_cast(cause.get())); } JValue result; exception_init_method->Invoke(this, args.GetArray(), args.GetNumBytes(), &result, 'V'); if (LIKELY(!IsExceptionPending())) { ThrowLocation gc_safe_throw_location(saved_throw_this.get(), saved_throw_method.get(), throw_location.GetDexPc()); SetException(gc_safe_throw_location, exception.get()); } } } void Thread::ThrowOutOfMemoryError(const char* msg) { LOG(ERROR) << StringPrintf("Throwing OutOfMemoryError \"%s\"%s", msg, (throwing_OutOfMemoryError_ ? " (recursive case)" : "")); ThrowLocation throw_location = GetCurrentLocationForThrow(); if (!throwing_OutOfMemoryError_) { throwing_OutOfMemoryError_ = true; ThrowNewException(throw_location, "Ljava/lang/OutOfMemoryError;", msg); throwing_OutOfMemoryError_ = false; } else { Dump(LOG(ERROR)); // The pre-allocated OOME has no stack, so help out and log one. SetException(throw_location, Runtime::Current()->GetPreAllocatedOutOfMemoryError()); } } Thread* Thread::CurrentFromGdb() { return Thread::Current(); } void Thread::DumpFromGdb() const { std::ostringstream ss; Dump(ss); std::string str(ss.str()); // log to stderr for debugging command line processes std::cerr << str; #ifdef HAVE_ANDROID_OS // log to logcat for debugging frameworks processes LOG(INFO) << str; #endif } struct EntryPointInfo { uint32_t offset; const char* name; }; #define INTERPRETER_ENTRY_POINT_INFO(x) { INTERPRETER_ENTRYPOINT_OFFSET(x).Uint32Value(), #x } #define JNI_ENTRY_POINT_INFO(x) { JNI_ENTRYPOINT_OFFSET(x).Uint32Value(), #x } #define PORTABLE_ENTRY_POINT_INFO(x) { PORTABLE_ENTRYPOINT_OFFSET(x).Uint32Value(), #x } #define QUICK_ENTRY_POINT_INFO(x) { QUICK_ENTRYPOINT_OFFSET(x).Uint32Value(), #x } static const EntryPointInfo gThreadEntryPointInfo[] = { INTERPRETER_ENTRY_POINT_INFO(pInterpreterToInterpreterBridge), INTERPRETER_ENTRY_POINT_INFO(pInterpreterToCompiledCodeBridge), JNI_ENTRY_POINT_INFO(pDlsymLookup), PORTABLE_ENTRY_POINT_INFO(pPortableImtConflictTrampoline), PORTABLE_ENTRY_POINT_INFO(pPortableResolutionTrampoline), PORTABLE_ENTRY_POINT_INFO(pPortableToInterpreterBridge), QUICK_ENTRY_POINT_INFO(pAllocArray), QUICK_ENTRY_POINT_INFO(pAllocArrayWithAccessCheck), QUICK_ENTRY_POINT_INFO(pAllocObject), QUICK_ENTRY_POINT_INFO(pAllocObjectWithAccessCheck), QUICK_ENTRY_POINT_INFO(pCheckAndAllocArray), QUICK_ENTRY_POINT_INFO(pCheckAndAllocArrayWithAccessCheck), QUICK_ENTRY_POINT_INFO(pInstanceofNonTrivial), QUICK_ENTRY_POINT_INFO(pCheckCast), QUICK_ENTRY_POINT_INFO(pInitializeStaticStorage), QUICK_ENTRY_POINT_INFO(pInitializeTypeAndVerifyAccess), QUICK_ENTRY_POINT_INFO(pInitializeType), QUICK_ENTRY_POINT_INFO(pResolveString), QUICK_ENTRY_POINT_INFO(pSet32Instance), QUICK_ENTRY_POINT_INFO(pSet32Static), QUICK_ENTRY_POINT_INFO(pSet64Instance), QUICK_ENTRY_POINT_INFO(pSet64Static), QUICK_ENTRY_POINT_INFO(pSetObjInstance), QUICK_ENTRY_POINT_INFO(pSetObjStatic), QUICK_ENTRY_POINT_INFO(pGet32Instance), QUICK_ENTRY_POINT_INFO(pGet32Static), QUICK_ENTRY_POINT_INFO(pGet64Instance), QUICK_ENTRY_POINT_INFO(pGet64Static), QUICK_ENTRY_POINT_INFO(pGetObjInstance), QUICK_ENTRY_POINT_INFO(pGetObjStatic), QUICK_ENTRY_POINT_INFO(pAputObjectWithNullAndBoundCheck), QUICK_ENTRY_POINT_INFO(pAputObjectWithBoundCheck), QUICK_ENTRY_POINT_INFO(pAputObject), QUICK_ENTRY_POINT_INFO(pHandleFillArrayData), QUICK_ENTRY_POINT_INFO(pJniMethodStart), QUICK_ENTRY_POINT_INFO(pJniMethodStartSynchronized), QUICK_ENTRY_POINT_INFO(pJniMethodEnd), QUICK_ENTRY_POINT_INFO(pJniMethodEndSynchronized), QUICK_ENTRY_POINT_INFO(pJniMethodEndWithReference), QUICK_ENTRY_POINT_INFO(pJniMethodEndWithReferenceSynchronized), QUICK_ENTRY_POINT_INFO(pLockObject), QUICK_ENTRY_POINT_INFO(pUnlockObject), QUICK_ENTRY_POINT_INFO(pCmpgDouble), QUICK_ENTRY_POINT_INFO(pCmpgFloat), QUICK_ENTRY_POINT_INFO(pCmplDouble), QUICK_ENTRY_POINT_INFO(pCmplFloat), QUICK_ENTRY_POINT_INFO(pFmod), QUICK_ENTRY_POINT_INFO(pSqrt), QUICK_ENTRY_POINT_INFO(pL2d), QUICK_ENTRY_POINT_INFO(pFmodf), QUICK_ENTRY_POINT_INFO(pL2f), QUICK_ENTRY_POINT_INFO(pD2iz), QUICK_ENTRY_POINT_INFO(pF2iz), QUICK_ENTRY_POINT_INFO(pIdivmod), QUICK_ENTRY_POINT_INFO(pD2l), QUICK_ENTRY_POINT_INFO(pF2l), QUICK_ENTRY_POINT_INFO(pLdiv), QUICK_ENTRY_POINT_INFO(pLmod), QUICK_ENTRY_POINT_INFO(pLmul), QUICK_ENTRY_POINT_INFO(pShlLong), QUICK_ENTRY_POINT_INFO(pShrLong), QUICK_ENTRY_POINT_INFO(pUshrLong), QUICK_ENTRY_POINT_INFO(pIndexOf), QUICK_ENTRY_POINT_INFO(pMemcmp16), QUICK_ENTRY_POINT_INFO(pStringCompareTo), QUICK_ENTRY_POINT_INFO(pMemcpy), QUICK_ENTRY_POINT_INFO(pQuickImtConflictTrampoline), QUICK_ENTRY_POINT_INFO(pQuickResolutionTrampoline), QUICK_ENTRY_POINT_INFO(pQuickToInterpreterBridge), QUICK_ENTRY_POINT_INFO(pInvokeDirectTrampolineWithAccessCheck), QUICK_ENTRY_POINT_INFO(pInvokeInterfaceTrampolineWithAccessCheck), QUICK_ENTRY_POINT_INFO(pInvokeStaticTrampolineWithAccessCheck), QUICK_ENTRY_POINT_INFO(pInvokeSuperTrampolineWithAccessCheck), QUICK_ENTRY_POINT_INFO(pInvokeVirtualTrampolineWithAccessCheck), QUICK_ENTRY_POINT_INFO(pCheckSuspend), QUICK_ENTRY_POINT_INFO(pTestSuspend), QUICK_ENTRY_POINT_INFO(pDeliverException), QUICK_ENTRY_POINT_INFO(pThrowArrayBounds), QUICK_ENTRY_POINT_INFO(pThrowDivZero), QUICK_ENTRY_POINT_INFO(pThrowNoSuchMethod), QUICK_ENTRY_POINT_INFO(pThrowNullPointer), QUICK_ENTRY_POINT_INFO(pThrowStackOverflow), }; #undef QUICK_ENTRY_POINT_INFO void Thread::DumpThreadOffset(std::ostream& os, uint32_t offset, size_t size_of_pointers) { CHECK_EQ(size_of_pointers, 4U); // TODO: support 64-bit targets. #define DO_THREAD_OFFSET(x) \ if (offset == static_cast(OFFSETOF_VOLATILE_MEMBER(Thread, x))) { \ os << # x; \ return; \ } DO_THREAD_OFFSET(state_and_flags_); DO_THREAD_OFFSET(card_table_); DO_THREAD_OFFSET(exception_); DO_THREAD_OFFSET(opeer_); DO_THREAD_OFFSET(jni_env_); DO_THREAD_OFFSET(self_); DO_THREAD_OFFSET(stack_end_); DO_THREAD_OFFSET(suspend_count_); DO_THREAD_OFFSET(thin_lock_thread_id_); // DO_THREAD_OFFSET(top_of_managed_stack_); // DO_THREAD_OFFSET(top_of_managed_stack_pc_); DO_THREAD_OFFSET(top_sirt_); #undef DO_THREAD_OFFSET size_t entry_point_count = arraysize(gThreadEntryPointInfo); CHECK_EQ(entry_point_count * size_of_pointers, sizeof(InterpreterEntryPoints) + sizeof(JniEntryPoints) + sizeof(PortableEntryPoints) + sizeof(QuickEntryPoints)); uint32_t expected_offset = OFFSETOF_MEMBER(Thread, interpreter_entrypoints_); for (size_t i = 0; i < entry_point_count; ++i) { CHECK_EQ(gThreadEntryPointInfo[i].offset, expected_offset) << gThreadEntryPointInfo[i].name; expected_offset += size_of_pointers; if (gThreadEntryPointInfo[i].offset == offset) { os << gThreadEntryPointInfo[i].name; return; } } os << offset; } static const bool kDebugExceptionDelivery = false; class CatchBlockStackVisitor : public StackVisitor { public: CatchBlockStackVisitor(Thread* self, const ThrowLocation& throw_location, mirror::Throwable* exception, bool is_deoptimization) SHARED_LOCKS_REQUIRED(Locks::mutator_lock_) : StackVisitor(self, self->GetLongJumpContext()), self_(self), exception_(exception), is_deoptimization_(is_deoptimization), to_find_(is_deoptimization ? NULL : exception->GetClass()), throw_location_(throw_location), handler_quick_frame_(NULL), handler_quick_frame_pc_(0), handler_dex_pc_(0), native_method_count_(0), clear_exception_(false), method_tracing_active_(is_deoptimization || Runtime::Current()->GetInstrumentation()->AreExitStubsInstalled()), instrumentation_frames_to_pop_(0), top_shadow_frame_(NULL), prev_shadow_frame_(NULL) { // Exception not in root sets, can't allow GC. last_no_assert_suspension_cause_ = self->StartAssertNoThreadSuspension("Finding catch block"); } ~CatchBlockStackVisitor() { LOG(FATAL) << "UNREACHABLE"; // Expected to take long jump. } bool VisitFrame() SHARED_LOCKS_REQUIRED(Locks::mutator_lock_) { mirror::ArtMethod* method = GetMethod(); if (method == NULL) { // This is the upcall, we remember the frame and last pc so that we may long jump to them. handler_quick_frame_pc_ = GetCurrentQuickFramePc(); handler_quick_frame_ = GetCurrentQuickFrame(); return false; // End stack walk. } else { if (UNLIKELY(method_tracing_active_ && GetQuickInstrumentationExitPc() == GetReturnPc())) { // Keep count of the number of unwinds during instrumentation. instrumentation_frames_to_pop_++; } if (method->IsRuntimeMethod()) { // Ignore callee save method. DCHECK(method->IsCalleeSaveMethod()); return true; } else if (is_deoptimization_) { return HandleDeoptimization(method); } else { return HandleTryItems(method); } } } bool HandleTryItems(mirror::ArtMethod* method) SHARED_LOCKS_REQUIRED(Locks::mutator_lock_) { uint32_t dex_pc = DexFile::kDexNoIndex; if (method->IsNative()) { native_method_count_++; } else { dex_pc = GetDexPc(); } if (dex_pc != DexFile::kDexNoIndex) { uint32_t found_dex_pc = method->FindCatchBlock(to_find_, dex_pc, &clear_exception_); if (found_dex_pc != DexFile::kDexNoIndex) { handler_dex_pc_ = found_dex_pc; handler_quick_frame_pc_ = method->ToNativePc(found_dex_pc); handler_quick_frame_ = GetCurrentQuickFrame(); return false; // End stack walk. } } return true; // Continue stack walk. } bool HandleDeoptimization(mirror::ArtMethod* m) SHARED_LOCKS_REQUIRED(Locks::mutator_lock_) { MethodHelper mh(m); const DexFile::CodeItem* code_item = mh.GetCodeItem(); CHECK(code_item != NULL); uint16_t num_regs = code_item->registers_size_; uint32_t dex_pc = GetDexPc(); const Instruction* inst = Instruction::At(code_item->insns_ + dex_pc); uint32_t new_dex_pc = dex_pc + inst->SizeInCodeUnits(); ShadowFrame* new_frame = ShadowFrame::Create(num_regs, NULL, m, new_dex_pc); SirtRef dex_cache(self_, mh.GetDexCache()); SirtRef class_loader(self_, mh.GetClassLoader()); verifier::MethodVerifier verifier(&mh.GetDexFile(), &dex_cache, &class_loader, &mh.GetClassDef(), code_item, m->GetDexMethodIndex(), m, m->GetAccessFlags(), false, true); verifier.Verify(); std::vector kinds = verifier.DescribeVRegs(dex_pc); for (uint16_t reg = 0; reg < num_regs; reg++) { VRegKind kind = static_cast(kinds.at(reg * 2)); switch (kind) { case kUndefined: new_frame->SetVReg(reg, 0xEBADDE09); break; case kConstant: new_frame->SetVReg(reg, kinds.at((reg * 2) + 1)); break; case kReferenceVReg: new_frame->SetVRegReference(reg, reinterpret_cast(GetVReg(m, reg, kind))); break; default: new_frame->SetVReg(reg, GetVReg(m, reg, kind)); break; } } if (prev_shadow_frame_ != NULL) { prev_shadow_frame_->SetLink(new_frame); } else { top_shadow_frame_ = new_frame; } prev_shadow_frame_ = new_frame; return true; } void DoLongJump() SHARED_LOCKS_REQUIRED(Locks::mutator_lock_) { mirror::ArtMethod* catch_method = *handler_quick_frame_; if (catch_method == NULL) { if (kDebugExceptionDelivery) { LOG(INFO) << "Handler is upcall"; } } else { CHECK(!is_deoptimization_); if (kDebugExceptionDelivery) { const DexFile& dex_file = *catch_method->GetDeclaringClass()->GetDexCache()->GetDexFile(); int line_number = dex_file.GetLineNumFromPC(catch_method, handler_dex_pc_); LOG(INFO) << "Handler: " << PrettyMethod(catch_method) << " (line: " << line_number << ")"; } } if (clear_exception_) { // Exception was cleared as part of delivery. DCHECK(!self_->IsExceptionPending()); } else { // Put exception back in root set with clear throw location. self_->SetException(ThrowLocation(), exception_); } self_->EndAssertNoThreadSuspension(last_no_assert_suspension_cause_); // Do instrumentation events after allowing thread suspension again. instrumentation::Instrumentation* instrumentation = Runtime::Current()->GetInstrumentation(); for (size_t i = 0; i < instrumentation_frames_to_pop_; ++i) { // We pop the instrumentation stack here so as not to corrupt it during the stack walk. if (i != instrumentation_frames_to_pop_ - 1 || self_->GetInstrumentationStack()->front().method_ != catch_method) { // Don't pop the instrumentation frame of the catch handler. instrumentation->PopMethodForUnwind(self_, is_deoptimization_); } } if (!is_deoptimization_) { instrumentation->ExceptionCaughtEvent(self_, throw_location_, catch_method, handler_dex_pc_, exception_); } else { // TODO: proper return value. self_->SetDeoptimizationShadowFrame(top_shadow_frame_); } // Place context back on thread so it will be available when we continue. self_->ReleaseLongJumpContext(context_); context_->SetSP(reinterpret_cast(handler_quick_frame_)); CHECK_NE(handler_quick_frame_pc_, 0u); context_->SetPC(handler_quick_frame_pc_); context_->SmashCallerSaves(); context_->DoLongJump(); } private: Thread* const self_; mirror::Throwable* const exception_; const bool is_deoptimization_; // The type of the exception catch block to find. mirror::Class* const to_find_; // Location of the throw. const ThrowLocation& throw_location_; // Quick frame with found handler or last frame if no handler found. mirror::ArtMethod** handler_quick_frame_; // PC to branch to for the handler. uintptr_t handler_quick_frame_pc_; // Associated dex PC. uint32_t handler_dex_pc_; // Number of native methods passed in crawl (equates to number of SIRTs to pop) uint32_t native_method_count_; // Should the exception be cleared as the catch block has no move-exception? bool clear_exception_; // Is method tracing active? const bool method_tracing_active_; // Support for nesting no thread suspension checks. const char* last_no_assert_suspension_cause_; // Number of frames to pop in long jump. size_t instrumentation_frames_to_pop_; ShadowFrame* top_shadow_frame_; ShadowFrame* prev_shadow_frame_; }; void Thread::QuickDeliverException() { // Get exception from thread. ThrowLocation throw_location; mirror::Throwable* exception = GetException(&throw_location); CHECK(exception != NULL); // Don't leave exception visible while we try to find the handler, which may cause class // resolution. ClearException(); bool is_deoptimization = (exception == reinterpret_cast(-1)); if (kDebugExceptionDelivery) { if (!is_deoptimization) { mirror::String* msg = exception->GetDetailMessage(); std::string str_msg(msg != NULL ? msg->ToModifiedUtf8() : ""); DumpStack(LOG(INFO) << "Delivering exception: " << PrettyTypeOf(exception) << ": " << str_msg << "\n"); } else { DumpStack(LOG(INFO) << "Deoptimizing: "); } } CatchBlockStackVisitor catch_finder(this, throw_location, exception, is_deoptimization); catch_finder.WalkStack(true); catch_finder.DoLongJump(); LOG(FATAL) << "UNREACHABLE"; } Context* Thread::GetLongJumpContext() { Context* result = long_jump_context_; if (result == NULL) { result = Context::Create(); } else { long_jump_context_ = NULL; // Avoid context being shared. result->Reset(); } return result; } struct CurrentMethodVisitor : public StackVisitor { CurrentMethodVisitor(Thread* thread, Context* context) SHARED_LOCKS_REQUIRED(Locks::mutator_lock_) : StackVisitor(thread, context), this_object_(NULL), method_(NULL), dex_pc_(0) {} virtual bool VisitFrame() SHARED_LOCKS_REQUIRED(Locks::mutator_lock_) { mirror::ArtMethod* m = GetMethod(); if (m->IsRuntimeMethod()) { // Continue if this is a runtime method. return true; } if (context_ != NULL) { this_object_ = GetThisObject(); } method_ = m; dex_pc_ = GetDexPc(); return false; } mirror::Object* this_object_; mirror::ArtMethod* method_; uint32_t dex_pc_; }; mirror::ArtMethod* Thread::GetCurrentMethod(uint32_t* dex_pc) const { CurrentMethodVisitor visitor(const_cast(this), NULL); visitor.WalkStack(false); if (dex_pc != NULL) { *dex_pc = visitor.dex_pc_; } return visitor.method_; } ThrowLocation Thread::GetCurrentLocationForThrow() { Context* context = GetLongJumpContext(); CurrentMethodVisitor visitor(this, context); visitor.WalkStack(false); ReleaseLongJumpContext(context); return ThrowLocation(visitor.this_object_, visitor.method_, visitor.dex_pc_); } bool Thread::HoldsLock(mirror::Object* object) { if (object == NULL) { return false; } return object->GetLockOwnerThreadId() == thin_lock_thread_id_; } // RootVisitor parameters are: (const Object* obj, size_t vreg, const StackVisitor* visitor). template class ReferenceMapVisitor : public StackVisitor { public: ReferenceMapVisitor(Thread* thread, Context* context, const RootVisitor& visitor) SHARED_LOCKS_REQUIRED(Locks::mutator_lock_) : StackVisitor(thread, context), visitor_(visitor) {} bool VisitFrame() SHARED_LOCKS_REQUIRED(Locks::mutator_lock_) { if (false) { LOG(INFO) << "Visiting stack roots in " << PrettyMethod(GetMethod()) << StringPrintf("@ PC:%04x", GetDexPc()); } ShadowFrame* shadow_frame = GetCurrentShadowFrame(); if (shadow_frame != NULL) { mirror::ArtMethod* m = shadow_frame->GetMethod(); size_t num_regs = shadow_frame->NumberOfVRegs(); if (m->IsNative() || shadow_frame->HasReferenceArray()) { // SIRT for JNI or References for interpreter. for (size_t reg = 0; reg < num_regs; ++reg) { mirror::Object* ref = shadow_frame->GetVRegReference(reg); if (ref != nullptr) { mirror::Object* new_ref = visitor_(ref, reg, this); if (new_ref != ref) { shadow_frame->SetVRegReference(reg, new_ref); } } } } else { // Java method. // Portable path use DexGcMap and store in Method.native_gc_map_. const uint8_t* gc_map = m->GetNativeGcMap(); CHECK(gc_map != NULL) << PrettyMethod(m); uint32_t gc_map_length = static_cast((gc_map[0] << 24) | (gc_map[1] << 16) | (gc_map[2] << 8) | (gc_map[3] << 0)); verifier::DexPcToReferenceMap dex_gc_map(gc_map + 4, gc_map_length); uint32_t dex_pc = GetDexPc(); const uint8_t* reg_bitmap = dex_gc_map.FindBitMap(dex_pc); DCHECK(reg_bitmap != NULL); num_regs = std::min(dex_gc_map.RegWidth() * 8, num_regs); for (size_t reg = 0; reg < num_regs; ++reg) { if (TestBitmap(reg, reg_bitmap)) { mirror::Object* ref = shadow_frame->GetVRegReference(reg); if (ref != nullptr) { mirror::Object* new_ref = visitor_(ref, reg, this); if (new_ref != ref) { shadow_frame->SetVRegReference(reg, new_ref); } } } } } } else { mirror::ArtMethod* m = GetMethod(); // Process register map (which native and runtime methods don't have) if (!m->IsNative() && !m->IsRuntimeMethod() && !m->IsProxyMethod()) { const uint8_t* native_gc_map = m->GetNativeGcMap(); CHECK(native_gc_map != NULL) << PrettyMethod(m); mh_.ChangeMethod(m); const DexFile::CodeItem* code_item = mh_.GetCodeItem(); DCHECK(code_item != NULL) << PrettyMethod(m); // Can't be NULL or how would we compile its instructions? NativePcOffsetToReferenceMap map(native_gc_map); size_t num_regs = std::min(map.RegWidth() * 8, static_cast(code_item->registers_size_)); if (num_regs > 0) { const uint8_t* reg_bitmap = map.FindBitMap(GetNativePcOffset()); DCHECK(reg_bitmap != NULL); const VmapTable vmap_table(m->GetVmapTable()); uint32_t core_spills = m->GetCoreSpillMask(); uint32_t fp_spills = m->GetFpSpillMask(); size_t frame_size = m->GetFrameSizeInBytes(); // For all dex registers in the bitmap mirror::ArtMethod** cur_quick_frame = GetCurrentQuickFrame(); DCHECK(cur_quick_frame != NULL); for (size_t reg = 0; reg < num_regs; ++reg) { // Does this register hold a reference? if (TestBitmap(reg, reg_bitmap)) { uint32_t vmap_offset; if (vmap_table.IsInContext(reg, kReferenceVReg, &vmap_offset)) { int vmap_reg = vmap_table.ComputeRegister(core_spills, vmap_offset, kReferenceVReg); mirror::Object* ref = reinterpret_cast(GetGPR(vmap_reg)); if (ref != nullptr) { mirror::Object* new_ref = visitor_(ref, reg, this); if (ref != new_ref) { SetGPR(vmap_reg, reinterpret_cast(new_ref)); } } } else { uint32_t* reg_addr = GetVRegAddr(cur_quick_frame, code_item, core_spills, fp_spills, frame_size, reg); mirror::Object* ref = reinterpret_cast(*reg_addr); if (ref != nullptr) { mirror::Object* new_ref = visitor_(ref, reg, this); if (ref != new_ref) { *reg_addr = reinterpret_cast(new_ref); } } } } } } } } return true; } private: static bool TestBitmap(int reg, const uint8_t* reg_vector) { return ((reg_vector[reg / 8] >> (reg % 8)) & 0x01) != 0; } // Visitor for when we visit a root. const RootVisitor& visitor_; // A method helper we keep around to avoid dex file/cache re-computations. MethodHelper mh_; }; class RootCallbackVisitor { public: RootCallbackVisitor(RootVisitor* visitor, void* arg) : visitor_(visitor), arg_(arg) {} mirror::Object* operator()(mirror::Object* obj, size_t, const StackVisitor*) const { return visitor_(obj, arg_); } private: RootVisitor* visitor_; void* arg_; }; class VerifyCallbackVisitor { public: VerifyCallbackVisitor(VerifyRootVisitor* visitor, void* arg) : visitor_(visitor), arg_(arg) { } void operator()(const mirror::Object* obj, size_t vreg, const StackVisitor* visitor) const { visitor_(obj, arg_, vreg, visitor); } private: VerifyRootVisitor* const visitor_; void* const arg_; }; void Thread::SetClassLoaderOverride(mirror::ClassLoader* class_loader_override) { if (kIsDebugBuild) { Runtime::Current()->GetHeap()->VerifyObject(class_loader_override); } class_loader_override_ = class_loader_override; } void Thread::VisitRoots(RootVisitor* visitor, void* arg) { if (opeer_ != nullptr) { opeer_ = visitor(opeer_, arg); } if (exception_ != nullptr) { exception_ = reinterpret_cast(visitor(exception_, arg)); } throw_location_.VisitRoots(visitor, arg); if (class_loader_override_ != nullptr) { class_loader_override_ = reinterpret_cast( visitor(class_loader_override_, arg)); } jni_env_->locals.VisitRoots(visitor, arg); jni_env_->monitors.VisitRoots(visitor, arg); SirtVisitRoots(visitor, arg); // Visit roots on this thread's stack Context* context = GetLongJumpContext(); RootCallbackVisitor visitorToCallback(visitor, arg); ReferenceMapVisitor mapper(this, context, visitorToCallback); mapper.WalkStack(); ReleaseLongJumpContext(context); for (instrumentation::InstrumentationStackFrame& frame : *GetInstrumentationStack()) { if (frame.this_object_ != nullptr) { frame.this_object_ = visitor(frame.this_object_, arg); } DCHECK(frame.method_ != nullptr); frame.method_ = reinterpret_cast(visitor(frame.method_, arg)); } } static mirror::Object* VerifyRoot(mirror::Object* root, void* arg) { DCHECK(root != nullptr); DCHECK(arg != nullptr); reinterpret_cast(arg)->VerifyObject(root); return root; } void Thread::VerifyStackImpl() { UniquePtr context(Context::Create()); RootCallbackVisitor visitorToCallback(VerifyRoot, Runtime::Current()->GetHeap()); ReferenceMapVisitor mapper(this, context.get(), visitorToCallback); mapper.WalkStack(); } // Set the stack end to that to be used during a stack overflow void Thread::SetStackEndForStackOverflow() { // During stack overflow we allow use of the full stack. if (stack_end_ == stack_begin_) { // However, we seem to have already extended to use the full stack. LOG(ERROR) << "Need to increase kStackOverflowReservedBytes (currently " << kStackOverflowReservedBytes << ")?"; DumpStack(LOG(ERROR)); LOG(FATAL) << "Recursive stack overflow."; } stack_end_ = stack_begin_; } std::ostream& operator<<(std::ostream& os, const Thread& thread) { thread.ShortDump(os); return os; } } // namespace art