/* * Copyright (C) 2012 The Android Open Source Project * * Licensed under the Apache License, Version 2.0 (the "License"); * you may not use this file except in compliance with the License. * You may obtain a copy of the License at * * http://www.apache.org/licenses/LICENSE-2.0 * * Unless required by applicable law or agreed to in writing, software * distributed under the License is distributed on an "AS IS" BASIS, * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. * See the License for the specific language governing permissions and * limitations under the License. */ #include "thread_pool.h" #include "base/casts.h" #include "base/stl_util.h" #include "runtime.h" #include "thread.h" namespace art { ThreadPoolWorker::ThreadPoolWorker(ThreadPool* thread_pool, const std::string& name, size_t stack_size) : thread_pool_(thread_pool), name_(name), stack_size_(stack_size) { const char* reason = "new thread pool worker thread"; pthread_attr_t attr; CHECK_PTHREAD_CALL(pthread_attr_init, (&attr), reason); CHECK_PTHREAD_CALL(pthread_attr_setstacksize, (&attr, stack_size), reason); CHECK_PTHREAD_CALL(pthread_create, (&pthread_, &attr, &Callback, this), reason); CHECK_PTHREAD_CALL(pthread_attr_destroy, (&attr), reason); } ThreadPoolWorker::~ThreadPoolWorker() { CHECK_PTHREAD_CALL(pthread_join, (pthread_, NULL), "thread pool worker shutdown"); } void ThreadPoolWorker::Run() { Thread* self = Thread::Current(); Task* task = NULL; thread_pool_->creation_barier_.Wait(self); while ((task = thread_pool_->GetTask(self)) != NULL) { task->Run(self); task->Finalize(); } } void* ThreadPoolWorker::Callback(void* arg) { ThreadPoolWorker* worker = reinterpret_cast(arg); Runtime* runtime = Runtime::Current(); CHECK(runtime->AttachCurrentThread(worker->name_.c_str(), true, NULL, false)); // Do work until its time to shut down. worker->Run(); runtime->DetachCurrentThread(); return NULL; } void ThreadPool::AddTask(Thread* self, Task* task) { MutexLock mu(self, task_queue_lock_); tasks_.push_back(task); // If we have any waiters, signal one. if (waiting_count_ != 0) { task_queue_condition_.Signal(self); } } ThreadPool::ThreadPool(size_t num_threads) : task_queue_lock_("task queue lock"), task_queue_condition_("task queue condition", task_queue_lock_), completion_condition_("task completion condition", task_queue_lock_), started_(false), shutting_down_(false), waiting_count_(0), start_time_(0), total_wait_time_(0), // Add one since the caller of constructor waits on the barrier too. creation_barier_(num_threads + 1) { Thread* self = Thread::Current(); while (GetThreadCount() < num_threads) { const std::string name = StringPrintf("Thread pool worker %zu", GetThreadCount()); threads_.push_back(new ThreadPoolWorker(this, name, ThreadPoolWorker::kDefaultStackSize)); } // Wait for all of the threads to attach. creation_barier_.Wait(self); } ThreadPool::~ThreadPool() { { Thread* self = Thread::Current(); MutexLock mu(self, task_queue_lock_); // Tell any remaining workers to shut down. shutting_down_ = true; // Broadcast to everyone waiting. task_queue_condition_.Broadcast(self); completion_condition_.Broadcast(self); } // Wait for the threads to finish. STLDeleteElements(&threads_); } void ThreadPool::StartWorkers(Thread* self) { MutexLock mu(self, task_queue_lock_); started_ = true; task_queue_condition_.Broadcast(self); start_time_ = NanoTime(); total_wait_time_ = 0; } void ThreadPool::StopWorkers(Thread* self) { MutexLock mu(self, task_queue_lock_); started_ = false; } Task* ThreadPool::GetTask(Thread* self) { MutexLock mu(self, task_queue_lock_); while (!IsShuttingDown()) { Task* task = TryGetTaskLocked(self); if (task != NULL) { return task; } waiting_count_++; if (waiting_count_ == GetThreadCount() && tasks_.empty()) { // We may be done, lets broadcast to the completion condition. completion_condition_.Broadcast(self); } const uint64_t wait_start = NanoTime(); task_queue_condition_.Wait(self); const uint64_t wait_end = NanoTime(); total_wait_time_ += wait_end - std::max(wait_start, start_time_); waiting_count_--; } // We are shutting down, return NULL to tell the worker thread to stop looping. return NULL; } Task* ThreadPool::TryGetTask(Thread* self) { MutexLock mu(self, task_queue_lock_); return TryGetTaskLocked(self); } Task* ThreadPool::TryGetTaskLocked(Thread* self) { if (started_ && !tasks_.empty()) { Task* task = tasks_.front(); tasks_.pop_front(); return task; } return NULL; } void ThreadPool::Wait(Thread* self, bool do_work, bool may_hold_locks) { if (do_work) { Task* task = NULL; while ((task = TryGetTask(self)) != NULL) { task->Run(self); task->Finalize(); } } // Wait until each thread is waiting and the task list is empty. MutexLock mu(self, task_queue_lock_); while (!shutting_down_ && (waiting_count_ != GetThreadCount() || !tasks_.empty())) { if (!may_hold_locks) { completion_condition_.Wait(self); } else { completion_condition_.WaitHoldingLocks(self); } } } size_t ThreadPool::GetTaskCount(Thread* self) { MutexLock mu(self, task_queue_lock_); return tasks_.size(); } WorkStealingWorker::WorkStealingWorker(ThreadPool* thread_pool, const std::string& name, size_t stack_size) : ThreadPoolWorker(thread_pool, name, stack_size), task_(NULL) {} void WorkStealingWorker::Run() { Thread* self = Thread::Current(); Task* task = NULL; WorkStealingThreadPool* thread_pool = down_cast(thread_pool_); while ((task = thread_pool_->GetTask(self)) != NULL) { WorkStealingTask* stealing_task = down_cast(task); { CHECK(task_ == NULL); MutexLock mu(self, thread_pool->work_steal_lock_); // Register that we are running the task ++stealing_task->ref_count_; task_ = stealing_task; } stealing_task->Run(self); // Mark ourselves as not running a task so that nobody tries to steal from us. // There is a race condition that someone starts stealing from us at this point. This is okay // due to the reference counting. task_ = NULL; bool finalize; // Steal work from tasks until there is none left to steal. Note: There is a race, but // all that happens when the race occurs is that we steal some work instead of processing a // task from the queue. while (thread_pool->GetTaskCount(self) == 0) { WorkStealingTask* steal_from_task = NULL; { MutexLock mu(self, thread_pool->work_steal_lock_); // Try finding a task to steal from. steal_from_task = thread_pool->FindTaskToStealFrom(self); if (steal_from_task != NULL) { CHECK_NE(stealing_task, steal_from_task) << "Attempting to steal from completed self task"; steal_from_task->ref_count_++; } else { break; } } if (steal_from_task != NULL) { // Task which completed earlier is going to steal some work. stealing_task->StealFrom(self, steal_from_task); { // We are done stealing from the task, lets decrement its reference count. MutexLock mu(self, thread_pool->work_steal_lock_); finalize = !--steal_from_task->ref_count_; } if (finalize) { steal_from_task->Finalize(); } } } { MutexLock mu(self, thread_pool->work_steal_lock_); // If nobody is still referencing task_ we can finalize it. finalize = !--stealing_task->ref_count_; } if (finalize) { stealing_task->Finalize(); } } } WorkStealingWorker::~WorkStealingWorker() {} WorkStealingThreadPool::WorkStealingThreadPool(size_t num_threads) : ThreadPool(0), work_steal_lock_("work stealing lock"), steal_index_(0) { while (GetThreadCount() < num_threads) { const std::string name = StringPrintf("Work stealing worker %zu", GetThreadCount()); threads_.push_back(new WorkStealingWorker(this, name, ThreadPoolWorker::kDefaultStackSize)); } } WorkStealingTask* WorkStealingThreadPool::FindTaskToStealFrom(Thread* self) { const size_t thread_count = GetThreadCount(); for (size_t i = 0; i < thread_count; ++i) { // TODO: Use CAS instead of lock. ++steal_index_; if (steal_index_ >= thread_count) { steal_index_-= thread_count; } WorkStealingWorker* worker = down_cast(threads_[steal_index_]); WorkStealingTask* task = worker->task_; if (task) { // Not null, we can probably steal from this worker. return task; } } // Couldn't find something to steal. return NULL; } WorkStealingThreadPool::~WorkStealingThreadPool() {} } // namespace art