/* * Copyright (C) 2011 The Android Open Source Project * * Licensed under the Apache License, Version 2.0 (the "License"); * you may not use this file except in compliance with the License. * You may obtain a copy of the License at * * http://www.apache.org/licenses/LICENSE-2.0 * * Unless required by applicable law or agreed to in writing, software * distributed under the License is distributed on an "AS IS" BASIS, * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. * See the License for the specific language governing permissions and * limitations under the License. */ #include "utils.h" #include #include #include #include #include #include #include #include #include "base/stl_util.h" #include "base/unix_file/fd_file.h" #include "dex_file-inl.h" #include "field_helper.h" #include "mirror/art_field-inl.h" #include "mirror/art_method-inl.h" #include "mirror/class-inl.h" #include "mirror/class_loader.h" #include "mirror/object-inl.h" #include "mirror/object_array-inl.h" #include "mirror/string.h" #include "os.h" #include "scoped_thread_state_change.h" #include "utf-inl.h" #if !defined(HAVE_POSIX_CLOCKS) #include #endif #if defined(HAVE_PRCTL) #include #endif #if defined(__APPLE__) #include "AvailabilityMacros.h" // For MAC_OS_X_VERSION_MAX_ALLOWED #include #endif #include // For DumpNativeStack. #if defined(__linux__) #include #endif namespace art { pid_t GetTid() { #if defined(__APPLE__) uint64_t owner; CHECK_PTHREAD_CALL(pthread_threadid_np, (NULL, &owner), __FUNCTION__); // Requires Mac OS 10.6 return owner; #elif defined(__BIONIC__) return gettid(); #else return syscall(__NR_gettid); #endif } std::string GetThreadName(pid_t tid) { std::string result; if (ReadFileToString(StringPrintf("/proc/self/task/%d/comm", tid), &result)) { result.resize(result.size() - 1); // Lose the trailing '\n'. } else { result = ""; } return result; } void GetThreadStack(pthread_t thread, void** stack_base, size_t* stack_size, size_t* guard_size) { #if defined(__APPLE__) *stack_size = pthread_get_stacksize_np(thread); void* stack_addr = pthread_get_stackaddr_np(thread); // Check whether stack_addr is the base or end of the stack. // (On Mac OS 10.7, it's the end.) int stack_variable; if (stack_addr > &stack_variable) { *stack_base = reinterpret_cast(stack_addr) - *stack_size; } else { *stack_base = stack_addr; } // This is wrong, but there doesn't seem to be a way to get the actual value on the Mac. pthread_attr_t attributes; CHECK_PTHREAD_CALL(pthread_attr_init, (&attributes), __FUNCTION__); CHECK_PTHREAD_CALL(pthread_attr_getguardsize, (&attributes, guard_size), __FUNCTION__); CHECK_PTHREAD_CALL(pthread_attr_destroy, (&attributes), __FUNCTION__); #else pthread_attr_t attributes; CHECK_PTHREAD_CALL(pthread_getattr_np, (thread, &attributes), __FUNCTION__); CHECK_PTHREAD_CALL(pthread_attr_getstack, (&attributes, stack_base, stack_size), __FUNCTION__); CHECK_PTHREAD_CALL(pthread_attr_getguardsize, (&attributes, guard_size), __FUNCTION__); CHECK_PTHREAD_CALL(pthread_attr_destroy, (&attributes), __FUNCTION__); #if defined(__GLIBC__) // If we're the main thread, check whether we were run with an unlimited stack. In that case, // glibc will have reported a 2GB stack for our 32-bit process, and our stack overflow detection // will be broken because we'll die long before we get close to 2GB. bool is_main_thread = (::art::GetTid() == getpid()); if (is_main_thread) { rlimit stack_limit; if (getrlimit(RLIMIT_STACK, &stack_limit) == -1) { PLOG(FATAL) << "getrlimit(RLIMIT_STACK) failed"; } if (stack_limit.rlim_cur == RLIM_INFINITY) { size_t old_stack_size = *stack_size; // Use the kernel default limit as our size, and adjust the base to match. *stack_size = 8 * MB; *stack_base = reinterpret_cast(*stack_base) + (old_stack_size - *stack_size); VLOG(threads) << "Limiting unlimited stack (reported as " << PrettySize(old_stack_size) << ")" << " to " << PrettySize(*stack_size) << " with base " << *stack_base; } } #endif #endif } bool ReadFileToString(const std::string& file_name, std::string* result) { std::unique_ptr file(new File); if (!file->Open(file_name, O_RDONLY)) { return false; } std::vector buf(8 * KB); while (true) { int64_t n = TEMP_FAILURE_RETRY(read(file->Fd(), &buf[0], buf.size())); if (n == -1) { return false; } if (n == 0) { return true; } result->append(&buf[0], n); } } std::string GetIsoDate() { time_t now = time(NULL); tm tmbuf; tm* ptm = localtime_r(&now, &tmbuf); return StringPrintf("%04d-%02d-%02d %02d:%02d:%02d", ptm->tm_year + 1900, ptm->tm_mon+1, ptm->tm_mday, ptm->tm_hour, ptm->tm_min, ptm->tm_sec); } uint64_t MilliTime() { #if defined(HAVE_POSIX_CLOCKS) timespec now; clock_gettime(CLOCK_MONOTONIC, &now); return static_cast(now.tv_sec) * UINT64_C(1000) + now.tv_nsec / UINT64_C(1000000); #else timeval now; gettimeofday(&now, NULL); return static_cast(now.tv_sec) * UINT64_C(1000) + now.tv_usec / UINT64_C(1000); #endif } uint64_t MicroTime() { #if defined(HAVE_POSIX_CLOCKS) timespec now; clock_gettime(CLOCK_MONOTONIC, &now); return static_cast(now.tv_sec) * UINT64_C(1000000) + now.tv_nsec / UINT64_C(1000); #else timeval now; gettimeofday(&now, NULL); return static_cast(now.tv_sec) * UINT64_C(1000000) + now.tv_usec; #endif } uint64_t NanoTime() { #if defined(HAVE_POSIX_CLOCKS) timespec now; clock_gettime(CLOCK_MONOTONIC, &now); return static_cast(now.tv_sec) * UINT64_C(1000000000) + now.tv_nsec; #else timeval now; gettimeofday(&now, NULL); return static_cast(now.tv_sec) * UINT64_C(1000000000) + now.tv_usec * UINT64_C(1000); #endif } uint64_t ThreadCpuNanoTime() { #if defined(HAVE_POSIX_CLOCKS) timespec now; clock_gettime(CLOCK_THREAD_CPUTIME_ID, &now); return static_cast(now.tv_sec) * UINT64_C(1000000000) + now.tv_nsec; #else UNIMPLEMENTED(WARNING); return -1; #endif } void NanoSleep(uint64_t ns) { timespec tm; tm.tv_sec = 0; tm.tv_nsec = ns; nanosleep(&tm, NULL); } void InitTimeSpec(bool absolute, int clock, int64_t ms, int32_t ns, timespec* ts) { int64_t endSec; if (absolute) { #if !defined(__APPLE__) clock_gettime(clock, ts); #else UNUSED(clock); timeval tv; gettimeofday(&tv, NULL); ts->tv_sec = tv.tv_sec; ts->tv_nsec = tv.tv_usec * 1000; #endif } else { ts->tv_sec = 0; ts->tv_nsec = 0; } endSec = ts->tv_sec + ms / 1000; if (UNLIKELY(endSec >= 0x7fffffff)) { std::ostringstream ss; LOG(INFO) << "Note: end time exceeds epoch: " << ss.str(); endSec = 0x7ffffffe; } ts->tv_sec = endSec; ts->tv_nsec = (ts->tv_nsec + (ms % 1000) * 1000000) + ns; // Catch rollover. if (ts->tv_nsec >= 1000000000L) { ts->tv_sec++; ts->tv_nsec -= 1000000000L; } } std::string PrettyDescriptor(mirror::String* java_descriptor) { if (java_descriptor == NULL) { return "null"; } return PrettyDescriptor(java_descriptor->ToModifiedUtf8().c_str()); } std::string PrettyDescriptor(mirror::Class* klass) { if (klass == NULL) { return "null"; } std::string temp; return PrettyDescriptor(klass->GetDescriptor(&temp)); } std::string PrettyDescriptor(const char* descriptor) { // Count the number of '['s to get the dimensionality. const char* c = descriptor; size_t dim = 0; while (*c == '[') { dim++; c++; } // Reference or primitive? if (*c == 'L') { // "[[La/b/C;" -> "a.b.C[][]". c++; // Skip the 'L'. } else { // "[[B" -> "byte[][]". // To make life easier, we make primitives look like unqualified // reference types. switch (*c) { case 'B': c = "byte;"; break; case 'C': c = "char;"; break; case 'D': c = "double;"; break; case 'F': c = "float;"; break; case 'I': c = "int;"; break; case 'J': c = "long;"; break; case 'S': c = "short;"; break; case 'Z': c = "boolean;"; break; case 'V': c = "void;"; break; // Used when decoding return types. default: return descriptor; } } // At this point, 'c' is a string of the form "fully/qualified/Type;" // or "primitive;". Rewrite the type with '.' instead of '/': std::string result; const char* p = c; while (*p != ';') { char ch = *p++; if (ch == '/') { ch = '.'; } result.push_back(ch); } // ...and replace the semicolon with 'dim' "[]" pairs: for (size_t i = 0; i < dim; ++i) { result += "[]"; } return result; } std::string PrettyField(mirror::ArtField* f, bool with_type) { if (f == NULL) { return "null"; } std::string result; if (with_type) { result += PrettyDescriptor(f->GetTypeDescriptor()); result += ' '; } StackHandleScope<1> hs(Thread::Current()); result += PrettyDescriptor(FieldHelper(hs.NewHandle(f)).GetDeclaringClassDescriptor()); result += '.'; result += f->GetName(); return result; } std::string PrettyField(uint32_t field_idx, const DexFile& dex_file, bool with_type) { if (field_idx >= dex_file.NumFieldIds()) { return StringPrintf("<>", field_idx); } const DexFile::FieldId& field_id = dex_file.GetFieldId(field_idx); std::string result; if (with_type) { result += dex_file.GetFieldTypeDescriptor(field_id); result += ' '; } result += PrettyDescriptor(dex_file.GetFieldDeclaringClassDescriptor(field_id)); result += '.'; result += dex_file.GetFieldName(field_id); return result; } std::string PrettyType(uint32_t type_idx, const DexFile& dex_file) { if (type_idx >= dex_file.NumTypeIds()) { return StringPrintf("<>", type_idx); } const DexFile::TypeId& type_id = dex_file.GetTypeId(type_idx); return PrettyDescriptor(dex_file.GetTypeDescriptor(type_id)); } std::string PrettyArguments(const char* signature) { std::string result; result += '('; CHECK_EQ(*signature, '('); ++signature; // Skip the '('. while (*signature != ')') { size_t argument_length = 0; while (signature[argument_length] == '[') { ++argument_length; } if (signature[argument_length] == 'L') { argument_length = (strchr(signature, ';') - signature + 1); } else { ++argument_length; } { std::string argument_descriptor(signature, argument_length); result += PrettyDescriptor(argument_descriptor.c_str()); } if (signature[argument_length] != ')') { result += ", "; } signature += argument_length; } CHECK_EQ(*signature, ')'); ++signature; // Skip the ')'. result += ')'; return result; } std::string PrettyReturnType(const char* signature) { const char* return_type = strchr(signature, ')'); CHECK(return_type != NULL); ++return_type; // Skip ')'. return PrettyDescriptor(return_type); } std::string PrettyMethod(mirror::ArtMethod* m, bool with_signature) { if (m == nullptr) { return "null"; } std::string result(PrettyDescriptor(m->GetDeclaringClassDescriptor())); result += '.'; result += m->GetName(); if (UNLIKELY(m->IsFastNative())) { result += "!"; } if (with_signature) { const Signature signature = m->GetSignature(); std::string sig_as_string(signature.ToString()); if (signature == Signature::NoSignature()) { return result + sig_as_string; } result = PrettyReturnType(sig_as_string.c_str()) + " " + result + PrettyArguments(sig_as_string.c_str()); } return result; } std::string PrettyMethod(uint32_t method_idx, const DexFile& dex_file, bool with_signature) { if (method_idx >= dex_file.NumMethodIds()) { return StringPrintf("<>", method_idx); } const DexFile::MethodId& method_id = dex_file.GetMethodId(method_idx); std::string result(PrettyDescriptor(dex_file.GetMethodDeclaringClassDescriptor(method_id))); result += '.'; result += dex_file.GetMethodName(method_id); if (with_signature) { const Signature signature = dex_file.GetMethodSignature(method_id); std::string sig_as_string(signature.ToString()); if (signature == Signature::NoSignature()) { return result + sig_as_string; } result = PrettyReturnType(sig_as_string.c_str()) + " " + result + PrettyArguments(sig_as_string.c_str()); } return result; } std::string PrettyTypeOf(mirror::Object* obj) { if (obj == NULL) { return "null"; } if (obj->GetClass() == NULL) { return "(raw)"; } std::string temp; std::string result(PrettyDescriptor(obj->GetClass()->GetDescriptor(&temp))); if (obj->IsClass()) { result += "<" + PrettyDescriptor(obj->AsClass()->GetDescriptor(&temp)) + ">"; } return result; } std::string PrettyClass(mirror::Class* c) { if (c == NULL) { return "null"; } std::string result; result += "java.lang.Class<"; result += PrettyDescriptor(c); result += ">"; return result; } std::string PrettyClassAndClassLoader(mirror::Class* c) { if (c == NULL) { return "null"; } std::string result; result += "java.lang.Class<"; result += PrettyDescriptor(c); result += ","; result += PrettyTypeOf(c->GetClassLoader()); // TODO: add an identifying hash value for the loader result += ">"; return result; } std::string PrettyJavaAccessFlags(uint32_t access_flags) { std::string result; if ((access_flags & kAccPublic) != 0) { result += "public "; } if ((access_flags & kAccProtected) != 0) { result += "protected "; } if ((access_flags & kAccPrivate) != 0) { result += "private "; } if ((access_flags & kAccFinal) != 0) { result += "final "; } if ((access_flags & kAccStatic) != 0) { result += "static "; } if ((access_flags & kAccTransient) != 0) { result += "transient "; } if ((access_flags & kAccVolatile) != 0) { result += "volatile "; } if ((access_flags & kAccSynchronized) != 0) { result += "synchronized "; } return result; } std::string PrettySize(int64_t byte_count) { // The byte thresholds at which we display amounts. A byte count is displayed // in unit U when kUnitThresholds[U] <= bytes < kUnitThresholds[U+1]. static const int64_t kUnitThresholds[] = { 0, // B up to... 3*1024, // KB up to... 2*1024*1024, // MB up to... 1024*1024*1024 // GB from here. }; static const int64_t kBytesPerUnit[] = { 1, KB, MB, GB }; static const char* const kUnitStrings[] = { "B", "KB", "MB", "GB" }; const char* negative_str = ""; if (byte_count < 0) { negative_str = "-"; byte_count = -byte_count; } int i = arraysize(kUnitThresholds); while (--i > 0) { if (byte_count >= kUnitThresholds[i]) { break; } } return StringPrintf("%s%" PRId64 "%s", negative_str, byte_count / kBytesPerUnit[i], kUnitStrings[i]); } std::string PrettyDuration(uint64_t nano_duration, size_t max_fraction_digits) { if (nano_duration == 0) { return "0"; } else { return FormatDuration(nano_duration, GetAppropriateTimeUnit(nano_duration), max_fraction_digits); } } TimeUnit GetAppropriateTimeUnit(uint64_t nano_duration) { const uint64_t one_sec = 1000 * 1000 * 1000; const uint64_t one_ms = 1000 * 1000; const uint64_t one_us = 1000; if (nano_duration >= one_sec) { return kTimeUnitSecond; } else if (nano_duration >= one_ms) { return kTimeUnitMillisecond; } else if (nano_duration >= one_us) { return kTimeUnitMicrosecond; } else { return kTimeUnitNanosecond; } } uint64_t GetNsToTimeUnitDivisor(TimeUnit time_unit) { const uint64_t one_sec = 1000 * 1000 * 1000; const uint64_t one_ms = 1000 * 1000; const uint64_t one_us = 1000; switch (time_unit) { case kTimeUnitSecond: return one_sec; case kTimeUnitMillisecond: return one_ms; case kTimeUnitMicrosecond: return one_us; case kTimeUnitNanosecond: return 1; } return 0; } std::string FormatDuration(uint64_t nano_duration, TimeUnit time_unit, size_t max_fraction_digits) { const char* unit = nullptr; uint64_t divisor = GetNsToTimeUnitDivisor(time_unit); switch (time_unit) { case kTimeUnitSecond: unit = "s"; break; case kTimeUnitMillisecond: unit = "ms"; break; case kTimeUnitMicrosecond: unit = "us"; break; case kTimeUnitNanosecond: unit = "ns"; break; } const uint64_t whole_part = nano_duration / divisor; uint64_t fractional_part = nano_duration % divisor; if (fractional_part == 0) { return StringPrintf("%" PRIu64 "%s", whole_part, unit); } else { static constexpr size_t kMaxDigits = 30; size_t avail_digits = kMaxDigits; char fraction_buffer[kMaxDigits]; char* ptr = fraction_buffer; uint64_t multiplier = 10; // This infinite loops if fractional part is 0. while (avail_digits > 1 && fractional_part * multiplier < divisor) { multiplier *= 10; *ptr++ = '0'; avail_digits--; } snprintf(ptr, avail_digits, "%" PRIu64, fractional_part); fraction_buffer[std::min(kMaxDigits - 1, max_fraction_digits)] = '\0'; return StringPrintf("%" PRIu64 ".%s%s", whole_part, fraction_buffer, unit); } } std::string PrintableChar(uint16_t ch) { std::string result; result += '\''; if (NeedsEscaping(ch)) { StringAppendF(&result, "\\u%04x", ch); } else { result += ch; } result += '\''; return result; } std::string PrintableString(const char* utf) { std::string result; result += '"'; const char* p = utf; size_t char_count = CountModifiedUtf8Chars(p); for (size_t i = 0; i < char_count; ++i) { uint16_t ch = GetUtf16FromUtf8(&p); if (ch == '\\') { result += "\\\\"; } else if (ch == '\n') { result += "\\n"; } else if (ch == '\r') { result += "\\r"; } else if (ch == '\t') { result += "\\t"; } else if (NeedsEscaping(ch)) { StringAppendF(&result, "\\u%04x", ch); } else { result += ch; } } result += '"'; return result; } // See http://java.sun.com/j2se/1.5.0/docs/guide/jni/spec/design.html#wp615 for the full rules. std::string MangleForJni(const std::string& s) { std::string result; size_t char_count = CountModifiedUtf8Chars(s.c_str()); const char* cp = &s[0]; for (size_t i = 0; i < char_count; ++i) { uint16_t ch = GetUtf16FromUtf8(&cp); if ((ch >= 'A' && ch <= 'Z') || (ch >= 'a' && ch <= 'z') || (ch >= '0' && ch <= '9')) { result.push_back(ch); } else if (ch == '.' || ch == '/') { result += "_"; } else if (ch == '_') { result += "_1"; } else if (ch == ';') { result += "_2"; } else if (ch == '[') { result += "_3"; } else { StringAppendF(&result, "_0%04x", ch); } } return result; } std::string DotToDescriptor(const char* class_name) { std::string descriptor(class_name); std::replace(descriptor.begin(), descriptor.end(), '.', '/'); if (descriptor.length() > 0 && descriptor[0] != '[') { descriptor = "L" + descriptor + ";"; } return descriptor; } std::string DescriptorToDot(const char* descriptor) { size_t length = strlen(descriptor); if (length > 1) { if (descriptor[0] == 'L' && descriptor[length - 1] == ';') { // Descriptors have the leading 'L' and trailing ';' stripped. std::string result(descriptor + 1, length - 2); std::replace(result.begin(), result.end(), '/', '.'); return result; } else { // For arrays the 'L' and ';' remain intact. std::string result(descriptor); std::replace(result.begin(), result.end(), '/', '.'); return result; } } // Do nothing for non-class/array descriptors. return descriptor; } std::string DescriptorToName(const char* descriptor) { size_t length = strlen(descriptor); if (descriptor[0] == 'L' && descriptor[length - 1] == ';') { std::string result(descriptor + 1, length - 2); return result; } return descriptor; } std::string JniShortName(mirror::ArtMethod* m) { std::string class_name(m->GetDeclaringClassDescriptor()); // Remove the leading 'L' and trailing ';'... CHECK_EQ(class_name[0], 'L') << class_name; CHECK_EQ(class_name[class_name.size() - 1], ';') << class_name; class_name.erase(0, 1); class_name.erase(class_name.size() - 1, 1); std::string method_name(m->GetName()); std::string short_name; short_name += "Java_"; short_name += MangleForJni(class_name); short_name += "_"; short_name += MangleForJni(method_name); return short_name; } std::string JniLongName(mirror::ArtMethod* m) { std::string long_name; long_name += JniShortName(m); long_name += "__"; std::string signature(m->GetSignature().ToString()); signature.erase(0, 1); signature.erase(signature.begin() + signature.find(')'), signature.end()); long_name += MangleForJni(signature); return long_name; } // Helper for IsValidPartOfMemberNameUtf8(), a bit vector indicating valid low ascii. uint32_t DEX_MEMBER_VALID_LOW_ASCII[4] = { 0x00000000, // 00..1f low control characters; nothing valid 0x03ff2010, // 20..3f digits and symbols; valid: '0'..'9', '$', '-' 0x87fffffe, // 40..5f uppercase etc.; valid: 'A'..'Z', '_' 0x07fffffe // 60..7f lowercase etc.; valid: 'a'..'z' }; // Helper for IsValidPartOfMemberNameUtf8(); do not call directly. bool IsValidPartOfMemberNameUtf8Slow(const char** pUtf8Ptr) { /* * It's a multibyte encoded character. Decode it and analyze. We * accept anything that isn't (a) an improperly encoded low value, * (b) an improper surrogate pair, (c) an encoded '\0', (d) a high * control character, or (e) a high space, layout, or special * character (U+00a0, U+2000..U+200f, U+2028..U+202f, * U+fff0..U+ffff). This is all specified in the dex format * document. */ uint16_t utf16 = GetUtf16FromUtf8(pUtf8Ptr); // Perform follow-up tests based on the high 8 bits. switch (utf16 >> 8) { case 0x00: // It's only valid if it's above the ISO-8859-1 high space (0xa0). return (utf16 > 0x00a0); case 0xd8: case 0xd9: case 0xda: case 0xdb: // It's a leading surrogate. Check to see that a trailing // surrogate follows. utf16 = GetUtf16FromUtf8(pUtf8Ptr); return (utf16 >= 0xdc00) && (utf16 <= 0xdfff); case 0xdc: case 0xdd: case 0xde: case 0xdf: // It's a trailing surrogate, which is not valid at this point. return false; case 0x20: case 0xff: // It's in the range that has spaces, controls, and specials. switch (utf16 & 0xfff8) { case 0x2000: case 0x2008: case 0x2028: case 0xfff0: case 0xfff8: return false; } break; } return true; } /* Return whether the pointed-at modified-UTF-8 encoded character is * valid as part of a member name, updating the pointer to point past * the consumed character. This will consume two encoded UTF-16 code * points if the character is encoded as a surrogate pair. Also, if * this function returns false, then the given pointer may only have * been partially advanced. */ static bool IsValidPartOfMemberNameUtf8(const char** pUtf8Ptr) { uint8_t c = (uint8_t) **pUtf8Ptr; if (LIKELY(c <= 0x7f)) { // It's low-ascii, so check the table. uint32_t wordIdx = c >> 5; uint32_t bitIdx = c & 0x1f; (*pUtf8Ptr)++; return (DEX_MEMBER_VALID_LOW_ASCII[wordIdx] & (1 << bitIdx)) != 0; } // It's a multibyte encoded character. Call a non-inline function // for the heavy lifting. return IsValidPartOfMemberNameUtf8Slow(pUtf8Ptr); } bool IsValidMemberName(const char* s) { bool angle_name = false; switch (*s) { case '\0': // The empty string is not a valid name. return false; case '<': angle_name = true; s++; break; } while (true) { switch (*s) { case '\0': return !angle_name; case '>': return angle_name && s[1] == '\0'; } if (!IsValidPartOfMemberNameUtf8(&s)) { return false; } } } enum ClassNameType { kName, kDescriptor }; template static bool IsValidClassName(const char* s) { int arrayCount = 0; while (*s == '[') { arrayCount++; s++; } if (arrayCount > 255) { // Arrays may have no more than 255 dimensions. return false; } ClassNameType type = kType; if (type != kDescriptor && arrayCount != 0) { /* * If we're looking at an array of some sort, then it doesn't * matter if what is being asked for is a class name; the * format looks the same as a type descriptor in that case, so * treat it as such. */ type = kDescriptor; } if (type == kDescriptor) { /* * We are looking for a descriptor. Either validate it as a * single-character primitive type, or continue on to check the * embedded class name (bracketed by "L" and ";"). */ switch (*(s++)) { case 'B': case 'C': case 'D': case 'F': case 'I': case 'J': case 'S': case 'Z': // These are all single-character descriptors for primitive types. return (*s == '\0'); case 'V': // Non-array void is valid, but you can't have an array of void. return (arrayCount == 0) && (*s == '\0'); case 'L': // Class name: Break out and continue below. break; default: // Oddball descriptor character. return false; } } /* * We just consumed the 'L' that introduces a class name as part * of a type descriptor, or we are looking for an unadorned class * name. */ bool sepOrFirst = true; // first character or just encountered a separator. for (;;) { uint8_t c = (uint8_t) *s; switch (c) { case '\0': /* * Premature end for a type descriptor, but valid for * a class name as long as we haven't encountered an * empty component (including the degenerate case of * the empty string ""). */ return (type == kName) && !sepOrFirst; case ';': /* * Invalid character for a class name, but the * legitimate end of a type descriptor. In the latter * case, make sure that this is the end of the string * and that it doesn't end with an empty component * (including the degenerate case of "L;"). */ return (type == kDescriptor) && !sepOrFirst && (s[1] == '\0'); case '/': case '.': if (c != kSeparator) { // The wrong separator character. return false; } if (sepOrFirst) { // Separator at start or two separators in a row. return false; } sepOrFirst = true; s++; break; default: if (!IsValidPartOfMemberNameUtf8(&s)) { return false; } sepOrFirst = false; break; } } } bool IsValidBinaryClassName(const char* s) { return IsValidClassName(s); } bool IsValidJniClassName(const char* s) { return IsValidClassName(s); } bool IsValidDescriptor(const char* s) { return IsValidClassName(s); } void Split(const std::string& s, char separator, std::vector* result) { const char* p = s.data(); const char* end = p + s.size(); while (p != end) { if (*p == separator) { ++p; } else { const char* start = p; while (++p != end && *p != separator) { // Skip to the next occurrence of the separator. } result->push_back(std::string(start, p - start)); } } } std::string Trim(const std::string& s) { std::string result; unsigned int start_index = 0; unsigned int end_index = s.size() - 1; // Skip initial whitespace. while (start_index < s.size()) { if (!isspace(s[start_index])) { break; } start_index++; } // Skip terminating whitespace. while (end_index >= start_index) { if (!isspace(s[end_index])) { break; } end_index--; } // All spaces, no beef. if (end_index < start_index) { return ""; } // Start_index is the first non-space, end_index is the last one. return s.substr(start_index, end_index - start_index + 1); } template std::string Join(const std::vector& strings, char separator) { if (strings.empty()) { return ""; } std::string result(strings[0]); for (size_t i = 1; i < strings.size(); ++i) { result += separator; result += strings[i]; } return result; } // Explicit instantiations. template std::string Join(const std::vector& strings, char separator); template std::string Join(const std::vector& strings, char separator); bool StartsWith(const std::string& s, const char* prefix) { return s.compare(0, strlen(prefix), prefix) == 0; } bool EndsWith(const std::string& s, const char* suffix) { size_t suffix_length = strlen(suffix); size_t string_length = s.size(); if (suffix_length > string_length) { return false; } size_t offset = string_length - suffix_length; return s.compare(offset, suffix_length, suffix) == 0; } void SetThreadName(const char* thread_name) { int hasAt = 0; int hasDot = 0; const char* s = thread_name; while (*s) { if (*s == '.') { hasDot = 1; } else if (*s == '@') { hasAt = 1; } s++; } int len = s - thread_name; if (len < 15 || hasAt || !hasDot) { s = thread_name; } else { s = thread_name + len - 15; } #if defined(__BIONIC__) // pthread_setname_np fails rather than truncating long strings. char buf[16]; // MAX_TASK_COMM_LEN=16 is hard-coded into bionic strncpy(buf, s, sizeof(buf)-1); buf[sizeof(buf)-1] = '\0'; errno = pthread_setname_np(pthread_self(), buf); if (errno != 0) { PLOG(WARNING) << "Unable to set the name of current thread to '" << buf << "'"; } #elif defined(__APPLE__) && MAC_OS_X_VERSION_MAX_ALLOWED >= 1060 pthread_setname_np(thread_name); #elif defined(HAVE_PRCTL) prctl(PR_SET_NAME, (unsigned long) s, 0, 0, 0); // NOLINT (unsigned long) #else UNIMPLEMENTED(WARNING) << thread_name; #endif } void GetTaskStats(pid_t tid, char* state, int* utime, int* stime, int* task_cpu) { *utime = *stime = *task_cpu = 0; std::string stats; if (!ReadFileToString(StringPrintf("/proc/self/task/%d/stat", tid), &stats)) { return; } // Skip the command, which may contain spaces. stats = stats.substr(stats.find(')') + 2); // Extract the three fields we care about. std::vector fields; Split(stats, ' ', &fields); *state = fields[0][0]; *utime = strtoull(fields[11].c_str(), NULL, 10); *stime = strtoull(fields[12].c_str(), NULL, 10); *task_cpu = strtoull(fields[36].c_str(), NULL, 10); } std::string GetSchedulerGroupName(pid_t tid) { // /proc//cgroup looks like this: // 2:devices:/ // 1:cpuacct,cpu:/ // We want the third field from the line whose second field contains the "cpu" token. std::string cgroup_file; if (!ReadFileToString(StringPrintf("/proc/self/task/%d/cgroup", tid), &cgroup_file)) { return ""; } std::vector cgroup_lines; Split(cgroup_file, '\n', &cgroup_lines); for (size_t i = 0; i < cgroup_lines.size(); ++i) { std::vector cgroup_fields; Split(cgroup_lines[i], ':', &cgroup_fields); std::vector cgroups; Split(cgroup_fields[1], ',', &cgroups); for (size_t i = 0; i < cgroups.size(); ++i) { if (cgroups[i] == "cpu") { return cgroup_fields[2].substr(1); // Skip the leading slash. } } } return ""; } void DumpNativeStack(std::ostream& os, pid_t tid, const char* prefix, mirror::ArtMethod* current_method) { #ifdef __linux__ std::unique_ptr backtrace(Backtrace::Create(BACKTRACE_CURRENT_PROCESS, tid)); if (!backtrace->Unwind(0)) { os << prefix << "(backtrace::Unwind failed for thread " << tid << ")\n"; return; } else if (backtrace->NumFrames() == 0) { os << prefix << "(no native stack frames for thread " << tid << ")\n"; return; } for (Backtrace::const_iterator it = backtrace->begin(); it != backtrace->end(); ++it) { // We produce output like this: // ] #00 pc 000075bb8 /system/lib/libc.so (unwind_backtrace_thread+536) // In order for parsing tools to continue to function, the stack dump // format must at least adhere to this format: // #XX pc ... // The parsers require a single space before and after pc, and two spaces // after the . There can be any prefix data before the // #XX. has to be a hex number but with no 0x prefix. os << prefix << StringPrintf("#%02zu pc ", it->num); if (!it->map) { os << StringPrintf("%08" PRIxPTR " ???", it->pc); } else { os << StringPrintf("%08" PRIxPTR " ", it->pc - it->map->start) << it->map->name << " ("; if (!it->func_name.empty()) { os << it->func_name; if (it->func_offset != 0) { os << "+" << it->func_offset; } } else if (current_method != nullptr && Locks::mutator_lock_->IsSharedHeld(Thread::Current()) && current_method->PcIsWithinQuickCode(it->pc)) { const void* start_of_code = current_method->GetEntryPointFromQuickCompiledCode(); os << JniLongName(current_method) << "+" << (it->pc - reinterpret_cast(start_of_code)); } else { os << "???"; } os << ")"; } os << "\n"; } #endif } #if defined(__APPLE__) // TODO: is there any way to get the kernel stack on Mac OS? void DumpKernelStack(std::ostream&, pid_t, const char*, bool) {} #else void DumpKernelStack(std::ostream& os, pid_t tid, const char* prefix, bool include_count) { if (tid == GetTid()) { // There's no point showing that we're reading our stack out of /proc! return; } std::string kernel_stack_filename(StringPrintf("/proc/self/task/%d/stack", tid)); std::string kernel_stack; if (!ReadFileToString(kernel_stack_filename, &kernel_stack)) { os << prefix << "(couldn't read " << kernel_stack_filename << ")\n"; return; } std::vector kernel_stack_frames; Split(kernel_stack, '\n', &kernel_stack_frames); // We skip the last stack frame because it's always equivalent to "[] 0xffffffff", // which looking at the source appears to be the kernel's way of saying "that's all, folks!". kernel_stack_frames.pop_back(); for (size_t i = 0; i < kernel_stack_frames.size(); ++i) { // Turn "[] futex_wait_queue_me+0xcd/0x110" // into "futex_wait_queue_me+0xcd/0x110". const char* text = kernel_stack_frames[i].c_str(); const char* close_bracket = strchr(text, ']'); if (close_bracket != NULL) { text = close_bracket + 2; } os << prefix; if (include_count) { os << StringPrintf("#%02zd ", i); } os << text << "\n"; } } #endif const char* GetAndroidRoot() { const char* android_root = getenv("ANDROID_ROOT"); if (android_root == NULL) { if (OS::DirectoryExists("/system")) { android_root = "/system"; } else { LOG(FATAL) << "ANDROID_ROOT not set and /system does not exist"; return ""; } } if (!OS::DirectoryExists(android_root)) { LOG(FATAL) << "Failed to find ANDROID_ROOT directory " << android_root; return ""; } return android_root; } const char* GetAndroidData() { std::string error_msg; const char* dir = GetAndroidDataSafe(&error_msg); if (dir != nullptr) { return dir; } else { LOG(FATAL) << error_msg; return ""; } } const char* GetAndroidDataSafe(std::string* error_msg) { const char* android_data = getenv("ANDROID_DATA"); if (android_data == NULL) { if (OS::DirectoryExists("/data")) { android_data = "/data"; } else { *error_msg = "ANDROID_DATA not set and /data does not exist"; return nullptr; } } if (!OS::DirectoryExists(android_data)) { *error_msg = StringPrintf("Failed to find ANDROID_DATA directory %s", android_data); return nullptr; } return android_data; } void GetDalvikCache(const char* subdir, const bool create_if_absent, std::string* dalvik_cache, bool* have_android_data, bool* dalvik_cache_exists, bool* is_global_cache) { CHECK(subdir != nullptr); std::string error_msg; const char* android_data = GetAndroidDataSafe(&error_msg); if (android_data == nullptr) { *have_android_data = false; *dalvik_cache_exists = false; *is_global_cache = false; return; } else { *have_android_data = true; } const std::string dalvik_cache_root(StringPrintf("%s/dalvik-cache/", android_data)); *dalvik_cache = dalvik_cache_root + subdir; *dalvik_cache_exists = OS::DirectoryExists(dalvik_cache->c_str()); *is_global_cache = strcmp(android_data, "/data") == 0; if (create_if_absent && !*dalvik_cache_exists && !*is_global_cache) { // Don't create the system's /data/dalvik-cache/... because it needs special permissions. *dalvik_cache_exists = ((mkdir(dalvik_cache_root.c_str(), 0700) == 0 || errno == EEXIST) && (mkdir(dalvik_cache->c_str(), 0700) == 0 || errno == EEXIST)); } } std::string GetDalvikCacheOrDie(const char* subdir, const bool create_if_absent) { CHECK(subdir != nullptr); const char* android_data = GetAndroidData(); const std::string dalvik_cache_root(StringPrintf("%s/dalvik-cache/", android_data)); const std::string dalvik_cache = dalvik_cache_root + subdir; if (create_if_absent && !OS::DirectoryExists(dalvik_cache.c_str())) { // Don't create the system's /data/dalvik-cache/... because it needs special permissions. if (strcmp(android_data, "/data") != 0) { int result = mkdir(dalvik_cache_root.c_str(), 0700); if (result != 0 && errno != EEXIST) { PLOG(FATAL) << "Failed to create dalvik-cache directory " << dalvik_cache_root; return ""; } result = mkdir(dalvik_cache.c_str(), 0700); if (result != 0) { PLOG(FATAL) << "Failed to create dalvik-cache directory " << dalvik_cache; return ""; } } else { LOG(FATAL) << "Failed to find dalvik-cache directory " << dalvik_cache; return ""; } } return dalvik_cache; } bool GetDalvikCacheFilename(const char* location, const char* cache_location, std::string* filename, std::string* error_msg) { if (location[0] != '/') { *error_msg = StringPrintf("Expected path in location to be absolute: %s", location); return false; } std::string cache_file(&location[1]); // skip leading slash if (!EndsWith(location, ".dex") && !EndsWith(location, ".art") && !EndsWith(location, ".oat")) { cache_file += "/"; cache_file += DexFile::kClassesDex; } std::replace(cache_file.begin(), cache_file.end(), '/', '@'); *filename = StringPrintf("%s/%s", cache_location, cache_file.c_str()); return true; } std::string GetDalvikCacheFilenameOrDie(const char* location, const char* cache_location) { std::string ret; std::string error_msg; if (!GetDalvikCacheFilename(location, cache_location, &ret, &error_msg)) { LOG(FATAL) << error_msg; } return ret; } static void InsertIsaDirectory(const InstructionSet isa, std::string* filename) { // in = /foo/bar/baz // out = /foo/bar//baz size_t pos = filename->rfind('/'); CHECK_NE(pos, std::string::npos) << *filename << " " << isa; filename->insert(pos, "/", 1); filename->insert(pos + 1, GetInstructionSetString(isa)); } std::string GetSystemImageFilename(const char* location, const InstructionSet isa) { // location = /system/framework/boot.art // filename = /system/framework//boot.art std::string filename(location); InsertIsaDirectory(isa, &filename); return filename; } std::string DexFilenameToOdexFilename(const std::string& location, const InstructionSet isa) { // location = /foo/bar/baz.jar // odex_location = /foo/bar//baz.odex CHECK_GE(location.size(), 4U) << location; // must be at least .123 std::string odex_location(location); InsertIsaDirectory(isa, &odex_location); size_t dot_index = odex_location.size() - 3 - 1; // 3=dex or zip or apk CHECK_EQ('.', odex_location[dot_index]) << location; odex_location.resize(dot_index + 1); CHECK_EQ('.', odex_location[odex_location.size()-1]) << location << " " << odex_location; odex_location += "odex"; return odex_location; } bool IsZipMagic(uint32_t magic) { return (('P' == ((magic >> 0) & 0xff)) && ('K' == ((magic >> 8) & 0xff))); } bool IsDexMagic(uint32_t magic) { return DexFile::IsMagicValid(reinterpret_cast(&magic)); } bool IsOatMagic(uint32_t magic) { return (memcmp(reinterpret_cast(magic), OatHeader::kOatMagic, sizeof(OatHeader::kOatMagic)) == 0); } bool Exec(std::vector& arg_vector, std::string* error_msg) { const std::string command_line(Join(arg_vector, ' ')); CHECK_GE(arg_vector.size(), 1U) << command_line; // Convert the args to char pointers. const char* program = arg_vector[0].c_str(); std::vector args; for (size_t i = 0; i < arg_vector.size(); ++i) { const std::string& arg = arg_vector[i]; char* arg_str = const_cast(arg.c_str()); CHECK(arg_str != nullptr) << i; args.push_back(arg_str); } args.push_back(NULL); // fork and exec pid_t pid = fork(); if (pid == 0) { // no allocation allowed between fork and exec // change process groups, so we don't get reaped by ProcessManager setpgid(0, 0); execv(program, &args[0]); PLOG(ERROR) << "Failed to execv(" << command_line << ")"; exit(1); } else { if (pid == -1) { *error_msg = StringPrintf("Failed to execv(%s) because fork failed: %s", command_line.c_str(), strerror(errno)); return false; } // wait for subprocess to finish int status; pid_t got_pid = TEMP_FAILURE_RETRY(waitpid(pid, &status, 0)); if (got_pid != pid) { *error_msg = StringPrintf("Failed after fork for execv(%s) because waitpid failed: " "wanted %d, got %d: %s", command_line.c_str(), pid, got_pid, strerror(errno)); return false; } if (!WIFEXITED(status) || WEXITSTATUS(status) != 0) { *error_msg = StringPrintf("Failed execv(%s) because non-0 exit status", command_line.c_str()); return false; } } return true; } void EncodeUnsignedLeb128(uint32_t data, std::vector* dst) { Leb128Encoder(dst).PushBackUnsigned(data); } void EncodeSignedLeb128(int32_t data, std::vector* dst) { Leb128Encoder(dst).PushBackSigned(data); } void PushWord(std::vector* buf, int data) { buf->push_back(data & 0xff); buf->push_back((data >> 8) & 0xff); buf->push_back((data >> 16) & 0xff); buf->push_back((data >> 24) & 0xff); } std::string PrettyDescriptor(Primitive::Type type) { return PrettyDescriptor(Primitive::Descriptor(type)); } } // namespace art