/* * Copyright (C) 2011 The Android Open Source Project * * Licensed under the Apache License, Version 2.0 (the "License"); * you may not use this file except in compliance with the License. * You may obtain a copy of the License at * * http://www.apache.org/licenses/LICENSE-2.0 * * Unless required by applicable law or agreed to in writing, software * distributed under the License is distributed on an "AS IS" BASIS, * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. * See the License for the specific language governing permissions and * limitations under the License. */ #ifndef ART_RUNTIME_UTILS_H_ #define ART_RUNTIME_UTILS_H_ #include #include #include #include #include #include #include "arch/instruction_set.h" #include "base/logging.h" #include "base/mutex.h" #include "globals.h" #include "primitive.h" namespace art { class ArtField; class ArtMethod; class DexFile; namespace mirror { class Class; class Object; class String; } // namespace mirror template bool ParseUint(const char *in, T* out) { char* end; unsigned long long int result = strtoull(in, &end, 0); // NOLINT(runtime/int) if (in == end || *end != '\0') { return false; } if (std::numeric_limits::max() < result) { return false; } *out = static_cast(result); return true; } template bool ParseInt(const char* in, T* out) { char* end; long long int result = strtoll(in, &end, 0); // NOLINT(runtime/int) if (in == end || *end != '\0') { return false; } if (result < std::numeric_limits::min() || std::numeric_limits::max() < result) { return false; } *out = static_cast(result); return true; } // Return whether x / divisor == x * (1.0f / divisor), for every float x. static constexpr bool CanDivideByReciprocalMultiplyFloat(int32_t divisor) { // True, if the most significant bits of divisor are 0. return ((divisor & 0x7fffff) == 0); } // Return whether x / divisor == x * (1.0 / divisor), for every double x. static constexpr bool CanDivideByReciprocalMultiplyDouble(int64_t divisor) { // True, if the most significant bits of divisor are 0. return ((divisor & ((UINT64_C(1) << 52) - 1)) == 0); } static inline uint32_t PointerToLowMemUInt32(const void* p) { uintptr_t intp = reinterpret_cast(p); DCHECK_LE(intp, 0xFFFFFFFFU); return intp & 0xFFFFFFFFU; } static inline bool NeedsEscaping(uint16_t ch) { return (ch < ' ' || ch > '~'); } std::string PrintableChar(uint16_t ch); // Returns an ASCII string corresponding to the given UTF-8 string. // Java escapes are used for non-ASCII characters. std::string PrintableString(const char* utf8); // Tests whether 's' starts with 'prefix'. bool StartsWith(const std::string& s, const char* prefix); // Tests whether 's' ends with 'suffix'. bool EndsWith(const std::string& s, const char* suffix); // Used to implement PrettyClass, PrettyField, PrettyMethod, and PrettyTypeOf, // one of which is probably more useful to you. // Returns a human-readable equivalent of 'descriptor'. So "I" would be "int", // "[[I" would be "int[][]", "[Ljava/lang/String;" would be // "java.lang.String[]", and so forth. std::string PrettyDescriptor(mirror::String* descriptor) SHARED_LOCKS_REQUIRED(Locks::mutator_lock_); std::string PrettyDescriptor(const char* descriptor); std::string PrettyDescriptor(mirror::Class* klass) SHARED_LOCKS_REQUIRED(Locks::mutator_lock_); std::string PrettyDescriptor(Primitive::Type type); // Returns a human-readable signature for 'f'. Something like "a.b.C.f" or // "int a.b.C.f" (depending on the value of 'with_type'). std::string PrettyField(ArtField* f, bool with_type = true) SHARED_LOCKS_REQUIRED(Locks::mutator_lock_); std::string PrettyField(uint32_t field_idx, const DexFile& dex_file, bool with_type = true); // Returns a human-readable signature for 'm'. Something like "a.b.C.m" or // "a.b.C.m(II)V" (depending on the value of 'with_signature'). std::string PrettyMethod(ArtMethod* m, bool with_signature = true) SHARED_LOCKS_REQUIRED(Locks::mutator_lock_); std::string PrettyMethod(uint32_t method_idx, const DexFile& dex_file, bool with_signature = true); // Returns a human-readable form of the name of the *class* of the given object. // So given an instance of java.lang.String, the output would // be "java.lang.String". Given an array of int, the output would be "int[]". // Given String.class, the output would be "java.lang.Class". std::string PrettyTypeOf(mirror::Object* obj) SHARED_LOCKS_REQUIRED(Locks::mutator_lock_); // Returns a human-readable form of the type at an index in the specified dex file. // Example outputs: char[], java.lang.String. std::string PrettyType(uint32_t type_idx, const DexFile& dex_file); // Returns a human-readable form of the name of the given class. // Given String.class, the output would be "java.lang.Class". std::string PrettyClass(mirror::Class* c) SHARED_LOCKS_REQUIRED(Locks::mutator_lock_); // Returns a human-readable form of the name of the given class with its class loader. std::string PrettyClassAndClassLoader(mirror::Class* c) SHARED_LOCKS_REQUIRED(Locks::mutator_lock_); // Returns a human-readable version of the Java part of the access flags, e.g., "private static " // (note the trailing whitespace). std::string PrettyJavaAccessFlags(uint32_t access_flags); // Returns a human-readable size string such as "1MB". std::string PrettySize(int64_t size_in_bytes); // Performs JNI name mangling as described in section 11.3 "Linking Native Methods" // of the JNI spec. std::string MangleForJni(const std::string& s); // Turn "java.lang.String" into "Ljava/lang/String;". std::string DotToDescriptor(const char* class_name); // Turn "Ljava/lang/String;" into "java.lang.String" using the conventions of // java.lang.Class.getName(). std::string DescriptorToDot(const char* descriptor); // Turn "Ljava/lang/String;" into "java/lang/String" using the opposite conventions of // java.lang.Class.getName(). std::string DescriptorToName(const char* descriptor); // Tests for whether 's' is a valid class name in the three common forms: bool IsValidBinaryClassName(const char* s); // "java.lang.String" bool IsValidJniClassName(const char* s); // "java/lang/String" bool IsValidDescriptor(const char* s); // "Ljava/lang/String;" // Returns whether the given string is a valid field or method name, // additionally allowing names that begin with '<' and end with '>'. bool IsValidMemberName(const char* s); // Returns the JNI native function name for the non-overloaded method 'm'. std::string JniShortName(ArtMethod* m) SHARED_LOCKS_REQUIRED(Locks::mutator_lock_); // Returns the JNI native function name for the overloaded method 'm'. std::string JniLongName(ArtMethod* m) SHARED_LOCKS_REQUIRED(Locks::mutator_lock_); bool ReadFileToString(const std::string& file_name, std::string* result); bool PrintFileToLog(const std::string& file_name, LogSeverity level); // Splits a string using the given separator character into a vector of // strings. Empty strings will be omitted. void Split(const std::string& s, char separator, std::vector* result); // Trims whitespace off both ends of the given string. std::string Trim(const std::string& s); // Joins a vector of strings into a single string, using the given separator. template std::string Join(const std::vector& strings, char separator); // Returns the calling thread's tid. (The C libraries don't expose this.) pid_t GetTid(); // Returns the given thread's name. std::string GetThreadName(pid_t tid); // Returns details of the given thread's stack. void GetThreadStack(pthread_t thread, void** stack_base, size_t* stack_size, size_t* guard_size); // Reads data from "/proc/self/task/${tid}/stat". void GetTaskStats(pid_t tid, char* state, int* utime, int* stime, int* task_cpu); // Returns the name of the scheduler group for the given thread the current process, or the empty string. std::string GetSchedulerGroupName(pid_t tid); // Sets the name of the current thread. The name may be truncated to an // implementation-defined limit. void SetThreadName(const char* thread_name); // Dumps the native stack for thread 'tid' to 'os'. void DumpNativeStack(std::ostream& os, pid_t tid, const char* prefix = "", ArtMethod* current_method = nullptr, void* ucontext = nullptr) NO_THREAD_SAFETY_ANALYSIS; // Dumps the kernel stack for thread 'tid' to 'os'. Note that this is only available on linux-x86. void DumpKernelStack(std::ostream& os, pid_t tid, const char* prefix = "", bool include_count = true); // Find $ANDROID_ROOT, /system, or abort. const char* GetAndroidRoot(); // Find $ANDROID_DATA, /data, or abort. const char* GetAndroidData(); // Find $ANDROID_DATA, /data, or return null. const char* GetAndroidDataSafe(std::string* error_msg); // Returns the dalvik-cache location, with subdir appended. Returns the empty string if the cache // could not be found (or created). std::string GetDalvikCache(const char* subdir, bool create_if_absent = true); // Returns the dalvik-cache location, or dies trying. subdir will be // appended to the cache location. std::string GetDalvikCacheOrDie(const char* subdir, bool create_if_absent = true); // Return true if we found the dalvik cache and stored it in the dalvik_cache argument. // have_android_data will be set to true if we have an ANDROID_DATA that exists, // dalvik_cache_exists will be true if there is a dalvik-cache directory that is present. // The flag is_global_cache tells whether this cache is /data/dalvik-cache. void GetDalvikCache(const char* subdir, bool create_if_absent, std::string* dalvik_cache, bool* have_android_data, bool* dalvik_cache_exists, bool* is_global_cache); // Returns the absolute dalvik-cache path for a DexFile or OatFile. The path returned will be // rooted at cache_location. bool GetDalvikCacheFilename(const char* file_location, const char* cache_location, std::string* filename, std::string* error_msg); // Returns the absolute dalvik-cache path for a DexFile or OatFile, or // dies trying. The path returned will be rooted at cache_location. std::string GetDalvikCacheFilenameOrDie(const char* file_location, const char* cache_location); // Returns the system location for an image std::string GetSystemImageFilename(const char* location, InstructionSet isa); // Check whether the given magic matches a known file type. bool IsZipMagic(uint32_t magic); bool IsDexMagic(uint32_t magic); bool IsOatMagic(uint32_t magic); // Wrapper on fork/execv to run a command in a subprocess. bool Exec(std::vector& arg_vector, std::string* error_msg); class VoidFunctor { public: template inline void operator() (A a) const { UNUSED(a); } template inline void operator() (A a, B b) const { UNUSED(a, b); } template inline void operator() (A a, B b, C c) const { UNUSED(a, b, c); } }; template void Push32(std::vector* buf, int32_t data) { buf->push_back(data & 0xff); buf->push_back((data >> 8) & 0xff); buf->push_back((data >> 16) & 0xff); buf->push_back((data >> 24) & 0xff); } void EncodeUnsignedLeb128(uint32_t data, std::vector* buf); void EncodeSignedLeb128(int32_t data, std::vector* buf); // Deleter using free() for use with std::unique_ptr<>. See also UniqueCPtr<> below. struct FreeDelete { // NOTE: Deleting a const object is valid but free() takes a non-const pointer. void operator()(const void* ptr) const { free(const_cast(ptr)); } }; // Alias for std::unique_ptr<> that uses the C function free() to delete objects. template using UniqueCPtr = std::unique_ptr; // C++14 from-the-future import (std::make_unique) // Invoke the constructor of 'T' with the provided args, and wrap the result in a unique ptr. template std::unique_ptr MakeUnique(Args&& ... args) { return std::unique_ptr(new T(std::forward(args)...)); } inline bool TestBitmap(size_t idx, const uint8_t* bitmap) { return ((bitmap[idx / kBitsPerByte] >> (idx % kBitsPerByte)) & 0x01) != 0; } static inline constexpr bool ValidPointerSize(size_t pointer_size) { return pointer_size == 4 || pointer_size == 8; } } // namespace art #endif // ART_RUNTIME_UTILS_H_