/* * Copyright (C) 2011 The Android Open Source Project * * Licensed under the Apache License, Version 2.0 (the "License"); * you may not use this file except in compliance with the License. * You may obtain a copy of the License at * * http://www.apache.org/licenses/LICENSE-2.0 * * Unless required by applicable law or agreed to in writing, software * distributed under the License is distributed on an "AS IS" BASIS, * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. * See the License for the specific language governing permissions and * limitations under the License. */ #ifndef ART_RUNTIME_UTILS_H_ #define ART_RUNTIME_UTILS_H_ #include #include #include #include #include #include #include "arch/instruction_set.h" #include "base/logging.h" #include "base/mutex.h" #include "globals.h" #include "primitive.h" namespace art { class ArtField; class DexFile; namespace mirror { class ArtMethod; class Class; class Object; class String; } // namespace mirror enum TimeUnit { kTimeUnitNanosecond, kTimeUnitMicrosecond, kTimeUnitMillisecond, kTimeUnitSecond, }; template bool ParseUint(const char *in, T* out) { char* end; unsigned long long int result = strtoull(in, &end, 0); // NOLINT(runtime/int) if (in == end || *end != '\0') { return false; } if (std::numeric_limits::max() < result) { return false; } *out = static_cast(result); return true; } template bool ParseInt(const char* in, T* out) { char* end; long long int result = strtoll(in, &end, 0); // NOLINT(runtime/int) if (in == end || *end != '\0') { return false; } if (result < std::numeric_limits::min() || std::numeric_limits::max() < result) { return false; } *out = static_cast(result); return true; } template static constexpr bool IsPowerOfTwo(T x) { return (x & (x - 1)) == 0; } template static inline bool IsAligned(T x) { static_assert((n & (n - 1)) == 0, "n is not a power of two"); return (x & (n - 1)) == 0; } template static inline bool IsAligned(T* x) { return IsAligned(reinterpret_cast(x)); } template static inline bool IsAlignedParam(T x, int n) { return (x & (n - 1)) == 0; } #define CHECK_ALIGNED(value, alignment) \ CHECK(::art::IsAligned(value)) << reinterpret_cast(value) #define DCHECK_ALIGNED(value, alignment) \ DCHECK(::art::IsAligned(value)) << reinterpret_cast(value) #define DCHECK_ALIGNED_PARAM(value, alignment) \ DCHECK(::art::IsAlignedParam(value, alignment)) << reinterpret_cast(value) // Check whether an N-bit two's-complement representation can hold value. template static inline bool IsInt(int N, T value) { int bitsPerT = sizeof(T) * kBitsPerByte; if (N == bitsPerT) { return true; } else { CHECK_LT(0, N); CHECK_LT(N, bitsPerT); T limit = static_cast(1) << (N - 1); return (-limit <= value) && (value < limit); } } template static constexpr T GetIntLimit(size_t bits) { return DCHECK_CONSTEXPR(bits > 0, "bits cannot be zero", 0) DCHECK_CONSTEXPR(bits < kBitsPerByte * sizeof(T), "kBits must be < max.", 0) static_cast(1) << (bits - 1); } template static constexpr bool IsInt(T value) { static_assert(kBits > 0, "kBits cannot be zero."); static_assert(kBits <= kBitsPerByte * sizeof(T), "kBits must be <= max."); static_assert(std::is_signed::value, "Needs a signed type."); // Corner case for "use all bits." Can't use the limits, as they would overflow, but it is // trivially true. return (kBits == kBitsPerByte * sizeof(T)) ? true : (-GetIntLimit(kBits) <= value) && (value < GetIntLimit(kBits)); } template static constexpr bool IsUint(T value) { static_assert(kBits > 0, "kBits cannot be zero."); static_assert(kBits <= kBitsPerByte * sizeof(T), "kBits must be <= max."); static_assert(std::is_integral::value, "Needs an integral type."); // Corner case for "use all bits." Can't use the limits, as they would overflow, but it is // trivially true. return (0 <= value) && (kBits == kBitsPerByte * sizeof(T) || (static_cast::type>(value) <= GetIntLimit::type>(kBits + 1) - 1)); } template static constexpr bool IsAbsoluteUint(T value) { static_assert(kBits <= kBitsPerByte * sizeof(T), "kBits must be < max."); return (kBits == kBitsPerByte * sizeof(T)) ? true : IsUint(value < 0 ? -value : value); } static inline uint16_t Low16Bits(uint32_t value) { return static_cast(value); } static inline uint16_t High16Bits(uint32_t value) { return static_cast(value >> 16); } static inline uint32_t Low32Bits(uint64_t value) { return static_cast(value); } static inline uint32_t High32Bits(uint64_t value) { return static_cast(value >> 32); } // Traits class providing an unsigned integer type of (byte) size `n`. template struct UnsignedIntegerType { // No defined `type`. }; template <> struct UnsignedIntegerType<1> { typedef uint8_t type; }; template <> struct UnsignedIntegerType<2> { typedef uint16_t type; }; template <> struct UnsignedIntegerType<4> { typedef uint32_t type; }; template <> struct UnsignedIntegerType<8> { typedef uint64_t type; }; // Type identity. template struct TypeIdentity { typedef T type; }; // Like sizeof, but count how many bits a type takes. Pass type explicitly. template static constexpr size_t BitSizeOf() { return sizeof(T) * CHAR_BIT; } // Like sizeof, but count how many bits a type takes. Infers type from parameter. template static constexpr size_t BitSizeOf(T /*x*/) { return sizeof(T) * CHAR_BIT; } // For rounding integers. template static constexpr T RoundDown(T x, typename TypeIdentity::type n) WARN_UNUSED; template static constexpr T RoundDown(T x, typename TypeIdentity::type n) { return DCHECK_CONSTEXPR(IsPowerOfTwo(n), , T(0)) (x & -n); } template static constexpr T RoundUp(T x, typename TypeIdentity::type n) WARN_UNUSED; template static constexpr T RoundUp(T x, typename TypeIdentity::type n) { return RoundDown(x + n - 1, n); } // For aligning pointers. template static inline T* AlignDown(T* x, uintptr_t n) WARN_UNUSED; template static inline T* AlignDown(T* x, uintptr_t n) { return reinterpret_cast(RoundDown(reinterpret_cast(x), n)); } template static inline T* AlignUp(T* x, uintptr_t n) WARN_UNUSED; template static inline T* AlignUp(T* x, uintptr_t n) { return reinterpret_cast(RoundUp(reinterpret_cast(x), n)); } namespace utils { namespace detail { // Private, implementation-specific namespace. Do not poke outside of this file. template static constexpr inline T RoundUpToPowerOfTwoRecursive(T x, size_t bit) { return bit == (BitSizeOf()) ? x: RoundUpToPowerOfTwoRecursive(x | x >> bit, bit << 1); } } // namespace detail } // namespace utils // Recursive implementation is from "Hacker's Delight" by Henry S. Warren, Jr., // figure 3-3, page 48, where the function is called clp2. template static constexpr inline T RoundUpToPowerOfTwo(T x) { return art::utils::detail::RoundUpToPowerOfTwoRecursive(x - 1, 1) + 1; } // Find the bit position of the most significant bit (0-based), or -1 if there were no bits set. template static constexpr ssize_t MostSignificantBit(T value) { return (value == 0) ? -1 : (MostSignificantBit(value >> 1) + 1); } // How many bits (minimally) does it take to store the constant 'value'? i.e. 1 for 1, 3 for 5, etc. template static constexpr size_t MinimumBitsToStore(T value) { return static_cast(MostSignificantBit(value) + 1); } template static constexpr int CLZ(T x) { static_assert(sizeof(T) <= sizeof(long long), "T too large, must be smaller than long long"); // NOLINT [runtime/int] [4] return (sizeof(T) == sizeof(uint32_t)) ? __builtin_clz(x) // TODO: __builtin_clz[ll] has undefined behavior for x=0 : __builtin_clzll(x); } template static constexpr int CTZ(T x) { return (sizeof(T) == sizeof(uint32_t)) ? __builtin_ctz(x) : __builtin_ctzll(x); } template static inline int WhichPowerOf2(T x) { DCHECK((x != 0) && IsPowerOfTwo(x)); return CTZ(x); } template static constexpr int POPCOUNT(T x) { return (sizeof(T) == sizeof(uint32_t)) ? __builtin_popcount(x) : __builtin_popcountll(x); } static inline uint32_t PointerToLowMemUInt32(const void* p) { uintptr_t intp = reinterpret_cast(p); DCHECK_LE(intp, 0xFFFFFFFFU); return intp & 0xFFFFFFFFU; } static inline bool NeedsEscaping(uint16_t ch) { return (ch < ' ' || ch > '~'); } std::string PrintableChar(uint16_t ch); // Returns an ASCII string corresponding to the given UTF-8 string. // Java escapes are used for non-ASCII characters. std::string PrintableString(const char* utf8); // Tests whether 's' starts with 'prefix'. bool StartsWith(const std::string& s, const char* prefix); // Tests whether 's' ends with 'suffix'. bool EndsWith(const std::string& s, const char* suffix); // Used to implement PrettyClass, PrettyField, PrettyMethod, and PrettyTypeOf, // one of which is probably more useful to you. // Returns a human-readable equivalent of 'descriptor'. So "I" would be "int", // "[[I" would be "int[][]", "[Ljava/lang/String;" would be // "java.lang.String[]", and so forth. std::string PrettyDescriptor(mirror::String* descriptor) SHARED_LOCKS_REQUIRED(Locks::mutator_lock_); std::string PrettyDescriptor(const char* descriptor); std::string PrettyDescriptor(mirror::Class* klass) SHARED_LOCKS_REQUIRED(Locks::mutator_lock_); std::string PrettyDescriptor(Primitive::Type type); // Returns a human-readable signature for 'f'. Something like "a.b.C.f" or // "int a.b.C.f" (depending on the value of 'with_type'). std::string PrettyField(ArtField* f, bool with_type = true) SHARED_LOCKS_REQUIRED(Locks::mutator_lock_); std::string PrettyField(uint32_t field_idx, const DexFile& dex_file, bool with_type = true); // Returns a human-readable signature for 'm'. Something like "a.b.C.m" or // "a.b.C.m(II)V" (depending on the value of 'with_signature'). std::string PrettyMethod(mirror::ArtMethod* m, bool with_signature = true) SHARED_LOCKS_REQUIRED(Locks::mutator_lock_); std::string PrettyMethod(uint32_t method_idx, const DexFile& dex_file, bool with_signature = true); // Returns a human-readable form of the name of the *class* of the given object. // So given an instance of java.lang.String, the output would // be "java.lang.String". Given an array of int, the output would be "int[]". // Given String.class, the output would be "java.lang.Class". std::string PrettyTypeOf(mirror::Object* obj) SHARED_LOCKS_REQUIRED(Locks::mutator_lock_); // Returns a human-readable form of the type at an index in the specified dex file. // Example outputs: char[], java.lang.String. std::string PrettyType(uint32_t type_idx, const DexFile& dex_file); // Returns a human-readable form of the name of the given class. // Given String.class, the output would be "java.lang.Class". std::string PrettyClass(mirror::Class* c) SHARED_LOCKS_REQUIRED(Locks::mutator_lock_); // Returns a human-readable form of the name of the given class with its class loader. std::string PrettyClassAndClassLoader(mirror::Class* c) SHARED_LOCKS_REQUIRED(Locks::mutator_lock_); // Returns a human-readable version of the Java part of the access flags, e.g., "private static " // (note the trailing whitespace). std::string PrettyJavaAccessFlags(uint32_t access_flags); // Returns a human-readable size string such as "1MB". std::string PrettySize(int64_t size_in_bytes); // Returns a human-readable time string which prints every nanosecond while trying to limit the // number of trailing zeros. Prints using the largest human readable unit up to a second. // e.g. "1ms", "1.000000001s", "1.001us" std::string PrettyDuration(uint64_t nano_duration, size_t max_fraction_digits = 3); // Format a nanosecond time to specified units. std::string FormatDuration(uint64_t nano_duration, TimeUnit time_unit, size_t max_fraction_digits); // Get the appropriate unit for a nanosecond duration. TimeUnit GetAppropriateTimeUnit(uint64_t nano_duration); // Get the divisor to convert from a nanoseconds to a time unit. uint64_t GetNsToTimeUnitDivisor(TimeUnit time_unit); // Performs JNI name mangling as described in section 11.3 "Linking Native Methods" // of the JNI spec. std::string MangleForJni(const std::string& s); // Turn "java.lang.String" into "Ljava/lang/String;". std::string DotToDescriptor(const char* class_name); // Turn "Ljava/lang/String;" into "java.lang.String" using the conventions of // java.lang.Class.getName(). std::string DescriptorToDot(const char* descriptor); // Turn "Ljava/lang/String;" into "java/lang/String" using the opposite conventions of // java.lang.Class.getName(). std::string DescriptorToName(const char* descriptor); // Tests for whether 's' is a valid class name in the three common forms: bool IsValidBinaryClassName(const char* s); // "java.lang.String" bool IsValidJniClassName(const char* s); // "java/lang/String" bool IsValidDescriptor(const char* s); // "Ljava/lang/String;" // Returns whether the given string is a valid field or method name, // additionally allowing names that begin with '<' and end with '>'. bool IsValidMemberName(const char* s); // Returns the JNI native function name for the non-overloaded method 'm'. std::string JniShortName(mirror::ArtMethod* m) SHARED_LOCKS_REQUIRED(Locks::mutator_lock_); // Returns the JNI native function name for the overloaded method 'm'. std::string JniLongName(mirror::ArtMethod* m) SHARED_LOCKS_REQUIRED(Locks::mutator_lock_); bool ReadFileToString(const std::string& file_name, std::string* result); bool PrintFileToLog(const std::string& file_name, LogSeverity level); // Returns the current date in ISO yyyy-mm-dd hh:mm:ss format. std::string GetIsoDate(); // Returns the monotonic time since some unspecified starting point in milliseconds. uint64_t MilliTime(); // Returns the monotonic time since some unspecified starting point in microseconds. uint64_t MicroTime(); // Returns the monotonic time since some unspecified starting point in nanoseconds. uint64_t NanoTime(); // Returns the thread-specific CPU-time clock in nanoseconds or -1 if unavailable. uint64_t ThreadCpuNanoTime(); // Converts the given number of nanoseconds to milliseconds. static constexpr inline uint64_t NsToMs(uint64_t ns) { return ns / 1000 / 1000; } // Converts the given number of milliseconds to nanoseconds static constexpr inline uint64_t MsToNs(uint64_t ns) { return ns * 1000 * 1000; } #if defined(__APPLE__) // No clocks to specify on OS/X, fake value to pass to routines that require a clock. #define CLOCK_REALTIME 0xebadf00d #endif // Sleep for the given number of nanoseconds, a bad way to handle contention. void NanoSleep(uint64_t ns); // Initialize a timespec to either a relative time (ms,ns), or to the absolute // time corresponding to the indicated clock value plus the supplied offset. void InitTimeSpec(bool absolute, int clock, int64_t ms, int32_t ns, timespec* ts); // Splits a string using the given separator character into a vector of // strings. Empty strings will be omitted. void Split(const std::string& s, char separator, std::vector* result); // Trims whitespace off both ends of the given string. std::string Trim(const std::string& s); // Joins a vector of strings into a single string, using the given separator. template std::string Join(const std::vector& strings, char separator); // Returns the calling thread's tid. (The C libraries don't expose this.) pid_t GetTid(); // Returns the given thread's name. std::string GetThreadName(pid_t tid); // Returns details of the given thread's stack. void GetThreadStack(pthread_t thread, void** stack_base, size_t* stack_size, size_t* guard_size); // Reads data from "/proc/self/task/${tid}/stat". void GetTaskStats(pid_t tid, char* state, int* utime, int* stime, int* task_cpu); // Returns the name of the scheduler group for the given thread the current process, or the empty string. std::string GetSchedulerGroupName(pid_t tid); // Sets the name of the current thread. The name may be truncated to an // implementation-defined limit. void SetThreadName(const char* thread_name); // Dumps the native stack for thread 'tid' to 'os'. void DumpNativeStack(std::ostream& os, pid_t tid, const char* prefix = "", mirror::ArtMethod* current_method = nullptr, void* ucontext = nullptr) NO_THREAD_SAFETY_ANALYSIS; // Dumps the kernel stack for thread 'tid' to 'os'. Note that this is only available on linux-x86. void DumpKernelStack(std::ostream& os, pid_t tid, const char* prefix = "", bool include_count = true); // Find $ANDROID_ROOT, /system, or abort. const char* GetAndroidRoot(); // Find $ANDROID_DATA, /data, or abort. const char* GetAndroidData(); // Find $ANDROID_DATA, /data, or return nullptr. const char* GetAndroidDataSafe(std::string* error_msg); // Returns the dalvik-cache location, with subdir appended. Returns the empty string if the cache // could not be found (or created). std::string GetDalvikCache(const char* subdir, bool create_if_absent = true); // Returns the dalvik-cache location, or dies trying. subdir will be // appended to the cache location. std::string GetDalvikCacheOrDie(const char* subdir, bool create_if_absent = true); // Return true if we found the dalvik cache and stored it in the dalvik_cache argument. // have_android_data will be set to true if we have an ANDROID_DATA that exists, // dalvik_cache_exists will be true if there is a dalvik-cache directory that is present. // The flag is_global_cache tells whether this cache is /data/dalvik-cache. void GetDalvikCache(const char* subdir, bool create_if_absent, std::string* dalvik_cache, bool* have_android_data, bool* dalvik_cache_exists, bool* is_global_cache); // Returns the absolute dalvik-cache path for a DexFile or OatFile. The path returned will be // rooted at cache_location. bool GetDalvikCacheFilename(const char* file_location, const char* cache_location, std::string* filename, std::string* error_msg); // Returns the absolute dalvik-cache path for a DexFile or OatFile, or // dies trying. The path returned will be rooted at cache_location. std::string GetDalvikCacheFilenameOrDie(const char* file_location, const char* cache_location); // Returns the system location for an image std::string GetSystemImageFilename(const char* location, InstructionSet isa); // Check whether the given magic matches a known file type. bool IsZipMagic(uint32_t magic); bool IsDexMagic(uint32_t magic); bool IsOatMagic(uint32_t magic); // Wrapper on fork/execv to run a command in a subprocess. bool Exec(std::vector& arg_vector, std::string* error_msg); class VoidFunctor { public: template inline void operator() (A a) const { UNUSED(a); } template inline void operator() (A a, B b) const { UNUSED(a, b); } template inline void operator() (A a, B b, C c) const { UNUSED(a, b, c); } }; template void Push32(std::vector* buf, int32_t data) { buf->push_back(data & 0xff); buf->push_back((data >> 8) & 0xff); buf->push_back((data >> 16) & 0xff); buf->push_back((data >> 24) & 0xff); } void EncodeUnsignedLeb128(uint32_t data, std::vector* buf); void EncodeSignedLeb128(int32_t data, std::vector* buf); // Deleter using free() for use with std::unique_ptr<>. See also UniqueCPtr<> below. struct FreeDelete { // NOTE: Deleting a const object is valid but free() takes a non-const pointer. void operator()(const void* ptr) const { free(const_cast(ptr)); } }; // Alias for std::unique_ptr<> that uses the C function free() to delete objects. template using UniqueCPtr = std::unique_ptr; // C++14 from-the-future import (std::make_unique) // Invoke the constructor of 'T' with the provided args, and wrap the result in a unique ptr. template std::unique_ptr MakeUnique(Args&& ... args) { return std::unique_ptr(new T(std::forward(args)...)); } } // namespace art #endif // ART_RUNTIME_UTILS_H_