/* * Copyright (C) 2012 The Android Open Source Project * * Licensed under the Apache License, Version 2.0 (the "License"); * you may not use this file except in compliance with the License. * You may obtain a copy of the License at * * http://www.apache.org/licenses/LICENSE-2.0 * * Unless required by applicable law or agreed to in writing, software * distributed under the License is distributed on an "AS IS" BASIS, * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. * See the License for the specific language governing permissions and * limitations under the License. */ #ifndef ART_RUNTIME_VERIFIER_REGISTER_LINE_H_ #define ART_RUNTIME_VERIFIER_REGISTER_LINE_H_ #include #include "dex_instruction.h" #include "reg_type.h" #include "safe_map.h" #include "UniquePtr.h" namespace art { namespace verifier { class MethodVerifier; /* * Register type categories, for type checking. * * The spec says category 1 includes boolean, byte, char, short, int, float, reference, and * returnAddress. Category 2 includes long and double. * * We treat object references separately, so we have "category1nr". We don't support jsr/ret, so * there is no "returnAddress" type. */ enum TypeCategory { kTypeCategoryUnknown = 0, kTypeCategory1nr = 1, // boolean, byte, char, short, int, float kTypeCategory2 = 2, // long, double kTypeCategoryRef = 3, // object reference }; // During verification, we associate one of these with every "interesting" instruction. We track // the status of all registers, and (if the method has any monitor-enter instructions) maintain a // stack of entered monitors (identified by code unit offset). class RegisterLine { public: static RegisterLine* Create(size_t num_regs, MethodVerifier* verifier) { uint8_t* memory = new uint8_t[sizeof(RegisterLine) + (num_regs * sizeof(uint16_t))]; RegisterLine* rl = new (memory) RegisterLine(num_regs, verifier); return rl; } // Implement category-1 "move" instructions. Copy a 32-bit value from "vsrc" to "vdst". void CopyRegister1(uint32_t vdst, uint32_t vsrc, TypeCategory cat) SHARED_LOCKS_REQUIRED(Locks::mutator_lock_); // Implement category-2 "move" instructions. Copy a 64-bit value from "vsrc" to "vdst". This // copies both halves of the register. void CopyRegister2(uint32_t vdst, uint32_t vsrc) SHARED_LOCKS_REQUIRED(Locks::mutator_lock_); // Implement "move-result". Copy the category-1 value from the result register to another // register, and reset the result register. void CopyResultRegister1(uint32_t vdst, bool is_reference) SHARED_LOCKS_REQUIRED(Locks::mutator_lock_); // Implement "move-result-wide". Copy the category-2 value from the result register to another // register, and reset the result register. void CopyResultRegister2(uint32_t vdst) SHARED_LOCKS_REQUIRED(Locks::mutator_lock_); // Set the invisible result register to unknown void SetResultTypeToUnknown() SHARED_LOCKS_REQUIRED(Locks::mutator_lock_); // Set the type of register N, verifying that the register is valid. If "newType" is the "Lo" // part of a 64-bit value, register N+1 will be set to "newType+1". // The register index was validated during the static pass, so we don't need to check it here. bool SetRegisterType(uint32_t vdst, const RegType& new_type) SHARED_LOCKS_REQUIRED(Locks::mutator_lock_); bool SetRegisterTypeWide(uint32_t vdst, const RegType& new_type1, const RegType& new_type2) SHARED_LOCKS_REQUIRED(Locks::mutator_lock_); /* Set the type of the "result" register. */ void SetResultRegisterType(const RegType& new_type) SHARED_LOCKS_REQUIRED(Locks::mutator_lock_); void SetResultRegisterTypeWide(const RegType& new_type1, const RegType& new_type2) SHARED_LOCKS_REQUIRED(Locks::mutator_lock_); // Get the type of register vsrc. const RegType& GetRegisterType(uint32_t vsrc) const; bool VerifyRegisterType(uint32_t vsrc, const RegType& check_type) SHARED_LOCKS_REQUIRED(Locks::mutator_lock_); bool VerifyRegisterTypeWide(uint32_t vsrc, const RegType& check_type1, const RegType& check_type2) SHARED_LOCKS_REQUIRED(Locks::mutator_lock_); void CopyFromLine(const RegisterLine* src) { DCHECK_EQ(num_regs_, src->num_regs_); memcpy(&line_, &src->line_, num_regs_ * sizeof(uint16_t)); monitors_ = src->monitors_; reg_to_lock_depths_ = src->reg_to_lock_depths_; } std::string Dump() const SHARED_LOCKS_REQUIRED(Locks::mutator_lock_); void FillWithGarbage() { memset(&line_, 0xf1, num_regs_ * sizeof(uint16_t)); while (!monitors_.empty()) { monitors_.pop_back(); } reg_to_lock_depths_.clear(); } /* * We're creating a new instance of class C at address A. Any registers holding instances * previously created at address A must be initialized by now. If not, we mark them as "conflict" * to prevent them from being used (otherwise, MarkRefsAsInitialized would mark the old ones and * the new ones at the same time). */ void MarkUninitRefsAsInvalid(const RegType& uninit_type) SHARED_LOCKS_REQUIRED(Locks::mutator_lock_); /* * Update all registers holding "uninit_type" to instead hold the corresponding initialized * reference type. This is called when an appropriate constructor is invoked -- all copies of * the reference must be marked as initialized. */ void MarkRefsAsInitialized(const RegType& uninit_type) SHARED_LOCKS_REQUIRED(Locks::mutator_lock_); /* * Update all registers to be Conflict except vsrc. */ void MarkAllRegistersAsConflicts(); void MarkAllRegistersAsConflictsExcept(uint32_t vsrc); void MarkAllRegistersAsConflictsExceptWide(uint32_t vsrc); /* * Check constraints on constructor return. Specifically, make sure that the "this" argument got * initialized. * The "this" argument to uses code offset kUninitThisArgAddr, which puts it at the start * of the list in slot 0. If we see a register with an uninitialized slot 0 reference, we know it * somehow didn't get initialized. */ bool CheckConstructorReturn() const; // Compare two register lines. Returns 0 if they match. // Using this for a sort is unwise, since the value can change based on machine endianness. int CompareLine(const RegisterLine* line2) const { DCHECK(monitors_ == line2->monitors_); // TODO: DCHECK(reg_to_lock_depths_ == line2->reg_to_lock_depths_); return memcmp(&line_, &line2->line_, num_regs_ * sizeof(uint16_t)); } size_t NumRegs() const { return num_regs_; } /* * Get the "this" pointer from a non-static method invocation. This returns the RegType so the * caller can decide whether it needs the reference to be initialized or not. (Can also return * kRegTypeZero if the reference can only be zero at this point.) * * The argument count is in vA, and the first argument is in vC, for both "simple" and "range" * versions. We just need to make sure vA is >= 1 and then return vC. */ const RegType& GetInvocationThis(const Instruction* inst, bool is_range) SHARED_LOCKS_REQUIRED(Locks::mutator_lock_); /* * Verify types for a simple two-register instruction (e.g. "neg-int"). * "dst_type" is stored into vA, and "src_type" is verified against vB. */ void CheckUnaryOp(const Instruction* inst, const RegType& dst_type, const RegType& src_type) SHARED_LOCKS_REQUIRED(Locks::mutator_lock_); void CheckUnaryOpWide(const Instruction* inst, const RegType& dst_type1, const RegType& dst_type2, const RegType& src_type1, const RegType& src_type2) SHARED_LOCKS_REQUIRED(Locks::mutator_lock_); void CheckUnaryOpToWide(const Instruction* inst, const RegType& dst_type1, const RegType& dst_type2, const RegType& src_type) SHARED_LOCKS_REQUIRED(Locks::mutator_lock_); void CheckUnaryOpFromWide(const Instruction* inst, const RegType& dst_type, const RegType& src_type1, const RegType& src_type2) SHARED_LOCKS_REQUIRED(Locks::mutator_lock_); /* * Verify types for a simple three-register instruction (e.g. "add-int"). * "dst_type" is stored into vA, and "src_type1"/"src_type2" are verified * against vB/vC. */ void CheckBinaryOp(const Instruction* inst, const RegType& dst_type, const RegType& src_type1, const RegType& src_type2, bool check_boolean_op) SHARED_LOCKS_REQUIRED(Locks::mutator_lock_); void CheckBinaryOpWide(const Instruction* inst, const RegType& dst_type1, const RegType& dst_type2, const RegType& src_type1_1, const RegType& src_type1_2, const RegType& src_type2_1, const RegType& src_type2_2) SHARED_LOCKS_REQUIRED(Locks::mutator_lock_); void CheckBinaryOpWideShift(const Instruction* inst, const RegType& long_lo_type, const RegType& long_hi_type, const RegType& int_type) SHARED_LOCKS_REQUIRED(Locks::mutator_lock_); /* * Verify types for a binary "2addr" operation. "src_type1"/"src_type2" * are verified against vA/vB, then "dst_type" is stored into vA. */ void CheckBinaryOp2addr(const Instruction* inst, const RegType& dst_type, const RegType& src_type1, const RegType& src_type2, bool check_boolean_op) SHARED_LOCKS_REQUIRED(Locks::mutator_lock_); void CheckBinaryOp2addrWide(const Instruction* inst, const RegType& dst_type1, const RegType& dst_type2, const RegType& src_type1_1, const RegType& src_type1_2, const RegType& src_type2_1, const RegType& src_type2_2) SHARED_LOCKS_REQUIRED(Locks::mutator_lock_); void CheckBinaryOp2addrWideShift(const Instruction* inst, const RegType& long_lo_type, const RegType& long_hi_type, const RegType& int_type) SHARED_LOCKS_REQUIRED(Locks::mutator_lock_); /* * Verify types for A two-register instruction with a literal constant (e.g. "add-int/lit8"). * "dst_type" is stored into vA, and "src_type" is verified against vB. * * If "check_boolean_op" is set, we use the constant value in vC. */ void CheckLiteralOp(const Instruction* inst, const RegType& dst_type, const RegType& src_type, bool check_boolean_op, bool is_lit16) SHARED_LOCKS_REQUIRED(Locks::mutator_lock_); // Verify/push monitor onto the monitor stack, locking the value in reg_idx at location insn_idx. void PushMonitor(uint32_t reg_idx, int32_t insn_idx) SHARED_LOCKS_REQUIRED(Locks::mutator_lock_); // Verify/pop monitor from monitor stack ensuring that we believe the monitor is locked void PopMonitor(uint32_t reg_idx) SHARED_LOCKS_REQUIRED(Locks::mutator_lock_); // Stack of currently held monitors and where they were locked size_t MonitorStackDepth() const { return monitors_.size(); } // We expect no monitors to be held at certain points, such a method returns. Verify the stack // is empty, failing and returning false if not. bool VerifyMonitorStackEmpty() const; bool MergeRegisters(const RegisterLine* incoming_line) SHARED_LOCKS_REQUIRED(Locks::mutator_lock_); size_t GetMaxNonZeroReferenceReg(size_t max_ref_reg) { size_t i = static_cast(max_ref_reg) < 0 ? 0 : max_ref_reg; for (; i < num_regs_; i++) { if (GetRegisterType(i).IsNonZeroReferenceTypes()) { max_ref_reg = i; } } return max_ref_reg; } // Write a bit at each register location that holds a reference void WriteReferenceBitMap(std::vector& data, size_t max_bytes); size_t GetMonitorEnterCount() { return monitors_.size(); } uint32_t GetMonitorEnterDexPc(size_t i) { return monitors_[i]; } private: void CopyRegToLockDepth(size_t dst, size_t src) { SafeMap::iterator it = reg_to_lock_depths_.find(src); if (it != reg_to_lock_depths_.end()) { reg_to_lock_depths_.Put(dst, it->second); } } bool IsSetLockDepth(size_t reg, size_t depth) { SafeMap::iterator it = reg_to_lock_depths_.find(reg); if (it != reg_to_lock_depths_.end()) { return (it->second & (1 << depth)) != 0; } else { return false; } } void SetRegToLockDepth(size_t reg, size_t depth) { CHECK_LT(depth, 32u); DCHECK(!IsSetLockDepth(reg, depth)); SafeMap::iterator it = reg_to_lock_depths_.find(reg); if (it == reg_to_lock_depths_.end()) { reg_to_lock_depths_.Put(reg, 1 << depth); } else { it->second |= (1 << depth); } } void ClearRegToLockDepth(size_t reg, size_t depth) { CHECK_LT(depth, 32u); DCHECK(IsSetLockDepth(reg, depth)); SafeMap::iterator it = reg_to_lock_depths_.find(reg); DCHECK(it != reg_to_lock_depths_.end()); uint32_t depths = it->second ^ (1 << depth); if (depths != 0) { it->second = depths; } else { reg_to_lock_depths_.erase(it); } } void ClearAllRegToLockDepths(size_t reg) { reg_to_lock_depths_.erase(reg); } RegisterLine(size_t num_regs, MethodVerifier* verifier) : verifier_(verifier), num_regs_(num_regs) { memset(&line_, 0, num_regs_ * sizeof(uint16_t)); SetResultTypeToUnknown(); } // Storage for the result register's type, valid after an invocation uint16_t result_[2]; // Back link to the verifier MethodVerifier* verifier_; // Length of reg_types_ const uint32_t num_regs_; // A stack of monitor enter locations std::vector monitors_; // A map from register to a bit vector of indices into the monitors_ stack. As we pop the monitor // stack we verify that monitor-enter/exit are correctly nested. That is, if there was a // monitor-enter on v5 and then on v6, we expect the monitor-exit to be on v6 then on v5 SafeMap reg_to_lock_depths_; // An array of RegType Ids associated with each dex register. uint16_t line_[0]; }; std::ostream& operator<<(std::ostream& os, const RegisterLine& rhs); } // namespace verifier } // namespace art #endif // ART_RUNTIME_VERIFIER_REGISTER_LINE_H_