/* * Copyright (C) 2012 The Android Open Source Project * * Licensed under the Apache License, Version 2.0 (the "License"); * you may not use this file except in compliance with the License. * You may obtain a copy of the License at * * http://www.apache.org/licenses/LICENSE-2.0 * * Unless required by applicable law or agreed to in writing, software * distributed under the License is distributed on an "AS IS" BASIS, * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. * See the License for the specific language governing permissions and * limitations under the License. */ #include "method_compiler.h" #include "backend_types.h" #include "compilation_unit.h" #include "compiler.h" #include "dalvik_reg.h" #include "greenland/inferred_reg_category_map.h" #include "ir_builder.h" #include "logging.h" #include "oat_compilation_unit.h" #include "object.h" #include "object_utils.h" #include "runtime_support_func.h" #include "runtime_support_llvm.h" #include "stl_util.h" #include "stringprintf.h" #include "utils_llvm.h" #include "verifier/method_verifier.h" #include #include #include #include #include namespace art { namespace compiler_llvm { using namespace runtime_support; MethodCompiler::MethodCompiler(CompilationUnit* cunit, Compiler* compiler, OatCompilationUnit* oat_compilation_unit) : cunit_(cunit), compiler_(compiler), dex_file_(oat_compilation_unit->dex_file_), code_item_(oat_compilation_unit->code_item_), oat_compilation_unit_(oat_compilation_unit), method_idx_(oat_compilation_unit->method_idx_), access_flags_(oat_compilation_unit->access_flags_), module_(cunit->GetModule()), context_(cunit->GetLLVMContext()), irb_(*cunit->GetIRBuilder()), func_(NULL), regs_(code_item_->registers_size_), shadow_frame_entries_(code_item_->registers_size_), reg_to_shadow_frame_index_(code_item_->registers_size_, -1), retval_reg_(NULL), basic_block_alloca_(NULL), basic_block_shadow_frame_(NULL), basic_block_reg_arg_init_(NULL), basic_blocks_(code_item_->insns_size_in_code_units_), basic_block_landing_pads_(code_item_->tries_size_, NULL), basic_block_unwind_(NULL), shadow_frame_(NULL), old_shadow_frame_(NULL), already_pushed_shadow_frame_(NULL), shadow_frame_size_(0) { } MethodCompiler::~MethodCompiler() { STLDeleteElements(®s_); } void MethodCompiler::CreateFunction() { // LLVM function name std::string func_name(ElfFuncName(cunit_->GetIndex())); // Get function type llvm::FunctionType* func_type = GetFunctionType(method_idx_, oat_compilation_unit_->IsStatic()); // Create function func_ = llvm::Function::Create(func_type, llvm::Function::ExternalLinkage, func_name, module_); #if !defined(NDEBUG) // Set argument name llvm::Function::arg_iterator arg_iter(func_->arg_begin()); llvm::Function::arg_iterator arg_end(func_->arg_end()); DCHECK_NE(arg_iter, arg_end); arg_iter->setName("method"); ++arg_iter; if (!oat_compilation_unit_->IsStatic()) { DCHECK_NE(arg_iter, arg_end); arg_iter->setName("this"); ++arg_iter; } for (unsigned i = 0; arg_iter != arg_end; ++i, ++arg_iter) { arg_iter->setName(StringPrintf("a%u", i)); } #endif } llvm::FunctionType* MethodCompiler::GetFunctionType(uint32_t method_idx, bool is_static) { // Get method signature DexFile::MethodId const& method_id = dex_file_->GetMethodId(method_idx); uint32_t shorty_size; const char* shorty = dex_file_->GetMethodShorty(method_id, &shorty_size); CHECK_GE(shorty_size, 1u); // Get return type llvm::Type* ret_type = irb_.getJType(shorty[0], kAccurate); // Get argument type std::vector args_type; args_type.push_back(irb_.getJObjectTy()); // method object pointer if (!is_static) { args_type.push_back(irb_.getJType('L', kAccurate)); // "this" object pointer } for (uint32_t i = 1; i < shorty_size; ++i) { args_type.push_back(irb_.getJType(shorty[i], kAccurate)); } return llvm::FunctionType::get(ret_type, args_type, false); } void MethodCompiler::EmitPrologue() { // Create basic blocks for prologue #if !defined(NDEBUG) // Add a BasicBlock named as PrettyMethod for debugging. llvm::BasicBlock* entry = llvm::BasicBlock::Create(*context_, PrettyMethod(method_idx_, *dex_file_), func_); #endif basic_block_alloca_ = llvm::BasicBlock::Create(*context_, "prologue.alloca", func_); basic_block_shadow_frame_ = llvm::BasicBlock::Create(*context_, "prologue.shadowframe", func_); basic_block_reg_arg_init_ = llvm::BasicBlock::Create(*context_, "prologue.arginit", func_); #if !defined(NDEBUG) irb_.SetInsertPoint(entry); irb_.CreateBr(basic_block_alloca_); #endif irb_.SetInsertPoint(basic_block_alloca_); // Create Shadow Frame if (method_info_.need_shadow_frame) { EmitPrologueAllocShadowFrame(); } // Create register array for (uint16_t r = 0; r < code_item_->registers_size_; ++r) { std::string name; #if !defined(NDEBUG) name = StringPrintf("%u", r); #endif regs_[r] = new DalvikReg(*this, name); // Cache shadow frame entry address shadow_frame_entries_[r] = GetShadowFrameEntry(r); } std::string name; #if !defined(NDEBUG) name = "_res"; #endif retval_reg_.reset(new DalvikReg(*this, name)); // Store argument to dalvik register irb_.SetInsertPoint(basic_block_reg_arg_init_); EmitPrologueAssignArgRegister(); // Branch to start address irb_.CreateBr(GetBasicBlock(0)); } void MethodCompiler::EmitStackOverflowCheck() { // Call llvm intrinsic function to get frame address. llvm::Function* frameaddress = llvm::Intrinsic::getDeclaration(module_, llvm::Intrinsic::frameaddress); // The type of llvm::frameaddress is: i8* @llvm.frameaddress(i32) llvm::Value* frame_address = irb_.CreateCall(frameaddress, irb_.getInt32(0)); // Cast i8* to int frame_address = irb_.CreatePtrToInt(frame_address, irb_.getPtrEquivIntTy()); // Get thread.stack_end_ llvm::Value* stack_end = irb_.Runtime().EmitLoadFromThreadOffset(Thread::StackEndOffset().Int32Value(), irb_.getPtrEquivIntTy(), kTBAARuntimeInfo); // Check the frame address < thread.stack_end_ ? llvm::Value* is_stack_overflow = irb_.CreateICmpULT(frame_address, stack_end); llvm::BasicBlock* block_exception = llvm::BasicBlock::Create(*context_, "stack_overflow", func_); llvm::BasicBlock* block_continue = llvm::BasicBlock::Create(*context_, "stack_overflow_cont", func_); irb_.CreateCondBr(is_stack_overflow, block_exception, block_continue, kUnlikely); // If stack overflow, throw exception. irb_.SetInsertPoint(block_exception); irb_.CreateCall(irb_.GetRuntime(ThrowStackOverflowException)); // Unwind. char ret_shorty = oat_compilation_unit_->GetShorty()[0]; if (ret_shorty == 'V') { irb_.CreateRetVoid(); } else { irb_.CreateRet(irb_.getJZero(ret_shorty)); } irb_.SetInsertPoint(block_continue); } void MethodCompiler::EmitPrologueLastBranch() { llvm::BasicBlock* basic_block_stack_overflow = llvm::BasicBlock::Create(*context_, "prologue.stack_overflow_check", func_); irb_.SetInsertPoint(basic_block_alloca_); irb_.CreateBr(basic_block_stack_overflow); irb_.SetInsertPoint(basic_block_stack_overflow); // If a method will not call to other method, and the method is small, we can avoid stack overflow // check. if (method_info_.has_invoke || code_item_->registers_size_ > 32) { // Small leaf function is OK given // the 8KB reserved at Stack End EmitStackOverflowCheck(); } // Garbage collection safe-point EmitGuard_GarbageCollectionSuspend(); irb_.CreateBr(basic_block_shadow_frame_); irb_.SetInsertPoint(basic_block_shadow_frame_); irb_.CreateBr(basic_block_reg_arg_init_); } void MethodCompiler::EmitPrologueAllocShadowFrame() { irb_.SetInsertPoint(basic_block_alloca_); // Allocate the shadow frame now! shadow_frame_size_ = 0; uint16_t arg_reg_start = code_item_->registers_size_ - code_item_->ins_size_; if (method_info_.need_shadow_frame_entry) { for (uint32_t i = 0, num_of_regs = code_item_->registers_size_; i < num_of_regs; ++i) { if (i >= arg_reg_start && !method_info_.set_to_another_object[i]) { // If we don't set argument registers to another object, we don't need the shadow frame // entry for it. Because the arguments must have been in the caller's shadow frame. continue; } if (IsRegCanBeObject(i)) { reg_to_shadow_frame_index_[i] = shadow_frame_size_++; } } } llvm::StructType* shadow_frame_type = irb_.getShadowFrameTy(shadow_frame_size_); shadow_frame_ = irb_.CreateAlloca(shadow_frame_type); // Alloca a pointer to old shadow frame old_shadow_frame_ = irb_.CreateAlloca(shadow_frame_type->getElementType(0)->getPointerTo()); irb_.SetInsertPoint(basic_block_shadow_frame_); // Zero-initialization of the shadow frame table llvm::Value* shadow_frame_table = irb_.CreateConstGEP2_32(shadow_frame_, 0, 1); llvm::Type* table_type = shadow_frame_type->getElementType(1); llvm::ConstantAggregateZero* zero_initializer = llvm::ConstantAggregateZero::get(table_type); irb_.CreateStore(zero_initializer, shadow_frame_table, kTBAAShadowFrame); // Lazy pushing shadow frame if (method_info_.lazy_push_shadow_frame) { irb_.SetInsertPoint(basic_block_alloca_); already_pushed_shadow_frame_ = irb_.CreateAlloca(irb_.getInt1Ty()); irb_.SetInsertPoint(basic_block_shadow_frame_); irb_.CreateStore(irb_.getFalse(), already_pushed_shadow_frame_, kTBAARegister); return; } EmitPushShadowFrame(true); } void MethodCompiler::EmitPrologueAssignArgRegister() { uint16_t arg_reg = code_item_->registers_size_ - code_item_->ins_size_; llvm::Function::arg_iterator arg_iter(func_->arg_begin()); llvm::Function::arg_iterator arg_end(func_->arg_end()); uint32_t shorty_size = 0; const char* shorty = oat_compilation_unit_->GetShorty(&shorty_size); CHECK_GE(shorty_size, 1u); ++arg_iter; // skip method object if (!oat_compilation_unit_->IsStatic()) { regs_[arg_reg]->SetValue(kObject, kAccurate, arg_iter); ++arg_iter; ++arg_reg; } for (uint32_t i = 1; i < shorty_size; ++i, ++arg_iter) { regs_[arg_reg]->SetValue(shorty[i], kAccurate, arg_iter); ++arg_reg; if (shorty[i] == 'J' || shorty[i] == 'D') { // Wide types, such as long and double, are using a pair of registers // to store the value, so we have to increase arg_reg again. ++arg_reg; } } DCHECK_EQ(arg_end, arg_iter); } void MethodCompiler::EmitInstructions() { uint32_t dex_pc = 0; while (dex_pc < code_item_->insns_size_in_code_units_) { const Instruction* insn = Instruction::At(code_item_->insns_ + dex_pc); EmitInstruction(dex_pc, insn); dex_pc += insn->SizeInCodeUnits(); } } void MethodCompiler::EmitInstruction(uint32_t dex_pc, const Instruction* insn) { // Set the IRBuilder insertion point irb_.SetInsertPoint(GetBasicBlock(dex_pc)); #define ARGS dex_pc, insn // Dispatch the instruction switch (insn->Opcode()) { case Instruction::NOP: EmitInsn_Nop(ARGS); break; case Instruction::MOVE: case Instruction::MOVE_FROM16: case Instruction::MOVE_16: EmitInsn_Move(ARGS, kInt); break; case Instruction::MOVE_WIDE: case Instruction::MOVE_WIDE_FROM16: case Instruction::MOVE_WIDE_16: EmitInsn_Move(ARGS, kLong); break; case Instruction::MOVE_OBJECT: case Instruction::MOVE_OBJECT_FROM16: case Instruction::MOVE_OBJECT_16: EmitInsn_Move(ARGS, kObject); break; case Instruction::MOVE_RESULT: EmitInsn_MoveResult(ARGS, kInt); break; case Instruction::MOVE_RESULT_WIDE: EmitInsn_MoveResult(ARGS, kLong); break; case Instruction::MOVE_RESULT_OBJECT: EmitInsn_MoveResult(ARGS, kObject); break; case Instruction::MOVE_EXCEPTION: EmitInsn_MoveException(ARGS); break; case Instruction::RETURN_VOID: EmitInsn_ReturnVoid(ARGS); break; case Instruction::RETURN: case Instruction::RETURN_WIDE: case Instruction::RETURN_OBJECT: EmitInsn_Return(ARGS); break; case Instruction::CONST_4: case Instruction::CONST_16: case Instruction::CONST: case Instruction::CONST_HIGH16: EmitInsn_LoadConstant(ARGS, kInt); break; case Instruction::CONST_WIDE_16: case Instruction::CONST_WIDE_32: case Instruction::CONST_WIDE: case Instruction::CONST_WIDE_HIGH16: EmitInsn_LoadConstant(ARGS, kLong); break; case Instruction::CONST_STRING: case Instruction::CONST_STRING_JUMBO: EmitInsn_LoadConstantString(ARGS); break; case Instruction::CONST_CLASS: EmitInsn_LoadConstantClass(ARGS); break; case Instruction::MONITOR_ENTER: EmitInsn_MonitorEnter(ARGS); break; case Instruction::MONITOR_EXIT: EmitInsn_MonitorExit(ARGS); break; case Instruction::CHECK_CAST: EmitInsn_CheckCast(ARGS); break; case Instruction::INSTANCE_OF: EmitInsn_InstanceOf(ARGS); break; case Instruction::ARRAY_LENGTH: EmitInsn_ArrayLength(ARGS); break; case Instruction::NEW_INSTANCE: EmitInsn_NewInstance(ARGS); break; case Instruction::NEW_ARRAY: EmitInsn_NewArray(ARGS); break; case Instruction::FILLED_NEW_ARRAY: EmitInsn_FilledNewArray(ARGS, false); break; case Instruction::FILLED_NEW_ARRAY_RANGE: EmitInsn_FilledNewArray(ARGS, true); break; case Instruction::FILL_ARRAY_DATA: EmitInsn_FillArrayData(ARGS); break; case Instruction::THROW: EmitInsn_ThrowException(ARGS); break; case Instruction::GOTO: case Instruction::GOTO_16: case Instruction::GOTO_32: EmitInsn_UnconditionalBranch(ARGS); break; case Instruction::PACKED_SWITCH: EmitInsn_PackedSwitch(ARGS); break; case Instruction::SPARSE_SWITCH: EmitInsn_SparseSwitch(ARGS); break; case Instruction::CMPL_FLOAT: EmitInsn_FPCompare(ARGS, kFloat, false); break; case Instruction::CMPG_FLOAT: EmitInsn_FPCompare(ARGS, kFloat, true); break; case Instruction::CMPL_DOUBLE: EmitInsn_FPCompare(ARGS, kDouble, false); break; case Instruction::CMPG_DOUBLE: EmitInsn_FPCompare(ARGS, kDouble, true); break; case Instruction::CMP_LONG: EmitInsn_LongCompare(ARGS); break; case Instruction::IF_EQ: EmitInsn_BinaryConditionalBranch(ARGS, kCondBranch_EQ); break; case Instruction::IF_NE: EmitInsn_BinaryConditionalBranch(ARGS, kCondBranch_NE); break; case Instruction::IF_LT: EmitInsn_BinaryConditionalBranch(ARGS, kCondBranch_LT); break; case Instruction::IF_GE: EmitInsn_BinaryConditionalBranch(ARGS, kCondBranch_GE); break; case Instruction::IF_GT: EmitInsn_BinaryConditionalBranch(ARGS, kCondBranch_GT); break; case Instruction::IF_LE: EmitInsn_BinaryConditionalBranch(ARGS, kCondBranch_LE); break; case Instruction::IF_EQZ: EmitInsn_UnaryConditionalBranch(ARGS, kCondBranch_EQ); break; case Instruction::IF_NEZ: EmitInsn_UnaryConditionalBranch(ARGS, kCondBranch_NE); break; case Instruction::IF_LTZ: EmitInsn_UnaryConditionalBranch(ARGS, kCondBranch_LT); break; case Instruction::IF_GEZ: EmitInsn_UnaryConditionalBranch(ARGS, kCondBranch_GE); break; case Instruction::IF_GTZ: EmitInsn_UnaryConditionalBranch(ARGS, kCondBranch_GT); break; case Instruction::IF_LEZ: EmitInsn_UnaryConditionalBranch(ARGS, kCondBranch_LE); break; case Instruction::AGET: EmitInsn_AGet(ARGS, kInt); break; case Instruction::AGET_WIDE: EmitInsn_AGet(ARGS, kLong); break; case Instruction::AGET_OBJECT: EmitInsn_AGet(ARGS, kObject); break; case Instruction::AGET_BOOLEAN: EmitInsn_AGet(ARGS, kBoolean); break; case Instruction::AGET_BYTE: EmitInsn_AGet(ARGS, kByte); break; case Instruction::AGET_CHAR: EmitInsn_AGet(ARGS, kChar); break; case Instruction::AGET_SHORT: EmitInsn_AGet(ARGS, kShort); break; case Instruction::APUT: EmitInsn_APut(ARGS, kInt); break; case Instruction::APUT_WIDE: EmitInsn_APut(ARGS, kLong); break; case Instruction::APUT_OBJECT: EmitInsn_APut(ARGS, kObject); break; case Instruction::APUT_BOOLEAN: EmitInsn_APut(ARGS, kBoolean); break; case Instruction::APUT_BYTE: EmitInsn_APut(ARGS, kByte); break; case Instruction::APUT_CHAR: EmitInsn_APut(ARGS, kChar); break; case Instruction::APUT_SHORT: EmitInsn_APut(ARGS, kShort); break; case Instruction::IGET: EmitInsn_IGet(ARGS, kInt); break; case Instruction::IGET_WIDE: EmitInsn_IGet(ARGS, kLong); break; case Instruction::IGET_OBJECT: EmitInsn_IGet(ARGS, kObject); break; case Instruction::IGET_BOOLEAN: EmitInsn_IGet(ARGS, kBoolean); break; case Instruction::IGET_BYTE: EmitInsn_IGet(ARGS, kByte); break; case Instruction::IGET_CHAR: EmitInsn_IGet(ARGS, kChar); break; case Instruction::IGET_SHORT: EmitInsn_IGet(ARGS, kShort); break; case Instruction::IPUT: EmitInsn_IPut(ARGS, kInt); break; case Instruction::IPUT_WIDE: EmitInsn_IPut(ARGS, kLong); break; case Instruction::IPUT_OBJECT: EmitInsn_IPut(ARGS, kObject); break; case Instruction::IPUT_BOOLEAN: EmitInsn_IPut(ARGS, kBoolean); break; case Instruction::IPUT_BYTE: EmitInsn_IPut(ARGS, kByte); break; case Instruction::IPUT_CHAR: EmitInsn_IPut(ARGS, kChar); break; case Instruction::IPUT_SHORT: EmitInsn_IPut(ARGS, kShort); break; case Instruction::SGET: EmitInsn_SGet(ARGS, kInt); break; case Instruction::SGET_WIDE: EmitInsn_SGet(ARGS, kLong); break; case Instruction::SGET_OBJECT: EmitInsn_SGet(ARGS, kObject); break; case Instruction::SGET_BOOLEAN: EmitInsn_SGet(ARGS, kBoolean); break; case Instruction::SGET_BYTE: EmitInsn_SGet(ARGS, kByte); break; case Instruction::SGET_CHAR: EmitInsn_SGet(ARGS, kChar); break; case Instruction::SGET_SHORT: EmitInsn_SGet(ARGS, kShort); break; case Instruction::SPUT: EmitInsn_SPut(ARGS, kInt); break; case Instruction::SPUT_WIDE: EmitInsn_SPut(ARGS, kLong); break; case Instruction::SPUT_OBJECT: EmitInsn_SPut(ARGS, kObject); break; case Instruction::SPUT_BOOLEAN: EmitInsn_SPut(ARGS, kBoolean); break; case Instruction::SPUT_BYTE: EmitInsn_SPut(ARGS, kByte); break; case Instruction::SPUT_CHAR: EmitInsn_SPut(ARGS, kChar); break; case Instruction::SPUT_SHORT: EmitInsn_SPut(ARGS, kShort); break; case Instruction::INVOKE_VIRTUAL: EmitInsn_Invoke(ARGS, kVirtual, kArgReg); break; case Instruction::INVOKE_SUPER: EmitInsn_Invoke(ARGS, kSuper, kArgReg); break; case Instruction::INVOKE_DIRECT: EmitInsn_Invoke(ARGS, kDirect, kArgReg); break; case Instruction::INVOKE_STATIC: EmitInsn_Invoke(ARGS, kStatic, kArgReg); break; case Instruction::INVOKE_INTERFACE: EmitInsn_Invoke(ARGS, kInterface, kArgReg); break; case Instruction::INVOKE_VIRTUAL_RANGE: EmitInsn_Invoke(ARGS, kVirtual, kArgRange); break; case Instruction::INVOKE_SUPER_RANGE: EmitInsn_Invoke(ARGS, kSuper, kArgRange); break; case Instruction::INVOKE_DIRECT_RANGE: EmitInsn_Invoke(ARGS, kDirect, kArgRange); break; case Instruction::INVOKE_STATIC_RANGE: EmitInsn_Invoke(ARGS, kStatic, kArgRange); break; case Instruction::INVOKE_INTERFACE_RANGE: EmitInsn_Invoke(ARGS, kInterface, kArgRange); break; case Instruction::NEG_INT: EmitInsn_Neg(ARGS, kInt); break; case Instruction::NOT_INT: EmitInsn_Not(ARGS, kInt); break; case Instruction::NEG_LONG: EmitInsn_Neg(ARGS, kLong); break; case Instruction::NOT_LONG: EmitInsn_Not(ARGS, kLong); break; case Instruction::NEG_FLOAT: EmitInsn_FNeg(ARGS, kFloat); break; case Instruction::NEG_DOUBLE: EmitInsn_FNeg(ARGS, kDouble); break; case Instruction::INT_TO_LONG: EmitInsn_SExt(ARGS); break; case Instruction::INT_TO_FLOAT: EmitInsn_IntToFP(ARGS, kInt, kFloat); break; case Instruction::INT_TO_DOUBLE: EmitInsn_IntToFP(ARGS, kInt, kDouble); break; case Instruction::LONG_TO_INT: EmitInsn_Trunc(ARGS); break; case Instruction::LONG_TO_FLOAT: EmitInsn_IntToFP(ARGS, kLong, kFloat); break; case Instruction::LONG_TO_DOUBLE: EmitInsn_IntToFP(ARGS, kLong, kDouble); break; case Instruction::FLOAT_TO_INT: EmitInsn_FPToInt(ARGS, kFloat, kInt, art_f2i); break; case Instruction::FLOAT_TO_LONG: EmitInsn_FPToInt(ARGS, kFloat, kLong, art_f2l); break; case Instruction::FLOAT_TO_DOUBLE: EmitInsn_FExt(ARGS); break; case Instruction::DOUBLE_TO_INT: EmitInsn_FPToInt(ARGS, kDouble, kInt, art_d2i); break; case Instruction::DOUBLE_TO_LONG: EmitInsn_FPToInt(ARGS, kDouble, kLong, art_d2l); break; case Instruction::DOUBLE_TO_FLOAT: EmitInsn_FTrunc(ARGS); break; case Instruction::INT_TO_BYTE: EmitInsn_TruncAndSExt(ARGS, 8); break; case Instruction::INT_TO_CHAR: EmitInsn_TruncAndZExt(ARGS, 16); break; case Instruction::INT_TO_SHORT: EmitInsn_TruncAndSExt(ARGS, 16); break; case Instruction::ADD_INT: EmitInsn_IntArithm(ARGS, kIntArithm_Add, kInt, false); break; case Instruction::SUB_INT: EmitInsn_IntArithm(ARGS, kIntArithm_Sub, kInt, false); break; case Instruction::MUL_INT: EmitInsn_IntArithm(ARGS, kIntArithm_Mul, kInt, false); break; case Instruction::DIV_INT: EmitInsn_IntArithm(ARGS, kIntArithm_Div, kInt, false); break; case Instruction::REM_INT: EmitInsn_IntArithm(ARGS, kIntArithm_Rem, kInt, false); break; case Instruction::AND_INT: EmitInsn_IntArithm(ARGS, kIntArithm_And, kInt, false); break; case Instruction::OR_INT: EmitInsn_IntArithm(ARGS, kIntArithm_Or, kInt, false); break; case Instruction::XOR_INT: EmitInsn_IntArithm(ARGS, kIntArithm_Xor, kInt, false); break; case Instruction::SHL_INT: EmitInsn_IntShiftArithm(ARGS, kIntArithm_Shl, kInt, false); break; case Instruction::SHR_INT: EmitInsn_IntShiftArithm(ARGS, kIntArithm_Shr, kInt, false); break; case Instruction::USHR_INT: EmitInsn_IntShiftArithm(ARGS, kIntArithm_UShr, kInt, false); break; case Instruction::ADD_LONG: EmitInsn_IntArithm(ARGS, kIntArithm_Add, kLong, false); break; case Instruction::SUB_LONG: EmitInsn_IntArithm(ARGS, kIntArithm_Sub, kLong, false); break; case Instruction::MUL_LONG: EmitInsn_IntArithm(ARGS, kIntArithm_Mul, kLong, false); break; case Instruction::DIV_LONG: EmitInsn_IntArithm(ARGS, kIntArithm_Div, kLong, false); break; case Instruction::REM_LONG: EmitInsn_IntArithm(ARGS, kIntArithm_Rem, kLong, false); break; case Instruction::AND_LONG: EmitInsn_IntArithm(ARGS, kIntArithm_And, kLong, false); break; case Instruction::OR_LONG: EmitInsn_IntArithm(ARGS, kIntArithm_Or, kLong, false); break; case Instruction::XOR_LONG: EmitInsn_IntArithm(ARGS, kIntArithm_Xor, kLong, false); break; case Instruction::SHL_LONG: EmitInsn_IntShiftArithm(ARGS, kIntArithm_Shl, kLong, false); break; case Instruction::SHR_LONG: EmitInsn_IntShiftArithm(ARGS, kIntArithm_Shr, kLong, false); break; case Instruction::USHR_LONG: EmitInsn_IntShiftArithm(ARGS, kIntArithm_UShr, kLong, false); break; case Instruction::ADD_FLOAT: EmitInsn_FPArithm(ARGS, kFPArithm_Add, kFloat, false); break; case Instruction::SUB_FLOAT: EmitInsn_FPArithm(ARGS, kFPArithm_Sub, kFloat, false); break; case Instruction::MUL_FLOAT: EmitInsn_FPArithm(ARGS, kFPArithm_Mul, kFloat, false); break; case Instruction::DIV_FLOAT: EmitInsn_FPArithm(ARGS, kFPArithm_Div, kFloat, false); break; case Instruction::REM_FLOAT: EmitInsn_FPArithm(ARGS, kFPArithm_Rem, kFloat, false); break; case Instruction::ADD_DOUBLE: EmitInsn_FPArithm(ARGS, kFPArithm_Add, kDouble, false); break; case Instruction::SUB_DOUBLE: EmitInsn_FPArithm(ARGS, kFPArithm_Sub, kDouble, false); break; case Instruction::MUL_DOUBLE: EmitInsn_FPArithm(ARGS, kFPArithm_Mul, kDouble, false); break; case Instruction::DIV_DOUBLE: EmitInsn_FPArithm(ARGS, kFPArithm_Div, kDouble, false); break; case Instruction::REM_DOUBLE: EmitInsn_FPArithm(ARGS, kFPArithm_Rem, kDouble, false); break; case Instruction::ADD_INT_2ADDR: EmitInsn_IntArithm(ARGS, kIntArithm_Add, kInt, true); break; case Instruction::SUB_INT_2ADDR: EmitInsn_IntArithm(ARGS, kIntArithm_Sub, kInt, true); break; case Instruction::MUL_INT_2ADDR: EmitInsn_IntArithm(ARGS, kIntArithm_Mul, kInt, true); break; case Instruction::DIV_INT_2ADDR: EmitInsn_IntArithm(ARGS, kIntArithm_Div, kInt, true); break; case Instruction::REM_INT_2ADDR: EmitInsn_IntArithm(ARGS, kIntArithm_Rem, kInt, true); break; case Instruction::AND_INT_2ADDR: EmitInsn_IntArithm(ARGS, kIntArithm_And, kInt, true); break; case Instruction::OR_INT_2ADDR: EmitInsn_IntArithm(ARGS, kIntArithm_Or, kInt, true); break; case Instruction::XOR_INT_2ADDR: EmitInsn_IntArithm(ARGS, kIntArithm_Xor, kInt, true); break; case Instruction::SHL_INT_2ADDR: EmitInsn_IntShiftArithm(ARGS, kIntArithm_Shl, kInt, true); break; case Instruction::SHR_INT_2ADDR: EmitInsn_IntShiftArithm(ARGS, kIntArithm_Shr, kInt, true); break; case Instruction::USHR_INT_2ADDR: EmitInsn_IntShiftArithm(ARGS, kIntArithm_UShr, kInt, true); break; case Instruction::ADD_LONG_2ADDR: EmitInsn_IntArithm(ARGS, kIntArithm_Add, kLong, true); break; case Instruction::SUB_LONG_2ADDR: EmitInsn_IntArithm(ARGS, kIntArithm_Sub, kLong, true); break; case Instruction::MUL_LONG_2ADDR: EmitInsn_IntArithm(ARGS, kIntArithm_Mul, kLong, true); break; case Instruction::DIV_LONG_2ADDR: EmitInsn_IntArithm(ARGS, kIntArithm_Div, kLong, true); break; case Instruction::REM_LONG_2ADDR: EmitInsn_IntArithm(ARGS, kIntArithm_Rem, kLong, true); break; case Instruction::AND_LONG_2ADDR: EmitInsn_IntArithm(ARGS, kIntArithm_And, kLong, true); break; case Instruction::OR_LONG_2ADDR: EmitInsn_IntArithm(ARGS, kIntArithm_Or, kLong, true); break; case Instruction::XOR_LONG_2ADDR: EmitInsn_IntArithm(ARGS, kIntArithm_Xor, kLong, true); break; case Instruction::SHL_LONG_2ADDR: EmitInsn_IntShiftArithm(ARGS, kIntArithm_Shl, kLong, true); break; case Instruction::SHR_LONG_2ADDR: EmitInsn_IntShiftArithm(ARGS, kIntArithm_Shr, kLong, true); break; case Instruction::USHR_LONG_2ADDR: EmitInsn_IntShiftArithm(ARGS, kIntArithm_UShr, kLong, true); break; case Instruction::ADD_FLOAT_2ADDR: EmitInsn_FPArithm(ARGS, kFPArithm_Add, kFloat, true); break; case Instruction::SUB_FLOAT_2ADDR: EmitInsn_FPArithm(ARGS, kFPArithm_Sub, kFloat, true); break; case Instruction::MUL_FLOAT_2ADDR: EmitInsn_FPArithm(ARGS, kFPArithm_Mul, kFloat, true); break; case Instruction::DIV_FLOAT_2ADDR: EmitInsn_FPArithm(ARGS, kFPArithm_Div, kFloat, true); break; case Instruction::REM_FLOAT_2ADDR: EmitInsn_FPArithm(ARGS, kFPArithm_Rem, kFloat, true); break; case Instruction::ADD_DOUBLE_2ADDR: EmitInsn_FPArithm(ARGS, kFPArithm_Add, kDouble, true); break; case Instruction::SUB_DOUBLE_2ADDR: EmitInsn_FPArithm(ARGS, kFPArithm_Sub, kDouble, true); break; case Instruction::MUL_DOUBLE_2ADDR: EmitInsn_FPArithm(ARGS, kFPArithm_Mul, kDouble, true); break; case Instruction::DIV_DOUBLE_2ADDR: EmitInsn_FPArithm(ARGS, kFPArithm_Div, kDouble, true); break; case Instruction::REM_DOUBLE_2ADDR: EmitInsn_FPArithm(ARGS, kFPArithm_Rem, kDouble, true); break; case Instruction::ADD_INT_LIT16: case Instruction::ADD_INT_LIT8: EmitInsn_IntArithmImmediate(ARGS, kIntArithm_Add); break; case Instruction::RSUB_INT: case Instruction::RSUB_INT_LIT8: EmitInsn_RSubImmediate(ARGS); break; case Instruction::MUL_INT_LIT16: case Instruction::MUL_INT_LIT8: EmitInsn_IntArithmImmediate(ARGS, kIntArithm_Mul); break; case Instruction::DIV_INT_LIT16: case Instruction::DIV_INT_LIT8: EmitInsn_IntArithmImmediate(ARGS, kIntArithm_Div); break; case Instruction::REM_INT_LIT16: case Instruction::REM_INT_LIT8: EmitInsn_IntArithmImmediate(ARGS, kIntArithm_Rem); break; case Instruction::AND_INT_LIT16: case Instruction::AND_INT_LIT8: EmitInsn_IntArithmImmediate(ARGS, kIntArithm_And); break; case Instruction::OR_INT_LIT16: case Instruction::OR_INT_LIT8: EmitInsn_IntArithmImmediate(ARGS, kIntArithm_Or); break; case Instruction::XOR_INT_LIT16: case Instruction::XOR_INT_LIT8: EmitInsn_IntArithmImmediate(ARGS, kIntArithm_Xor); break; case Instruction::SHL_INT_LIT8: EmitInsn_IntShiftArithmImmediate(ARGS, kIntArithm_Shl); break; case Instruction::SHR_INT_LIT8: EmitInsn_IntShiftArithmImmediate(ARGS, kIntArithm_Shr); break; case Instruction::USHR_INT_LIT8: EmitInsn_IntShiftArithmImmediate(ARGS, kIntArithm_UShr); break; case Instruction::UNUSED_3E: case Instruction::UNUSED_3F: case Instruction::UNUSED_40: case Instruction::UNUSED_41: case Instruction::UNUSED_42: case Instruction::UNUSED_43: case Instruction::UNUSED_73: case Instruction::UNUSED_79: case Instruction::UNUSED_7A: case Instruction::UNUSED_E3: case Instruction::UNUSED_E4: case Instruction::UNUSED_E5: case Instruction::UNUSED_E6: case Instruction::UNUSED_E7: case Instruction::UNUSED_E8: case Instruction::UNUSED_E9: case Instruction::UNUSED_EA: case Instruction::UNUSED_EB: case Instruction::UNUSED_EC: case Instruction::UNUSED_ED: case Instruction::UNUSED_EE: case Instruction::UNUSED_EF: case Instruction::UNUSED_F0: case Instruction::UNUSED_F1: case Instruction::UNUSED_F2: case Instruction::UNUSED_F3: case Instruction::UNUSED_F4: case Instruction::UNUSED_F5: case Instruction::UNUSED_F6: case Instruction::UNUSED_F7: case Instruction::UNUSED_F8: case Instruction::UNUSED_F9: case Instruction::UNUSED_FA: case Instruction::UNUSED_FB: case Instruction::UNUSED_FC: case Instruction::UNUSED_FD: case Instruction::UNUSED_FE: case Instruction::UNUSED_FF: LOG(FATAL) << "Dex file contains UNUSED bytecode: " << insn->Opcode(); break; } #undef ARGS } void MethodCompiler::EmitInsn_Nop(uint32_t dex_pc, const Instruction* insn) { uint16_t insn_signature = code_item_->insns_[dex_pc]; if (insn_signature == Instruction::kPackedSwitchSignature || insn_signature == Instruction::kSparseSwitchSignature || insn_signature == Instruction::kArrayDataSignature) { irb_.CreateUnreachable(); } else { irb_.CreateBr(GetNextBasicBlock(dex_pc)); } } void MethodCompiler::EmitInsn_Move(uint32_t dex_pc, const Instruction* insn, JType jty) { DecodedInstruction dec_insn(insn); llvm::Value* src_value = EmitLoadDalvikReg(dec_insn.vB, jty, kReg); EmitStoreDalvikReg(dec_insn.vA, jty, kReg, src_value); irb_.CreateBr(GetNextBasicBlock(dex_pc)); } void MethodCompiler::EmitInsn_MoveResult(uint32_t dex_pc, const Instruction* insn, JType jty) { DecodedInstruction dec_insn(insn); llvm::Value* src_value = EmitLoadDalvikRetValReg(jty, kReg); EmitStoreDalvikReg(dec_insn.vA, jty, kReg, src_value); irb_.CreateBr(GetNextBasicBlock(dex_pc)); } void MethodCompiler::EmitInsn_MoveException(uint32_t dex_pc, const Instruction* insn) { DecodedInstruction dec_insn(insn); llvm::Value* exception_object_addr = irb_.Runtime().EmitGetAndClearException(); // Keep the exception object in the Dalvik register EmitStoreDalvikReg(dec_insn.vA, kObject, kAccurate, exception_object_addr); irb_.CreateBr(GetNextBasicBlock(dex_pc)); } void MethodCompiler::EmitInsn_ThrowException(uint32_t dex_pc, const Instruction* insn) { DecodedInstruction dec_insn(insn); llvm::Value* exception_addr = EmitLoadDalvikReg(dec_insn.vA, kObject, kAccurate); EmitUpdateDexPC(dex_pc); irb_.CreateCall(irb_.GetRuntime(ThrowException), exception_addr); EmitBranchExceptionLandingPad(dex_pc); } void MethodCompiler::EmitInsn_ReturnVoid(uint32_t dex_pc, const Instruction* insn) { // Pop the shadow frame EmitPopShadowFrame(); // Return! irb_.CreateRetVoid(); } void MethodCompiler::EmitInsn_Return(uint32_t dex_pc, const Instruction* insn) { DecodedInstruction dec_insn(insn); // Pop the shadow frame EmitPopShadowFrame(); // NOTE: It is important to keep this AFTER the GC safe-point. Otherwise, // the return value might be collected since the shadow stack is popped. // Return! char ret_shorty = oat_compilation_unit_->GetShorty()[0]; llvm::Value* retval = EmitLoadDalvikReg(dec_insn.vA, ret_shorty, kAccurate); irb_.CreateRet(retval); } void MethodCompiler::EmitInsn_LoadConstant(uint32_t dex_pc, const Instruction* insn, JType imm_jty) { DecodedInstruction dec_insn(insn); DCHECK(imm_jty == kInt || imm_jty == kLong) << imm_jty; int64_t imm = 0; switch (insn->Opcode()) { // 32-bit Immediate case Instruction::CONST_4: case Instruction::CONST_16: case Instruction::CONST: case Instruction::CONST_WIDE_16: case Instruction::CONST_WIDE_32: imm = static_cast(static_cast(dec_insn.vB)); break; case Instruction::CONST_HIGH16: imm = static_cast(static_cast( static_cast(static_cast(dec_insn.vB)) << 16)); break; // 64-bit Immediate case Instruction::CONST_WIDE: imm = static_cast(dec_insn.vB_wide); break; case Instruction::CONST_WIDE_HIGH16: imm = static_cast( static_cast(static_cast(dec_insn.vB)) << 48); break; // Unknown opcode for load constant (unreachable) default: LOG(FATAL) << "Unknown opcode for load constant: " << insn->Opcode(); break; } // Store the non-object register llvm::Type* imm_type = irb_.getJType(imm_jty, kAccurate); llvm::Constant* imm_value = llvm::ConstantInt::getSigned(imm_type, imm); EmitStoreDalvikReg(dec_insn.vA, imm_jty, kAccurate, imm_value); // Store the object register if it is possible to be null. if (imm_jty == kInt && imm == 0) { EmitStoreDalvikReg(dec_insn.vA, kObject, kAccurate, irb_.getJNull()); } irb_.CreateBr(GetNextBasicBlock(dex_pc)); } void MethodCompiler::EmitInsn_LoadConstantString(uint32_t dex_pc, const Instruction* insn) { DecodedInstruction dec_insn(insn); uint32_t string_idx = dec_insn.vB; llvm::Value* string_field_addr = EmitLoadDexCacheStringFieldAddr(string_idx); llvm::Value* string_addr = irb_.CreateLoad(string_field_addr, kTBAAJRuntime); if (!compiler_->CanAssumeStringIsPresentInDexCache(*dex_file_, string_idx)) { llvm::BasicBlock* block_str_exist = CreateBasicBlockWithDexPC(dex_pc, "str_exist"); llvm::BasicBlock* block_str_resolve = CreateBasicBlockWithDexPC(dex_pc, "str_resolve"); // Test: Is the string resolved and in the dex cache? llvm::Value* equal_null = irb_.CreateICmpEQ(string_addr, irb_.getJNull()); irb_.CreateCondBr(equal_null, block_str_resolve, block_str_exist, kUnlikely); // String is resolved, go to next basic block. irb_.SetInsertPoint(block_str_exist); EmitStoreDalvikReg(dec_insn.vA, kObject, kAccurate, string_addr); irb_.CreateBr(GetNextBasicBlock(dex_pc)); // String is not resolved yet, resolve it now. irb_.SetInsertPoint(block_str_resolve); llvm::Function* runtime_func = irb_.GetRuntime(ResolveString); llvm::Value* method_object_addr = EmitLoadMethodObjectAddr(); llvm::Value* string_idx_value = irb_.getInt32(string_idx); EmitUpdateDexPC(dex_pc); string_addr = irb_.CreateCall2(runtime_func, method_object_addr, string_idx_value); EmitGuard_ExceptionLandingPad(dex_pc, true); } // Store the string object to the Dalvik register EmitStoreDalvikReg(dec_insn.vA, kObject, kAccurate, string_addr); irb_.CreateBr(GetNextBasicBlock(dex_pc)); } llvm::Value* MethodCompiler::EmitLoadConstantClass(uint32_t dex_pc, uint32_t type_idx) { if (!compiler_->CanAccessTypeWithoutChecks(method_idx_, *dex_file_, type_idx)) { llvm::Value* type_idx_value = irb_.getInt32(type_idx); llvm::Value* method_object_addr = EmitLoadMethodObjectAddr(); llvm::Value* thread_object_addr = irb_.Runtime().EmitGetCurrentThread(); llvm::Function* runtime_func = irb_.GetRuntime(InitializeTypeAndVerifyAccess); EmitUpdateDexPC(dex_pc); llvm::Value* type_object_addr = irb_.CreateCall3(runtime_func, type_idx_value, method_object_addr, thread_object_addr); EmitGuard_ExceptionLandingPad(dex_pc, false); return type_object_addr; } else { // Try to load the class (type) object from the test cache. llvm::Value* type_field_addr = EmitLoadDexCacheResolvedTypeFieldAddr(type_idx); llvm::Value* type_object_addr = irb_.CreateLoad(type_field_addr, kTBAAJRuntime); if (compiler_->CanAssumeTypeIsPresentInDexCache(*dex_file_, type_idx)) { return type_object_addr; } llvm::BasicBlock* block_original = irb_.GetInsertBlock(); // Test whether class (type) object is in the dex cache or not llvm::Value* equal_null = irb_.CreateICmpEQ(type_object_addr, irb_.getJNull()); llvm::BasicBlock* block_cont = CreateBasicBlockWithDexPC(dex_pc, "cont"); llvm::BasicBlock* block_load_class = CreateBasicBlockWithDexPC(dex_pc, "load_class"); irb_.CreateCondBr(equal_null, block_load_class, block_cont, kUnlikely); // Failback routine to load the class object irb_.SetInsertPoint(block_load_class); llvm::Function* runtime_func = irb_.GetRuntime(InitializeType); llvm::Constant* type_idx_value = irb_.getInt32(type_idx); llvm::Value* method_object_addr = EmitLoadMethodObjectAddr(); llvm::Value* thread_object_addr = irb_.Runtime().EmitGetCurrentThread(); EmitUpdateDexPC(dex_pc); llvm::Value* loaded_type_object_addr = irb_.CreateCall3(runtime_func, type_idx_value, method_object_addr, thread_object_addr); EmitGuard_ExceptionLandingPad(dex_pc, false); llvm::BasicBlock* block_after_load_class = irb_.GetInsertBlock(); irb_.CreateBr(block_cont); // Now the class object must be loaded irb_.SetInsertPoint(block_cont); llvm::PHINode* phi = irb_.CreatePHI(irb_.getJObjectTy(), 2); phi->addIncoming(type_object_addr, block_original); phi->addIncoming(loaded_type_object_addr, block_after_load_class); return phi; } } void MethodCompiler::EmitInsn_LoadConstantClass(uint32_t dex_pc, const Instruction* insn) { DecodedInstruction dec_insn(insn); llvm::Value* type_object_addr = EmitLoadConstantClass(dex_pc, dec_insn.vB); EmitStoreDalvikReg(dec_insn.vA, kObject, kAccurate, type_object_addr); irb_.CreateBr(GetNextBasicBlock(dex_pc)); } void MethodCompiler::EmitInsn_MonitorEnter(uint32_t dex_pc, const Instruction* insn) { DecodedInstruction dec_insn(insn); llvm::Value* object_addr = EmitLoadDalvikReg(dec_insn.vA, kObject, kAccurate); if (!(method_info_.this_will_not_be_null && dec_insn.vA == method_info_.this_reg_idx)) { EmitGuard_NullPointerException(dex_pc, object_addr); } irb_.Runtime().EmitLockObject(object_addr); irb_.CreateBr(GetNextBasicBlock(dex_pc)); } void MethodCompiler::EmitInsn_MonitorExit(uint32_t dex_pc, const Instruction* insn) { DecodedInstruction dec_insn(insn); llvm::Value* object_addr = EmitLoadDalvikReg(dec_insn.vA, kObject, kAccurate); if (!(method_info_.this_will_not_be_null && dec_insn.vA == method_info_.this_reg_idx)) { EmitGuard_NullPointerException(dex_pc, object_addr); } EmitUpdateDexPC(dex_pc); irb_.Runtime().EmitUnlockObject(object_addr); EmitGuard_ExceptionLandingPad(dex_pc, true); irb_.CreateBr(GetNextBasicBlock(dex_pc)); } void MethodCompiler::EmitInsn_CheckCast(uint32_t dex_pc, const Instruction* insn) { DecodedInstruction dec_insn(insn); llvm::BasicBlock* block_test_class = CreateBasicBlockWithDexPC(dex_pc, "test_class"); llvm::BasicBlock* block_test_sub_class = CreateBasicBlockWithDexPC(dex_pc, "test_sub_class"); llvm::Value* object_addr = EmitLoadDalvikReg(dec_insn.vA, kObject, kAccurate); // Test: Is the reference equal to null? Act as no-op when it is null. llvm::Value* equal_null = irb_.CreateICmpEQ(object_addr, irb_.getJNull()); irb_.CreateCondBr(equal_null, GetNextBasicBlock(dex_pc), block_test_class); // Test: Is the object instantiated from the given class? irb_.SetInsertPoint(block_test_class); llvm::Value* type_object_addr = EmitLoadConstantClass(dex_pc, dec_insn.vB); DCHECK_EQ(Object::ClassOffset().Int32Value(), 0); llvm::PointerType* jobject_ptr_ty = irb_.getJObjectTy(); llvm::Value* object_type_field_addr = irb_.CreateBitCast(object_addr, jobject_ptr_ty->getPointerTo()); llvm::Value* object_type_object_addr = irb_.CreateLoad(object_type_field_addr, kTBAAConstJObject); llvm::Value* equal_class = irb_.CreateICmpEQ(type_object_addr, object_type_object_addr); irb_.CreateCondBr(equal_class, GetNextBasicBlock(dex_pc), block_test_sub_class); // Test: Is the object instantiated from the subclass of the given class? irb_.SetInsertPoint(block_test_sub_class); EmitUpdateDexPC(dex_pc); irb_.CreateCall2(irb_.GetRuntime(CheckCast), type_object_addr, object_type_object_addr); EmitGuard_ExceptionLandingPad(dex_pc, true); irb_.CreateBr(GetNextBasicBlock(dex_pc)); } void MethodCompiler::EmitInsn_InstanceOf(uint32_t dex_pc, const Instruction* insn) { DecodedInstruction dec_insn(insn); llvm::Constant* zero = irb_.getJInt(0); llvm::Constant* one = irb_.getJInt(1); llvm::BasicBlock* block_nullp = CreateBasicBlockWithDexPC(dex_pc, "nullp"); llvm::BasicBlock* block_test_class = CreateBasicBlockWithDexPC(dex_pc, "test_class"); llvm::BasicBlock* block_class_equals = CreateBasicBlockWithDexPC(dex_pc, "class_eq"); llvm::BasicBlock* block_test_sub_class = CreateBasicBlockWithDexPC(dex_pc, "test_sub_class"); llvm::Value* object_addr = EmitLoadDalvikReg(dec_insn.vB, kObject, kAccurate); // Overview of the following code : // We check for null, if so, then false, otherwise check for class == . If so // then true, otherwise do callout slowpath. // // Test: Is the reference equal to null? Set 0 when it is null. llvm::Value* equal_null = irb_.CreateICmpEQ(object_addr, irb_.getJNull()); irb_.CreateCondBr(equal_null, block_nullp, block_test_class); irb_.SetInsertPoint(block_nullp); EmitStoreDalvikReg(dec_insn.vA, kInt, kAccurate, zero); irb_.CreateBr(GetNextBasicBlock(dex_pc)); // Test: Is the object instantiated from the given class? irb_.SetInsertPoint(block_test_class); llvm::Value* type_object_addr = EmitLoadConstantClass(dex_pc, dec_insn.vC); DCHECK_EQ(Object::ClassOffset().Int32Value(), 0); llvm::PointerType* jobject_ptr_ty = irb_.getJObjectTy(); llvm::Value* object_type_field_addr = irb_.CreateBitCast(object_addr, jobject_ptr_ty->getPointerTo()); llvm::Value* object_type_object_addr = irb_.CreateLoad(object_type_field_addr, kTBAAConstJObject); llvm::Value* equal_class = irb_.CreateICmpEQ(type_object_addr, object_type_object_addr); irb_.CreateCondBr(equal_class, block_class_equals, block_test_sub_class); irb_.SetInsertPoint(block_class_equals); EmitStoreDalvikReg(dec_insn.vA, kInt, kAccurate, one); irb_.CreateBr(GetNextBasicBlock(dex_pc)); // Test: Is the object instantiated from the subclass of the given class? irb_.SetInsertPoint(block_test_sub_class); llvm::Value* result = irb_.CreateCall2(irb_.GetRuntime(IsAssignable), type_object_addr, object_type_object_addr); EmitStoreDalvikReg(dec_insn.vA, kInt, kAccurate, result); irb_.CreateBr(GetNextBasicBlock(dex_pc)); } llvm::Value* MethodCompiler::EmitLoadArrayLength(llvm::Value* array) { // Load array length return irb_.LoadFromObjectOffset(array, Array::LengthOffset().Int32Value(), irb_.getJIntTy(), kTBAAConstJObject); } void MethodCompiler::EmitInsn_ArrayLength(uint32_t dex_pc, const Instruction* insn) { DecodedInstruction dec_insn(insn); // Get the array object address llvm::Value* array_addr = EmitLoadDalvikReg(dec_insn.vB, kObject, kAccurate); EmitGuard_NullPointerException(dex_pc, array_addr); // Get the array length and store it to the register llvm::Value* array_len = EmitLoadArrayLength(array_addr); EmitStoreDalvikReg(dec_insn.vA, kInt, kAccurate, array_len); irb_.CreateBr(GetNextBasicBlock(dex_pc)); } void MethodCompiler::EmitInsn_NewInstance(uint32_t dex_pc, const Instruction* insn) { DecodedInstruction dec_insn(insn); llvm::Function* runtime_func; if (compiler_->CanAccessInstantiableTypeWithoutChecks( method_idx_, *dex_file_, dec_insn.vB)) { runtime_func = irb_.GetRuntime(AllocObject); } else { runtime_func = irb_.GetRuntime(AllocObjectWithAccessCheck); } llvm::Constant* type_index_value = irb_.getInt32(dec_insn.vB); llvm::Value* method_object_addr = EmitLoadMethodObjectAddr(); llvm::Value* thread_object_addr = irb_.Runtime().EmitGetCurrentThread(); EmitUpdateDexPC(dex_pc); llvm::Value* object_addr = irb_.CreateCall3(runtime_func, type_index_value, method_object_addr, thread_object_addr); EmitGuard_ExceptionLandingPad(dex_pc, true); EmitStoreDalvikReg(dec_insn.vA, kObject, kAccurate, object_addr); irb_.CreateBr(GetNextBasicBlock(dex_pc)); } llvm::Value* MethodCompiler::EmitAllocNewArray(uint32_t dex_pc, int32_t length, uint32_t type_idx, bool is_filled_new_array) { llvm::Function* runtime_func; bool skip_access_check = compiler_->CanAccessTypeWithoutChecks(method_idx_, *dex_file_, type_idx); llvm::Value* array_length_value; if (is_filled_new_array) { runtime_func = skip_access_check ? irb_.GetRuntime(CheckAndAllocArray) : irb_.GetRuntime(CheckAndAllocArrayWithAccessCheck); array_length_value = irb_.getInt32(length); } else { runtime_func = skip_access_check ? irb_.GetRuntime(AllocArray) : irb_.GetRuntime(AllocArrayWithAccessCheck); array_length_value = EmitLoadDalvikReg(length, kInt, kAccurate); } llvm::Constant* type_index_value = irb_.getInt32(type_idx); llvm::Value* method_object_addr = EmitLoadMethodObjectAddr(); llvm::Value* thread_object_addr = irb_.Runtime().EmitGetCurrentThread(); EmitUpdateDexPC(dex_pc); llvm::Value* object_addr = irb_.CreateCall4(runtime_func, type_index_value, method_object_addr, array_length_value, thread_object_addr); EmitGuard_ExceptionLandingPad(dex_pc, false); return object_addr; } void MethodCompiler::EmitInsn_NewArray(uint32_t dex_pc, const Instruction* insn) { DecodedInstruction dec_insn(insn); llvm::Value* object_addr = EmitAllocNewArray(dex_pc, dec_insn.vB, dec_insn.vC, false); EmitStoreDalvikReg(dec_insn.vA, kObject, kAccurate, object_addr); irb_.CreateBr(GetNextBasicBlock(dex_pc)); } void MethodCompiler::EmitInsn_FilledNewArray(uint32_t dex_pc, const Instruction* insn, bool is_range) { DecodedInstruction dec_insn(insn); llvm::Value* object_addr = EmitAllocNewArray(dex_pc, dec_insn.vA, dec_insn.vB, true); if (dec_insn.vA > 0) { // Check for the element type uint32_t type_desc_len = 0; const char* type_desc = dex_file_->StringByTypeIdx(dec_insn.vB, &type_desc_len); DCHECK_GE(type_desc_len, 2u); // should be guaranteed by verifier DCHECK_EQ(type_desc[0], '['); // should be guaranteed by verifier bool is_elem_int_ty = (type_desc[1] == 'I'); uint32_t alignment; llvm::Constant* elem_size; llvm::PointerType* field_type; // NOTE: Currently filled-new-array only supports 'L', '[', and 'I' // as the element, thus we are only checking 2 cases: primitive int and // non-primitive type. if (is_elem_int_ty) { alignment = sizeof(int32_t); elem_size = irb_.getPtrEquivInt(sizeof(int32_t)); field_type = irb_.getJIntTy()->getPointerTo(); } else { alignment = irb_.getSizeOfPtrEquivInt(); elem_size = irb_.getSizeOfPtrEquivIntValue(); field_type = irb_.getJObjectTy()->getPointerTo(); } llvm::Value* data_field_offset = irb_.getPtrEquivInt(Array::DataOffset(alignment).Int32Value()); llvm::Value* data_field_addr = irb_.CreatePtrDisp(object_addr, data_field_offset, field_type); // TODO: Tune this code. Currently we are generating one instruction for // one element which may be very space consuming. Maybe changing to use // memcpy may help; however, since we can't guarantee that the alloca of // dalvik register are continuous, we can't perform such optimization yet. for (uint32_t i = 0; i < dec_insn.vA; ++i) { int reg_index; if (is_range) { reg_index = dec_insn.vC + i; } else { reg_index = dec_insn.arg[i]; } llvm::Value* reg_value; if (is_elem_int_ty) { reg_value = EmitLoadDalvikReg(reg_index, kInt, kAccurate); } else { reg_value = EmitLoadDalvikReg(reg_index, kObject, kAccurate); } irb_.CreateStore(reg_value, data_field_addr, kTBAAHeapArray); data_field_addr = irb_.CreatePtrDisp(data_field_addr, elem_size, field_type); } } EmitStoreDalvikRetValReg(kObject, kAccurate, object_addr); irb_.CreateBr(GetNextBasicBlock(dex_pc)); } void MethodCompiler::EmitInsn_FillArrayData(uint32_t dex_pc, const Instruction* insn) { DecodedInstruction dec_insn(insn); // Read the payload int32_t payload_offset = static_cast(dex_pc) + static_cast(dec_insn.vB); const Instruction::ArrayDataPayload* payload = reinterpret_cast( code_item_->insns_ + payload_offset); // Load array object llvm::Value* array_addr = EmitLoadDalvikReg(dec_insn.vA, kObject, kAccurate); if (payload->element_count == 0) { // When the number of the elements in the payload is zero, we don't have // to copy any numbers. However, we should check whether the array object // address is equal to null or not. EmitGuard_NullPointerException(dex_pc, array_addr); } else { // To save the code size, we are going to call the runtime function to // copy the content from DexFile. // NOTE: We will check for the NullPointerException in the runtime. llvm::Function* runtime_func = irb_.GetRuntime(FillArrayData); llvm::Value* method_object_addr = EmitLoadMethodObjectAddr(); EmitUpdateDexPC(dex_pc); irb_.CreateCall4(runtime_func, method_object_addr, irb_.getInt32(dex_pc), array_addr, irb_.getInt32(payload_offset)); EmitGuard_ExceptionLandingPad(dex_pc, true); } irb_.CreateBr(GetNextBasicBlock(dex_pc)); } void MethodCompiler::EmitInsn_UnconditionalBranch(uint32_t dex_pc, const Instruction* insn) { DecodedInstruction dec_insn(insn); int32_t branch_offset = dec_insn.vA; irb_.CreateBr(GetBasicBlock(dex_pc + branch_offset)); } void MethodCompiler::EmitInsn_PackedSwitch(uint32_t dex_pc, const Instruction* insn) { DecodedInstruction dec_insn(insn); int32_t payload_offset = static_cast(dex_pc) + static_cast(dec_insn.vB); const Instruction::PackedSwitchPayload* payload = reinterpret_cast( code_item_->insns_ + payload_offset); llvm::Value* value = EmitLoadDalvikReg(dec_insn.vA, kInt, kAccurate); llvm::SwitchInst* sw = irb_.CreateSwitch(value, GetNextBasicBlock(dex_pc), payload->case_count); for (uint16_t i = 0; i < payload->case_count; ++i) { sw->addCase(irb_.getInt32(payload->first_key + i), GetBasicBlock(dex_pc + payload->targets[i])); } } void MethodCompiler::EmitInsn_SparseSwitch(uint32_t dex_pc, const Instruction* insn) { DecodedInstruction dec_insn(insn); int32_t payload_offset = static_cast(dex_pc) + static_cast(dec_insn.vB); const Instruction::SparseSwitchPayload* payload = reinterpret_cast( code_item_->insns_ + payload_offset); const int32_t* keys = payload->GetKeys(); const int32_t* targets = payload->GetTargets(); llvm::Value* value = EmitLoadDalvikReg(dec_insn.vA, kInt, kAccurate); llvm::SwitchInst* sw = irb_.CreateSwitch(value, GetNextBasicBlock(dex_pc), payload->case_count); for (size_t i = 0; i < payload->case_count; ++i) { sw->addCase(irb_.getInt32(keys[i]), GetBasicBlock(dex_pc + targets[i])); } } void MethodCompiler::EmitInsn_FPCompare(uint32_t dex_pc, const Instruction* insn, JType fp_jty, bool gt_bias) { DecodedInstruction dec_insn(insn); DCHECK(fp_jty == kFloat || fp_jty == kDouble) << "JType: " << fp_jty; llvm::Value* src1_value = EmitLoadDalvikReg(dec_insn.vB, fp_jty, kAccurate); llvm::Value* src2_value = EmitLoadDalvikReg(dec_insn.vC, fp_jty, kAccurate); llvm::Value* cmp_eq = irb_.CreateFCmpOEQ(src1_value, src2_value); llvm::Value* cmp_lt; if (gt_bias) { cmp_lt = irb_.CreateFCmpOLT(src1_value, src2_value); } else { cmp_lt = irb_.CreateFCmpULT(src1_value, src2_value); } llvm::Value* result = EmitCompareResultSelection(cmp_eq, cmp_lt); EmitStoreDalvikReg(dec_insn.vA, kInt, kAccurate, result); irb_.CreateBr(GetNextBasicBlock(dex_pc)); } void MethodCompiler::EmitInsn_LongCompare(uint32_t dex_pc, const Instruction* insn) { DecodedInstruction dec_insn(insn); llvm::Value* src1_value = EmitLoadDalvikReg(dec_insn.vB, kLong, kAccurate); llvm::Value* src2_value = EmitLoadDalvikReg(dec_insn.vC, kLong, kAccurate); llvm::Value* cmp_eq = irb_.CreateICmpEQ(src1_value, src2_value); llvm::Value* cmp_lt = irb_.CreateICmpSLT(src1_value, src2_value); llvm::Value* result = EmitCompareResultSelection(cmp_eq, cmp_lt); EmitStoreDalvikReg(dec_insn.vA, kInt, kAccurate, result); irb_.CreateBr(GetNextBasicBlock(dex_pc)); } llvm::Value* MethodCompiler::EmitCompareResultSelection(llvm::Value* cmp_eq, llvm::Value* cmp_lt) { llvm::Constant* zero = irb_.getJInt(0); llvm::Constant* pos1 = irb_.getJInt(1); llvm::Constant* neg1 = irb_.getJInt(-1); llvm::Value* result_lt = irb_.CreateSelect(cmp_lt, neg1, pos1); llvm::Value* result_eq = irb_.CreateSelect(cmp_eq, zero, result_lt); return result_eq; } void MethodCompiler::EmitInsn_BinaryConditionalBranch(uint32_t dex_pc, const Instruction* insn, CondBranchKind cond) { DecodedInstruction dec_insn(insn); greenland::RegCategory src1_reg_cat = GetInferredRegCategory(dex_pc, dec_insn.vA); greenland::RegCategory src2_reg_cat = GetInferredRegCategory(dex_pc, dec_insn.vB); DCHECK_NE(greenland::kRegUnknown, src1_reg_cat); DCHECK_NE(greenland::kRegUnknown, src2_reg_cat); DCHECK_NE(greenland::kRegCat2, src1_reg_cat); DCHECK_NE(greenland::kRegCat2, src2_reg_cat); int32_t branch_offset = dec_insn.vC; llvm::Value* src1_value; llvm::Value* src2_value; if (src1_reg_cat == greenland::kRegZero && src2_reg_cat == greenland::kRegZero) { src1_value = irb_.getInt32(0); src2_value = irb_.getInt32(0); } else if (src1_reg_cat != greenland::kRegZero && src2_reg_cat != greenland::kRegZero) { CHECK_EQ(src1_reg_cat, src2_reg_cat); if (src1_reg_cat == greenland::kRegCat1nr) { src1_value = EmitLoadDalvikReg(dec_insn.vA, kInt, kAccurate); src2_value = EmitLoadDalvikReg(dec_insn.vB, kInt, kAccurate); } else { src1_value = EmitLoadDalvikReg(dec_insn.vA, kObject, kAccurate); src2_value = EmitLoadDalvikReg(dec_insn.vB, kObject, kAccurate); } } else { DCHECK(src1_reg_cat == greenland::kRegZero || src2_reg_cat == greenland::kRegZero); if (src1_reg_cat == greenland::kRegZero) { if (src2_reg_cat == greenland::kRegCat1nr) { src1_value = irb_.getJInt(0); src2_value = EmitLoadDalvikReg(dec_insn.vA, kInt, kAccurate); } else { src1_value = irb_.getJNull(); src2_value = EmitLoadDalvikReg(dec_insn.vA, kObject, kAccurate); } } else { // src2_reg_cat == kRegZero if (src2_reg_cat == greenland::kRegCat1nr) { src1_value = EmitLoadDalvikReg(dec_insn.vA, kInt, kAccurate); src2_value = irb_.getJInt(0); } else { src1_value = EmitLoadDalvikReg(dec_insn.vA, kObject, kAccurate); src2_value = irb_.getJNull(); } } } llvm::Value* cond_value = EmitConditionResult(src1_value, src2_value, cond); irb_.CreateCondBr(cond_value, GetBasicBlock(dex_pc + branch_offset), GetNextBasicBlock(dex_pc)); } void MethodCompiler::EmitInsn_UnaryConditionalBranch(uint32_t dex_pc, const Instruction* insn, CondBranchKind cond) { DecodedInstruction dec_insn(insn); greenland::RegCategory src_reg_cat = GetInferredRegCategory(dex_pc, dec_insn.vA); DCHECK_NE(greenland::kRegUnknown, src_reg_cat); DCHECK_NE(greenland::kRegCat2, src_reg_cat); int32_t branch_offset = dec_insn.vB; llvm::Value* src1_value; llvm::Value* src2_value; if (src_reg_cat == greenland::kRegZero) { src1_value = irb_.getInt32(0); src2_value = irb_.getInt32(0); } else if (src_reg_cat == greenland::kRegCat1nr) { src1_value = EmitLoadDalvikReg(dec_insn.vA, kInt, kAccurate); src2_value = irb_.getInt32(0); } else { src1_value = EmitLoadDalvikReg(dec_insn.vA, kObject, kAccurate); src2_value = irb_.getJNull(); } llvm::Value* cond_value = EmitConditionResult(src1_value, src2_value, cond); irb_.CreateCondBr(cond_value, GetBasicBlock(dex_pc + branch_offset), GetNextBasicBlock(dex_pc)); } const greenland::InferredRegCategoryMap* MethodCompiler::GetInferredRegCategoryMap() { Compiler::MethodReference mref(dex_file_, method_idx_); const greenland::InferredRegCategoryMap* map = verifier::MethodVerifier::GetInferredRegCategoryMap(mref); CHECK_NE(map, static_cast(NULL)); return map; } greenland::RegCategory MethodCompiler::GetInferredRegCategory(uint32_t dex_pc, uint16_t reg_idx) { const greenland::InferredRegCategoryMap* map = GetInferredRegCategoryMap(); return map->GetRegCategory(dex_pc, reg_idx); } bool MethodCompiler::IsRegCanBeObject(uint16_t reg_idx) { const greenland::InferredRegCategoryMap* map = GetInferredRegCategoryMap(); return map->IsRegCanBeObject(reg_idx); } llvm::Value* MethodCompiler::EmitConditionResult(llvm::Value* lhs, llvm::Value* rhs, CondBranchKind cond) { switch (cond) { case kCondBranch_EQ: return irb_.CreateICmpEQ(lhs, rhs); case kCondBranch_NE: return irb_.CreateICmpNE(lhs, rhs); case kCondBranch_LT: return irb_.CreateICmpSLT(lhs, rhs); case kCondBranch_GE: return irb_.CreateICmpSGE(lhs, rhs); case kCondBranch_GT: return irb_.CreateICmpSGT(lhs, rhs); case kCondBranch_LE: return irb_.CreateICmpSLE(lhs, rhs); default: // Unreachable LOG(FATAL) << "Unknown conditional branch kind: " << cond; return NULL; } } void MethodCompiler::EmitMarkGCCard(llvm::Value* value, llvm::Value* target_addr) { // Using runtime support, let the target can override by InlineAssembly. irb_.Runtime().EmitMarkGCCard(value, target_addr); } void MethodCompiler::EmitGuard_ArrayIndexOutOfBoundsException(uint32_t dex_pc, llvm::Value* array, llvm::Value* index) { llvm::Value* array_len = EmitLoadArrayLength(array); llvm::Value* cmp = irb_.CreateICmpUGE(index, array_len); llvm::BasicBlock* block_exception = CreateBasicBlockWithDexPC(dex_pc, "overflow"); llvm::BasicBlock* block_continue = CreateBasicBlockWithDexPC(dex_pc, "cont"); irb_.CreateCondBr(cmp, block_exception, block_continue, kUnlikely); irb_.SetInsertPoint(block_exception); EmitUpdateDexPC(dex_pc); irb_.CreateCall2(irb_.GetRuntime(ThrowIndexOutOfBounds), index, array_len); EmitBranchExceptionLandingPad(dex_pc); irb_.SetInsertPoint(block_continue); } void MethodCompiler::EmitGuard_ArrayException(uint32_t dex_pc, llvm::Value* array, llvm::Value* index) { EmitGuard_NullPointerException(dex_pc, array); EmitGuard_ArrayIndexOutOfBoundsException(dex_pc, array, index); } // Emit Array GetElementPtr llvm::Value* MethodCompiler::EmitArrayGEP(llvm::Value* array_addr, llvm::Value* index_value, JType elem_jty) { int data_offset; if (elem_jty == kLong || elem_jty == kDouble || (elem_jty == kObject && sizeof(uint64_t) == sizeof(Object*))) { data_offset = Array::DataOffset(sizeof(int64_t)).Int32Value(); } else { data_offset = Array::DataOffset(sizeof(int32_t)).Int32Value(); } llvm::Constant* data_offset_value = irb_.getPtrEquivInt(data_offset); llvm::Type* elem_type = irb_.getJType(elem_jty, kArray); llvm::Value* array_data_addr = irb_.CreatePtrDisp(array_addr, data_offset_value, elem_type->getPointerTo()); return irb_.CreateGEP(array_data_addr, index_value); } void MethodCompiler::EmitInsn_AGet(uint32_t dex_pc, const Instruction* insn, JType elem_jty) { DecodedInstruction dec_insn(insn); llvm::Value* array_addr = EmitLoadDalvikReg(dec_insn.vB, kObject, kAccurate); llvm::Value* index_value = EmitLoadDalvikReg(dec_insn.vC, kInt, kAccurate); EmitGuard_ArrayException(dex_pc, array_addr, index_value); llvm::Value* array_elem_addr = EmitArrayGEP(array_addr, index_value, elem_jty); llvm::Value* array_elem_value = irb_.CreateLoad(array_elem_addr, kTBAAHeapArray, elem_jty); EmitStoreDalvikReg(dec_insn.vA, elem_jty, kArray, array_elem_value); irb_.CreateBr(GetNextBasicBlock(dex_pc)); } void MethodCompiler::EmitInsn_APut(uint32_t dex_pc, const Instruction* insn, JType elem_jty) { DecodedInstruction dec_insn(insn); llvm::Value* array_addr = EmitLoadDalvikReg(dec_insn.vB, kObject, kAccurate); llvm::Value* index_value = EmitLoadDalvikReg(dec_insn.vC, kInt, kAccurate); EmitGuard_ArrayException(dex_pc, array_addr, index_value); llvm::Value* array_elem_addr = EmitArrayGEP(array_addr, index_value, elem_jty); llvm::Value* new_value = EmitLoadDalvikReg(dec_insn.vA, elem_jty, kArray); if (elem_jty == kObject) { // If put an object, check the type, and mark GC card table. llvm::Function* runtime_func = irb_.GetRuntime(CheckPutArrayElement); irb_.CreateCall2(runtime_func, new_value, array_addr); EmitGuard_ExceptionLandingPad(dex_pc, false); EmitMarkGCCard(new_value, array_addr); } irb_.CreateStore(new_value, array_elem_addr, kTBAAHeapArray, elem_jty); irb_.CreateBr(GetNextBasicBlock(dex_pc)); } void MethodCompiler::EmitInsn_IGet(uint32_t dex_pc, const Instruction* insn, JType field_jty) { DecodedInstruction dec_insn(insn); uint32_t reg_idx = dec_insn.vB; uint32_t field_idx = dec_insn.vC; llvm::Value* object_addr = EmitLoadDalvikReg(reg_idx, kObject, kAccurate); if (!(method_info_.this_will_not_be_null && reg_idx == method_info_.this_reg_idx)) { EmitGuard_NullPointerException(dex_pc, object_addr); } llvm::Value* field_value; int field_offset; bool is_volatile; bool is_fast_path = compiler_->ComputeInstanceFieldInfo( field_idx, oat_compilation_unit_, field_offset, is_volatile, false); if (!is_fast_path) { llvm::Function* runtime_func; if (field_jty == kObject) { runtime_func = irb_.GetRuntime(GetObjectInstance); } else if (field_jty == kLong || field_jty == kDouble) { runtime_func = irb_.GetRuntime(Get64Instance); } else { runtime_func = irb_.GetRuntime(Get32Instance); } llvm::ConstantInt* field_idx_value = irb_.getInt32(field_idx); llvm::Value* method_object_addr = EmitLoadMethodObjectAddr(); EmitUpdateDexPC(dex_pc); field_value = irb_.CreateCall3(runtime_func, field_idx_value, method_object_addr, object_addr); EmitGuard_ExceptionLandingPad(dex_pc, true); } else { DCHECK_GE(field_offset, 0); llvm::PointerType* field_type = irb_.getJType(field_jty, kField)->getPointerTo(); llvm::ConstantInt* field_offset_value = irb_.getPtrEquivInt(field_offset); llvm::Value* field_addr = irb_.CreatePtrDisp(object_addr, field_offset_value, field_type); // TODO: Check is_volatile. We need to generate atomic load instruction // when is_volatile is true. field_value = irb_.CreateLoad(field_addr, kTBAAHeapInstance, field_jty); } EmitStoreDalvikReg(dec_insn.vA, field_jty, kField, field_value); irb_.CreateBr(GetNextBasicBlock(dex_pc)); } void MethodCompiler::EmitInsn_IPut(uint32_t dex_pc, const Instruction* insn, JType field_jty) { DecodedInstruction dec_insn(insn); uint32_t reg_idx = dec_insn.vB; uint32_t field_idx = dec_insn.vC; llvm::Value* object_addr = EmitLoadDalvikReg(reg_idx, kObject, kAccurate); if (!(method_info_.this_will_not_be_null && reg_idx == method_info_.this_reg_idx)) { EmitGuard_NullPointerException(dex_pc, object_addr); } llvm::Value* new_value = EmitLoadDalvikReg(dec_insn.vA, field_jty, kField); int field_offset; bool is_volatile; bool is_fast_path = compiler_->ComputeInstanceFieldInfo( field_idx, oat_compilation_unit_, field_offset, is_volatile, true); if (!is_fast_path) { llvm::Function* runtime_func; if (field_jty == kObject) { runtime_func = irb_.GetRuntime(SetObjectInstance); } else if (field_jty == kLong || field_jty == kDouble) { runtime_func = irb_.GetRuntime(Set64Instance); } else { runtime_func = irb_.GetRuntime(Set32Instance); } llvm::Value* field_idx_value = irb_.getInt32(field_idx); llvm::Value* method_object_addr = EmitLoadMethodObjectAddr(); EmitUpdateDexPC(dex_pc); irb_.CreateCall4(runtime_func, field_idx_value, method_object_addr, object_addr, new_value); EmitGuard_ExceptionLandingPad(dex_pc, true); } else { DCHECK_GE(field_offset, 0); llvm::PointerType* field_type = irb_.getJType(field_jty, kField)->getPointerTo(); llvm::Value* field_offset_value = irb_.getPtrEquivInt(field_offset); llvm::Value* field_addr = irb_.CreatePtrDisp(object_addr, field_offset_value, field_type); // TODO: Check is_volatile. We need to generate atomic store instruction // when is_volatile is true. irb_.CreateStore(new_value, field_addr, kTBAAHeapInstance, field_jty); if (field_jty == kObject) { // If put an object, mark the GC card table. EmitMarkGCCard(new_value, object_addr); } } irb_.CreateBr(GetNextBasicBlock(dex_pc)); } llvm::Value* MethodCompiler::EmitLoadStaticStorage(uint32_t dex_pc, uint32_t type_idx) { llvm::BasicBlock* block_load_static = CreateBasicBlockWithDexPC(dex_pc, "load_static"); llvm::BasicBlock* block_cont = CreateBasicBlockWithDexPC(dex_pc, "cont"); // Load static storage from dex cache llvm::Value* storage_field_addr = EmitLoadDexCacheStaticStorageFieldAddr(type_idx); llvm::Value* storage_object_addr = irb_.CreateLoad(storage_field_addr, kTBAAJRuntime); llvm::BasicBlock* block_original = irb_.GetInsertBlock(); // Test: Is the static storage of this class initialized? llvm::Value* equal_null = irb_.CreateICmpEQ(storage_object_addr, irb_.getJNull()); irb_.CreateCondBr(equal_null, block_load_static, block_cont, kUnlikely); // Failback routine to load the class object irb_.SetInsertPoint(block_load_static); llvm::Function* runtime_func = irb_.GetRuntime(InitializeStaticStorage); llvm::Constant* type_idx_value = irb_.getInt32(type_idx); llvm::Value* method_object_addr = EmitLoadMethodObjectAddr(); llvm::Value* thread_object_addr = irb_.Runtime().EmitGetCurrentThread(); EmitUpdateDexPC(dex_pc); llvm::Value* loaded_storage_object_addr = irb_.CreateCall3(runtime_func, type_idx_value, method_object_addr, thread_object_addr); EmitGuard_ExceptionLandingPad(dex_pc, false); llvm::BasicBlock* block_after_load_static = irb_.GetInsertBlock(); irb_.CreateBr(block_cont); // Now the class object must be loaded irb_.SetInsertPoint(block_cont); llvm::PHINode* phi = irb_.CreatePHI(irb_.getJObjectTy(), 2); phi->addIncoming(storage_object_addr, block_original); phi->addIncoming(loaded_storage_object_addr, block_after_load_static); return phi; } void MethodCompiler::EmitInsn_SGet(uint32_t dex_pc, const Instruction* insn, JType field_jty) { DecodedInstruction dec_insn(insn); uint32_t field_idx = dec_insn.vB; int field_offset; int ssb_index; bool is_referrers_class; bool is_volatile; bool is_fast_path = compiler_->ComputeStaticFieldInfo( field_idx, oat_compilation_unit_, field_offset, ssb_index, is_referrers_class, is_volatile, false); llvm::Value* static_field_value; if (!is_fast_path) { llvm::Function* runtime_func; if (field_jty == kObject) { runtime_func = irb_.GetRuntime(GetObjectStatic); } else if (field_jty == kLong || field_jty == kDouble) { runtime_func = irb_.GetRuntime(Get64Static); } else { runtime_func = irb_.GetRuntime(Get32Static); } llvm::Constant* field_idx_value = irb_.getInt32(dec_insn.vB); llvm::Value* method_object_addr = EmitLoadMethodObjectAddr(); EmitUpdateDexPC(dex_pc); static_field_value = irb_.CreateCall2(runtime_func, field_idx_value, method_object_addr); EmitGuard_ExceptionLandingPad(dex_pc, true); } else { DCHECK_GE(field_offset, 0); llvm::Value* static_storage_addr = NULL; if (is_referrers_class) { // Fast path, static storage base is this method's class llvm::Value* method_object_addr = EmitLoadMethodObjectAddr(); static_storage_addr = irb_.LoadFromObjectOffset(method_object_addr, AbstractMethod::DeclaringClassOffset().Int32Value(), irb_.getJObjectTy(), kTBAAConstJObject); } else { // Medium path, static storage base in a different class which // requires checks that the other class is initialized DCHECK_GE(ssb_index, 0); static_storage_addr = EmitLoadStaticStorage(dex_pc, ssb_index); } llvm::Value* static_field_offset_value = irb_.getPtrEquivInt(field_offset); llvm::Value* static_field_addr = irb_.CreatePtrDisp(static_storage_addr, static_field_offset_value, irb_.getJType(field_jty, kField)->getPointerTo()); // TODO: Check is_volatile. We need to generate atomic load instruction // when is_volatile is true. static_field_value = irb_.CreateLoad(static_field_addr, kTBAAHeapStatic, field_jty); } EmitStoreDalvikReg(dec_insn.vA, field_jty, kField, static_field_value); irb_.CreateBr(GetNextBasicBlock(dex_pc)); } void MethodCompiler::EmitInsn_SPut(uint32_t dex_pc, const Instruction* insn, JType field_jty) { DecodedInstruction dec_insn(insn); uint32_t field_idx = dec_insn.vB; llvm::Value* new_value = EmitLoadDalvikReg(dec_insn.vA, field_jty, kField); int field_offset; int ssb_index; bool is_referrers_class; bool is_volatile; bool is_fast_path = compiler_->ComputeStaticFieldInfo( field_idx, oat_compilation_unit_, field_offset, ssb_index, is_referrers_class, is_volatile, true); if (!is_fast_path) { llvm::Function* runtime_func; if (field_jty == kObject) { runtime_func = irb_.GetRuntime(SetObjectStatic); } else if (field_jty == kLong || field_jty == kDouble) { runtime_func = irb_.GetRuntime(Set64Static); } else { runtime_func = irb_.GetRuntime(Set32Static); } llvm::Constant* field_idx_value = irb_.getInt32(dec_insn.vB); llvm::Value* method_object_addr = EmitLoadMethodObjectAddr(); EmitUpdateDexPC(dex_pc); irb_.CreateCall3(runtime_func, field_idx_value, method_object_addr, new_value); EmitGuard_ExceptionLandingPad(dex_pc, true); } else { DCHECK_GE(field_offset, 0); llvm::Value* static_storage_addr = NULL; if (is_referrers_class) { // Fast path, static storage base is this method's class llvm::Value* method_object_addr = EmitLoadMethodObjectAddr(); static_storage_addr = irb_.LoadFromObjectOffset(method_object_addr, AbstractMethod::DeclaringClassOffset().Int32Value(), irb_.getJObjectTy(), kTBAAConstJObject); } else { // Medium path, static storage base in a different class which // requires checks that the other class is initialized DCHECK_GE(ssb_index, 0); static_storage_addr = EmitLoadStaticStorage(dex_pc, ssb_index); } llvm::Value* static_field_offset_value = irb_.getPtrEquivInt(field_offset); llvm::Value* static_field_addr = irb_.CreatePtrDisp(static_storage_addr, static_field_offset_value, irb_.getJType(field_jty, kField)->getPointerTo()); // TODO: Check is_volatile. We need to generate atomic store instruction // when is_volatile is true. irb_.CreateStore(new_value, static_field_addr, kTBAAHeapStatic, field_jty); if (field_jty == kObject) { // If put an object, mark the GC card table. EmitMarkGCCard(new_value, static_storage_addr); } } irb_.CreateBr(GetNextBasicBlock(dex_pc)); } void MethodCompiler:: EmitLoadActualParameters(std::vector& args, uint32_t callee_method_idx, DecodedInstruction const& dec_insn, InvokeArgFmt arg_fmt, bool is_static) { // Get method signature DexFile::MethodId const& method_id = dex_file_->GetMethodId(callee_method_idx); uint32_t shorty_size; const char* shorty = dex_file_->GetMethodShorty(method_id, &shorty_size); CHECK_GE(shorty_size, 1u); // Load argument values according to the shorty (without "this") uint16_t reg_count = 0; if (!is_static) { ++reg_count; // skip the "this" pointer } bool is_range = (arg_fmt == kArgRange); for (uint32_t i = 1; i < shorty_size; ++i) { uint32_t reg_idx = (is_range) ? (dec_insn.vC + reg_count) : (dec_insn.arg[reg_count]); args.push_back(EmitLoadDalvikReg(reg_idx, shorty[i], kAccurate)); ++reg_count; if (shorty[i] == 'J' || shorty[i] == 'D') { // Wide types, such as long and double, are using a pair of registers // to store the value, so we have to increase arg_reg again. ++reg_count; } } DCHECK_EQ(reg_count, dec_insn.vA) << "Actual argument mismatch for callee: " << PrettyMethod(callee_method_idx, *dex_file_); } void MethodCompiler::EmitInsn_Invoke(uint32_t dex_pc, const Instruction* insn, InvokeType invoke_type, InvokeArgFmt arg_fmt) { DecodedInstruction dec_insn(insn); bool is_static = (invoke_type == kStatic); uint32_t callee_method_idx = dec_insn.vB; // Compute invoke related information for compiler decision int vtable_idx = -1; uintptr_t direct_code = 0; uintptr_t direct_method = 0; bool is_fast_path = compiler_-> ComputeInvokeInfo(callee_method_idx, oat_compilation_unit_, invoke_type, vtable_idx, direct_code, direct_method); // Load *this* actual parameter uint32_t this_reg = -1u; llvm::Value* this_addr = NULL; if (!is_static) { // Test: Is *this* parameter equal to null? this_reg = (arg_fmt == kArgReg) ? dec_insn.arg[0] : (dec_insn.vC + 0); this_addr = EmitLoadDalvikReg(this_reg, kObject, kAccurate); } // Load the method object llvm::Value* callee_method_object_addr = NULL; if (!is_fast_path) { callee_method_object_addr = EmitCallRuntimeForCalleeMethodObjectAddr(callee_method_idx, invoke_type, this_addr, dex_pc, is_fast_path); if (!is_static && (!method_info_.this_will_not_be_null || this_reg != method_info_.this_reg_idx)) { // NOTE: The null pointer test should come after the method resolution. // So that the "NoSuchMethodError" can be thrown before the // "NullPointerException". EmitGuard_NullPointerException(dex_pc, this_addr); } } else { if (!is_static && (!method_info_.this_will_not_be_null || this_reg != method_info_.this_reg_idx)) { // NOTE: In the fast path, we should do the null pointer check // before the access to the class object and/or direct invocation. EmitGuard_NullPointerException(dex_pc, this_addr); } switch (invoke_type) { case kStatic: case kDirect: if (direct_method != 0u && direct_method != static_cast(-1)) { callee_method_object_addr = irb_.CreateIntToPtr(irb_.getPtrEquivInt(direct_method), irb_.getJObjectTy()); } else { callee_method_object_addr = EmitLoadSDCalleeMethodObjectAddr(callee_method_idx); } break; case kVirtual: DCHECK(vtable_idx != -1); callee_method_object_addr = EmitLoadVirtualCalleeMethodObjectAddr(vtable_idx, this_addr); break; case kSuper: LOG(FATAL) << "invoke-super should be promoted to invoke-direct in " "the fast path."; break; case kInterface: callee_method_object_addr = EmitCallRuntimeForCalleeMethodObjectAddr(callee_method_idx, invoke_type, this_addr, dex_pc, is_fast_path); break; } } // Load the actual parameter std::vector args; args.push_back(callee_method_object_addr); // method object for callee if (!is_static) { DCHECK(this_addr != NULL); args.push_back(this_addr); // "this" object for callee } EmitLoadActualParameters(args, callee_method_idx, dec_insn, arg_fmt, is_static); if (is_fast_path && (invoke_type == kDirect || invoke_type == kStatic)) { bool need_retry = EmitInlineJavaIntrinsic(PrettyMethod(callee_method_idx, *dex_file_), args, GetNextBasicBlock(dex_pc)); if (!need_retry) { return; } } llvm::Value* code_addr; if (direct_code != 0u && direct_code != static_cast(-1)) { code_addr = irb_.CreateIntToPtr(irb_.getPtrEquivInt(direct_code), GetFunctionType(callee_method_idx, is_static)->getPointerTo()); } else { code_addr = irb_.LoadFromObjectOffset(callee_method_object_addr, AbstractMethod::GetCodeOffset().Int32Value(), GetFunctionType(callee_method_idx, is_static)->getPointerTo(), kTBAAJRuntime); } // Invoke callee EmitUpdateDexPC(dex_pc); llvm::Value* retval = irb_.CreateCall(code_addr, args); EmitGuard_ExceptionLandingPad(dex_pc, true); uint32_t callee_access_flags = is_static ? kAccStatic : 0; UniquePtr callee_oat_compilation_unit( oat_compilation_unit_->GetCallee(callee_method_idx, callee_access_flags)); char ret_shorty = callee_oat_compilation_unit->GetShorty()[0]; if (ret_shorty != 'V') { EmitStoreDalvikRetValReg(ret_shorty, kAccurate, retval); } irb_.CreateBr(GetNextBasicBlock(dex_pc)); } llvm::Value* MethodCompiler:: EmitLoadSDCalleeMethodObjectAddr(uint32_t callee_method_idx) { llvm::Value* callee_method_object_field_addr = EmitLoadDexCacheResolvedMethodFieldAddr(callee_method_idx); return irb_.CreateLoad(callee_method_object_field_addr, kTBAAJRuntime); } llvm::Value* MethodCompiler:: EmitLoadVirtualCalleeMethodObjectAddr(int vtable_idx, llvm::Value* this_addr) { // Load class object of *this* pointer llvm::Value* class_object_addr = irb_.LoadFromObjectOffset(this_addr, Object::ClassOffset().Int32Value(), irb_.getJObjectTy(), kTBAAConstJObject); // Load vtable address llvm::Value* vtable_addr = irb_.LoadFromObjectOffset(class_object_addr, Class::VTableOffset().Int32Value(), irb_.getJObjectTy(), kTBAAConstJObject); // Load callee method object llvm::Value* vtable_idx_value = irb_.getPtrEquivInt(static_cast(vtable_idx)); llvm::Value* method_field_addr = EmitArrayGEP(vtable_addr, vtable_idx_value, kObject); return irb_.CreateLoad(method_field_addr, kTBAAConstJObject); } llvm::Value* MethodCompiler:: EmitCallRuntimeForCalleeMethodObjectAddr(uint32_t callee_method_idx, InvokeType invoke_type, llvm::Value* this_addr, uint32_t dex_pc, bool is_fast_path) { llvm::Function* runtime_func = NULL; switch (invoke_type) { case kStatic: runtime_func = irb_.GetRuntime(FindStaticMethodWithAccessCheck); break; case kDirect: runtime_func = irb_.GetRuntime(FindDirectMethodWithAccessCheck); break; case kVirtual: runtime_func = irb_.GetRuntime(FindVirtualMethodWithAccessCheck); break; case kSuper: runtime_func = irb_.GetRuntime(FindSuperMethodWithAccessCheck); break; case kInterface: if (is_fast_path) { runtime_func = irb_.GetRuntime(FindInterfaceMethod); } else { runtime_func = irb_.GetRuntime(FindInterfaceMethodWithAccessCheck); } break; } llvm::Value* callee_method_idx_value = irb_.getInt32(callee_method_idx); if (this_addr == NULL) { DCHECK_EQ(invoke_type, kStatic); this_addr = irb_.getJNull(); } llvm::Value* caller_method_object_addr = EmitLoadMethodObjectAddr(); llvm::Value* thread_object_addr = irb_.Runtime().EmitGetCurrentThread(); EmitUpdateDexPC(dex_pc); llvm::Value* callee_method_object_addr = irb_.CreateCall4(runtime_func, callee_method_idx_value, this_addr, caller_method_object_addr, thread_object_addr); EmitGuard_ExceptionLandingPad(dex_pc, false); return callee_method_object_addr; } void MethodCompiler::EmitInsn_Neg(uint32_t dex_pc, const Instruction* insn, JType op_jty) { DecodedInstruction dec_insn(insn); DCHECK(op_jty == kInt || op_jty == kLong) << op_jty; llvm::Value* src_value = EmitLoadDalvikReg(dec_insn.vB, op_jty, kAccurate); llvm::Value* result_value = irb_.CreateNeg(src_value); EmitStoreDalvikReg(dec_insn.vA, op_jty, kAccurate, result_value); irb_.CreateBr(GetNextBasicBlock(dex_pc)); } void MethodCompiler::EmitInsn_Not(uint32_t dex_pc, const Instruction* insn, JType op_jty) { DecodedInstruction dec_insn(insn); DCHECK(op_jty == kInt || op_jty == kLong) << op_jty; llvm::Value* src_value = EmitLoadDalvikReg(dec_insn.vB, op_jty, kAccurate); llvm::Value* result_value = irb_.CreateXor(src_value, static_cast(-1)); EmitStoreDalvikReg(dec_insn.vA, op_jty, kAccurate, result_value); irb_.CreateBr(GetNextBasicBlock(dex_pc)); } void MethodCompiler::EmitInsn_SExt(uint32_t dex_pc, const Instruction* insn) { DecodedInstruction dec_insn(insn); llvm::Value* src_value = EmitLoadDalvikReg(dec_insn.vB, kInt, kAccurate); llvm::Value* result_value = irb_.CreateSExt(src_value, irb_.getJLongTy()); EmitStoreDalvikReg(dec_insn.vA, kLong, kAccurate, result_value); irb_.CreateBr(GetNextBasicBlock(dex_pc)); } void MethodCompiler::EmitInsn_Trunc(uint32_t dex_pc, const Instruction* insn) { DecodedInstruction dec_insn(insn); llvm::Value* src_value = EmitLoadDalvikReg(dec_insn.vB, kLong, kAccurate); llvm::Value* result_value = irb_.CreateTrunc(src_value, irb_.getJIntTy()); EmitStoreDalvikReg(dec_insn.vA, kInt, kAccurate, result_value); irb_.CreateBr(GetNextBasicBlock(dex_pc)); } void MethodCompiler::EmitInsn_TruncAndSExt(uint32_t dex_pc, const Instruction* insn, unsigned N) { DecodedInstruction dec_insn(insn); llvm::Value* src_value = EmitLoadDalvikReg(dec_insn.vB, kInt, kAccurate); llvm::Value* trunc_value = irb_.CreateTrunc(src_value, llvm::Type::getIntNTy(*context_, N)); llvm::Value* result_value = irb_.CreateSExt(trunc_value, irb_.getJIntTy()); EmitStoreDalvikReg(dec_insn.vA, kInt, kAccurate, result_value); irb_.CreateBr(GetNextBasicBlock(dex_pc)); } void MethodCompiler::EmitInsn_TruncAndZExt(uint32_t dex_pc, const Instruction* insn, unsigned N) { DecodedInstruction dec_insn(insn); llvm::Value* src_value = EmitLoadDalvikReg(dec_insn.vB, kInt, kAccurate); llvm::Value* trunc_value = irb_.CreateTrunc(src_value, llvm::Type::getIntNTy(*context_, N)); llvm::Value* result_value = irb_.CreateZExt(trunc_value, irb_.getJIntTy()); EmitStoreDalvikReg(dec_insn.vA, kInt, kAccurate, result_value); irb_.CreateBr(GetNextBasicBlock(dex_pc)); } void MethodCompiler::EmitInsn_FNeg(uint32_t dex_pc, const Instruction* insn, JType op_jty) { DecodedInstruction dec_insn(insn); DCHECK(op_jty == kFloat || op_jty == kDouble) << op_jty; llvm::Value* src_value = EmitLoadDalvikReg(dec_insn.vB, op_jty, kAccurate); llvm::Value* result_value = irb_.CreateFNeg(src_value); EmitStoreDalvikReg(dec_insn.vA, op_jty, kAccurate, result_value); irb_.CreateBr(GetNextBasicBlock(dex_pc)); } void MethodCompiler::EmitInsn_IntToFP(uint32_t dex_pc, const Instruction* insn, JType src_jty, JType dest_jty) { DecodedInstruction dec_insn(insn); DCHECK(src_jty == kInt || src_jty == kLong) << src_jty; DCHECK(dest_jty == kFloat || dest_jty == kDouble) << dest_jty; llvm::Value* src_value = EmitLoadDalvikReg(dec_insn.vB, src_jty, kAccurate); llvm::Type* dest_type = irb_.getJType(dest_jty, kAccurate); llvm::Value* dest_value = irb_.CreateSIToFP(src_value, dest_type); EmitStoreDalvikReg(dec_insn.vA, dest_jty, kAccurate, dest_value); irb_.CreateBr(GetNextBasicBlock(dex_pc)); } void MethodCompiler::EmitInsn_FPToInt(uint32_t dex_pc, const Instruction* insn, JType src_jty, JType dest_jty, runtime_support::RuntimeId runtime_func_id) { DecodedInstruction dec_insn(insn); DCHECK(src_jty == kFloat || src_jty == kDouble) << src_jty; DCHECK(dest_jty == kInt || dest_jty == kLong) << dest_jty; llvm::Value* src_value = EmitLoadDalvikReg(dec_insn.vB, src_jty, kAccurate); llvm::Value* dest_value = irb_.CreateCall(irb_.GetRuntime(runtime_func_id), src_value); EmitStoreDalvikReg(dec_insn.vA, dest_jty, kAccurate, dest_value); irb_.CreateBr(GetNextBasicBlock(dex_pc)); } void MethodCompiler::EmitInsn_FExt(uint32_t dex_pc, const Instruction* insn) { DecodedInstruction dec_insn(insn); llvm::Value* src_value = EmitLoadDalvikReg(dec_insn.vB, kFloat, kAccurate); llvm::Value* result_value = irb_.CreateFPExt(src_value, irb_.getJDoubleTy()); EmitStoreDalvikReg(dec_insn.vA, kDouble, kAccurate, result_value); irb_.CreateBr(GetNextBasicBlock(dex_pc)); } void MethodCompiler::EmitInsn_FTrunc(uint32_t dex_pc, const Instruction* insn) { DecodedInstruction dec_insn(insn); llvm::Value* src_value = EmitLoadDalvikReg(dec_insn.vB, kDouble, kAccurate); llvm::Value* result_value = irb_.CreateFPTrunc(src_value, irb_.getJFloatTy()); EmitStoreDalvikReg(dec_insn.vA, kFloat, kAccurate, result_value); irb_.CreateBr(GetNextBasicBlock(dex_pc)); } void MethodCompiler::EmitInsn_IntArithm(uint32_t dex_pc, const Instruction* insn, IntArithmKind arithm, JType op_jty, bool is_2addr) { DecodedInstruction dec_insn(insn); DCHECK(op_jty == kInt || op_jty == kLong) << op_jty; llvm::Value* src1_value; llvm::Value* src2_value; if (is_2addr) { src1_value = EmitLoadDalvikReg(dec_insn.vA, op_jty, kAccurate); src2_value = EmitLoadDalvikReg(dec_insn.vB, op_jty, kAccurate); } else { src1_value = EmitLoadDalvikReg(dec_insn.vB, op_jty, kAccurate); src2_value = EmitLoadDalvikReg(dec_insn.vC, op_jty, kAccurate); } llvm::Value* result_value = EmitIntArithmResultComputation(dex_pc, src1_value, src2_value, arithm, op_jty); EmitStoreDalvikReg(dec_insn.vA, op_jty, kAccurate, result_value); irb_.CreateBr(GetNextBasicBlock(dex_pc)); } void MethodCompiler::EmitInsn_IntArithmImmediate(uint32_t dex_pc, const Instruction* insn, IntArithmKind arithm) { DecodedInstruction dec_insn(insn); llvm::Value* src_value = EmitLoadDalvikReg(dec_insn.vB, kInt, kAccurate); llvm::Value* imm_value = irb_.getInt32(dec_insn.vC); llvm::Value* result_value = EmitIntArithmResultComputation(dex_pc, src_value, imm_value, arithm, kInt); EmitStoreDalvikReg(dec_insn.vA, kInt, kAccurate, result_value); irb_.CreateBr(GetNextBasicBlock(dex_pc)); } llvm::Value* MethodCompiler::EmitIntArithmResultComputation(uint32_t dex_pc, llvm::Value* lhs, llvm::Value* rhs, IntArithmKind arithm, JType op_jty) { DCHECK(op_jty == kInt || op_jty == kLong) << op_jty; switch (arithm) { case kIntArithm_Add: return irb_.CreateAdd(lhs, rhs); case kIntArithm_Sub: return irb_.CreateSub(lhs, rhs); case kIntArithm_Mul: return irb_.CreateMul(lhs, rhs); case kIntArithm_Div: case kIntArithm_Rem: return EmitIntDivRemResultComputation(dex_pc, lhs, rhs, arithm, op_jty); case kIntArithm_And: return irb_.CreateAnd(lhs, rhs); case kIntArithm_Or: return irb_.CreateOr(lhs, rhs); case kIntArithm_Xor: return irb_.CreateXor(lhs, rhs); default: LOG(FATAL) << "Unknown integer arithmetic kind: " << arithm; return NULL; } } llvm::Value* MethodCompiler::EmitIntDivRemResultComputation(uint32_t dex_pc, llvm::Value* dividend, llvm::Value* divisor, IntArithmKind arithm, JType op_jty) { // Throw exception if the divisor is 0. EmitGuard_DivZeroException(dex_pc, divisor, op_jty); // Check the special case: MININT / -1 = MININT // That case will cause overflow, which is undefined behavior in llvm. // So we check the divisor is -1 or not, if the divisor is -1, we do // the special path to avoid undefined behavior. llvm::Type* op_type = irb_.getJType(op_jty, kAccurate); llvm::Value* zero = irb_.getJZero(op_jty); llvm::Value* neg_one = llvm::ConstantInt::getSigned(op_type, -1); llvm::Value* result = irb_.CreateAlloca(op_type); llvm::BasicBlock* eq_neg_one = CreateBasicBlockWithDexPC(dex_pc, "eq_neg_one"); llvm::BasicBlock* ne_neg_one = CreateBasicBlockWithDexPC(dex_pc, "ne_neg_one"); llvm::BasicBlock* neg_one_cont = CreateBasicBlockWithDexPC(dex_pc, "neg_one_cont"); llvm::Value* is_equal_neg_one = EmitConditionResult(divisor, neg_one, kCondBranch_EQ); irb_.CreateCondBr(is_equal_neg_one, eq_neg_one, ne_neg_one, kUnlikely); // If divisor == -1 irb_.SetInsertPoint(eq_neg_one); llvm::Value* eq_result; if (arithm == kIntArithm_Div) { // We can just change from "dividend div -1" to "neg dividend". // The sub don't care the sign/unsigned because of two's complement representation. // And the behavior is what we want: // -(2^n) (2^n)-1 // MININT < k <= MAXINT -> mul k -1 = -k // MININT == k -> mul k -1 = k // // LLVM use sub to represent 'neg' eq_result = irb_.CreateSub(zero, dividend); } else { // Everything modulo -1 will be 0. eq_result = zero; } irb_.CreateStore(eq_result, result, kTBAAStackTemp); irb_.CreateBr(neg_one_cont); // If divisor != -1, just do the division. irb_.SetInsertPoint(ne_neg_one); llvm::Value* ne_result; if (arithm == kIntArithm_Div) { ne_result = irb_.CreateSDiv(dividend, divisor); } else { ne_result = irb_.CreateSRem(dividend, divisor); } irb_.CreateStore(ne_result, result, kTBAAStackTemp); irb_.CreateBr(neg_one_cont); irb_.SetInsertPoint(neg_one_cont); return irb_.CreateLoad(result, kTBAAStackTemp); } void MethodCompiler::EmitInsn_IntShiftArithm(uint32_t dex_pc, const Instruction* insn, IntShiftArithmKind arithm, JType op_jty, bool is_2addr) { DecodedInstruction dec_insn(insn); DCHECK(op_jty == kInt || op_jty == kLong) << op_jty; llvm::Value* src1_value; llvm::Value* src2_value; // NOTE: The 2nd operand of the shift arithmetic instruction is // 32-bit integer regardless of the 1st operand. if (is_2addr) { src1_value = EmitLoadDalvikReg(dec_insn.vA, op_jty, kAccurate); src2_value = EmitLoadDalvikReg(dec_insn.vB, kInt, kAccurate); } else { src1_value = EmitLoadDalvikReg(dec_insn.vB, op_jty, kAccurate); src2_value = EmitLoadDalvikReg(dec_insn.vC, kInt, kAccurate); } llvm::Value* result_value = EmitIntShiftArithmResultComputation(dex_pc, src1_value, src2_value, arithm, op_jty); EmitStoreDalvikReg(dec_insn.vA, op_jty, kAccurate, result_value); irb_.CreateBr(GetNextBasicBlock(dex_pc)); } void MethodCompiler:: EmitInsn_IntShiftArithmImmediate(uint32_t dex_pc, const Instruction* insn, IntShiftArithmKind arithm) { DecodedInstruction dec_insn(insn); llvm::Value* src_value = EmitLoadDalvikReg(dec_insn.vB, kInt, kAccurate); llvm::Value* imm_value = irb_.getInt32(dec_insn.vC); llvm::Value* result_value = EmitIntShiftArithmResultComputation(dex_pc, src_value, imm_value, arithm, kInt); EmitStoreDalvikReg(dec_insn.vA, kInt, kAccurate, result_value); irb_.CreateBr(GetNextBasicBlock(dex_pc)); } llvm::Value* MethodCompiler::EmitIntShiftArithmResultComputation(uint32_t dex_pc, llvm::Value* lhs, llvm::Value* rhs, IntShiftArithmKind arithm, JType op_jty) { DCHECK(op_jty == kInt || op_jty == kLong) << op_jty; if (op_jty == kInt) { rhs = irb_.CreateAnd(rhs, 0x1f); } else { llvm::Value* masked_rhs = irb_.CreateAnd(rhs, 0x3f); rhs = irb_.CreateZExt(masked_rhs, irb_.getJLongTy()); } switch (arithm) { case kIntArithm_Shl: return irb_.CreateShl(lhs, rhs); case kIntArithm_Shr: return irb_.CreateAShr(lhs, rhs); case kIntArithm_UShr: return irb_.CreateLShr(lhs, rhs); default: LOG(FATAL) << "Unknown integer shift arithmetic kind: " << arithm; return NULL; } } void MethodCompiler::EmitInsn_RSubImmediate(uint32_t dex_pc, const Instruction* insn) { DecodedInstruction dec_insn(insn); llvm::Value* src_value = EmitLoadDalvikReg(dec_insn.vB, kInt, kAccurate); llvm::Value* imm_value = irb_.getInt32(dec_insn.vC); llvm::Value* result_value = irb_.CreateSub(imm_value, src_value); EmitStoreDalvikReg(dec_insn.vA, kInt, kAccurate, result_value); irb_.CreateBr(GetNextBasicBlock(dex_pc)); } void MethodCompiler::EmitInsn_FPArithm(uint32_t dex_pc, const Instruction* insn, FPArithmKind arithm, JType op_jty, bool is_2addr) { DecodedInstruction dec_insn(insn); DCHECK(op_jty == kFloat || op_jty == kDouble) << op_jty; llvm::Value* src1_value; llvm::Value* src2_value; if (is_2addr) { src1_value = EmitLoadDalvikReg(dec_insn.vA, op_jty, kAccurate); src2_value = EmitLoadDalvikReg(dec_insn.vB, op_jty, kAccurate); } else { src1_value = EmitLoadDalvikReg(dec_insn.vB, op_jty, kAccurate); src2_value = EmitLoadDalvikReg(dec_insn.vC, op_jty, kAccurate); } llvm::Value* result_value = EmitFPArithmResultComputation(dex_pc, src1_value, src2_value, arithm); EmitStoreDalvikReg(dec_insn.vA, op_jty, kAccurate, result_value); irb_.CreateBr(GetNextBasicBlock(dex_pc)); } llvm::Value* MethodCompiler::EmitFPArithmResultComputation(uint32_t dex_pc, llvm::Value *lhs, llvm::Value *rhs, FPArithmKind arithm) { switch (arithm) { case kFPArithm_Add: return irb_.CreateFAdd(lhs, rhs); case kFPArithm_Sub: return irb_.CreateFSub(lhs, rhs); case kFPArithm_Mul: return irb_.CreateFMul(lhs, rhs); case kFPArithm_Div: return irb_.CreateFDiv(lhs, rhs); case kFPArithm_Rem: return irb_.CreateFRem(lhs, rhs); default: LOG(FATAL) << "Unknown floating-point arithmetic kind: " << arithm; return NULL; } } void MethodCompiler::EmitGuard_DivZeroException(uint32_t dex_pc, llvm::Value* denominator, JType op_jty) { DCHECK(op_jty == kInt || op_jty == kLong) << op_jty; llvm::Constant* zero = irb_.getJZero(op_jty); llvm::Value* equal_zero = irb_.CreateICmpEQ(denominator, zero); llvm::BasicBlock* block_exception = CreateBasicBlockWithDexPC(dex_pc, "div0"); llvm::BasicBlock* block_continue = CreateBasicBlockWithDexPC(dex_pc, "cont"); irb_.CreateCondBr(equal_zero, block_exception, block_continue, kUnlikely); irb_.SetInsertPoint(block_exception); EmitUpdateDexPC(dex_pc); irb_.CreateCall(irb_.GetRuntime(ThrowDivZeroException)); EmitBranchExceptionLandingPad(dex_pc); irb_.SetInsertPoint(block_continue); } void MethodCompiler::EmitGuard_NullPointerException(uint32_t dex_pc, llvm::Value* object) { llvm::Value* equal_null = irb_.CreateICmpEQ(object, irb_.getJNull()); llvm::BasicBlock* block_exception = CreateBasicBlockWithDexPC(dex_pc, "nullp"); llvm::BasicBlock* block_continue = CreateBasicBlockWithDexPC(dex_pc, "cont"); irb_.CreateCondBr(equal_null, block_exception, block_continue, kUnlikely); irb_.SetInsertPoint(block_exception); EmitUpdateDexPC(dex_pc); irb_.CreateCall(irb_.GetRuntime(ThrowNullPointerException), irb_.getInt32(dex_pc)); EmitBranchExceptionLandingPad(dex_pc); irb_.SetInsertPoint(block_continue); } llvm::Value* MethodCompiler::EmitLoadDexCacheAddr(MemberOffset offset) { llvm::Value* method_object_addr = EmitLoadMethodObjectAddr(); return irb_.LoadFromObjectOffset(method_object_addr, offset.Int32Value(), irb_.getJObjectTy(), kTBAAConstJObject); } llvm::Value* MethodCompiler:: EmitLoadDexCacheStaticStorageFieldAddr(uint32_t type_idx) { llvm::Value* static_storage_dex_cache_addr = EmitLoadDexCacheAddr(AbstractMethod::DexCacheInitializedStaticStorageOffset()); llvm::Value* type_idx_value = irb_.getPtrEquivInt(type_idx); return EmitArrayGEP(static_storage_dex_cache_addr, type_idx_value, kObject); } llvm::Value* MethodCompiler:: EmitLoadDexCacheResolvedTypeFieldAddr(uint32_t type_idx) { llvm::Value* resolved_type_dex_cache_addr = EmitLoadDexCacheAddr(AbstractMethod::DexCacheResolvedTypesOffset()); llvm::Value* type_idx_value = irb_.getPtrEquivInt(type_idx); return EmitArrayGEP(resolved_type_dex_cache_addr, type_idx_value, kObject); } llvm::Value* MethodCompiler:: EmitLoadDexCacheResolvedMethodFieldAddr(uint32_t method_idx) { llvm::Value* resolved_method_dex_cache_addr = EmitLoadDexCacheAddr(AbstractMethod::DexCacheResolvedMethodsOffset()); llvm::Value* method_idx_value = irb_.getPtrEquivInt(method_idx); return EmitArrayGEP(resolved_method_dex_cache_addr, method_idx_value, kObject); } llvm::Value* MethodCompiler:: EmitLoadDexCacheStringFieldAddr(uint32_t string_idx) { llvm::Value* string_dex_cache_addr = EmitLoadDexCacheAddr(AbstractMethod::DexCacheStringsOffset()); llvm::Value* string_idx_value = irb_.getPtrEquivInt(string_idx); return EmitArrayGEP(string_dex_cache_addr, string_idx_value, kObject); } CompiledMethod *MethodCompiler::Compile() { // TODO: Use high-level IR to do this // Compute method info ComputeMethodInfo(); // Code generation CreateFunction(); EmitPrologue(); EmitInstructions(); EmitPrologueLastBranch(); // Verify the generated bitcode VERIFY_LLVM_FUNCTION(*func_); cunit_->Materialize(); return new CompiledMethod(cunit_->GetInstructionSet(), cunit_->GetCompiledCode()); } llvm::Value* MethodCompiler::EmitLoadMethodObjectAddr() { return func_->arg_begin(); } void MethodCompiler::EmitBranchExceptionLandingPad(uint32_t dex_pc) { if (llvm::BasicBlock* lpad = GetLandingPadBasicBlock(dex_pc)) { irb_.CreateBr(lpad); } else { irb_.CreateBr(GetUnwindBasicBlock()); } } void MethodCompiler::EmitGuard_ExceptionLandingPad(uint32_t dex_pc, bool can_skip_unwind) { llvm::BasicBlock* lpad = GetLandingPadBasicBlock(dex_pc); const Instruction* insn = Instruction::At(code_item_->insns_ + dex_pc); if (lpad == NULL && can_skip_unwind && IsInstructionDirectToReturn(dex_pc + insn->SizeInCodeUnits())) { return; } llvm::Value* exception_pending = irb_.Runtime().EmitIsExceptionPending(); llvm::BasicBlock* block_cont = CreateBasicBlockWithDexPC(dex_pc, "cont"); if (lpad) { irb_.CreateCondBr(exception_pending, lpad, block_cont, kUnlikely); } else { irb_.CreateCondBr(exception_pending, GetUnwindBasicBlock(), block_cont, kUnlikely); } irb_.SetInsertPoint(block_cont); } void MethodCompiler::EmitGuard_GarbageCollectionSuspend() { // Loop suspend will be added by our llvm pass. if (!method_info_.has_invoke) { return; } irb_.Runtime().EmitTestSuspend(); } llvm::BasicBlock* MethodCompiler:: CreateBasicBlockWithDexPC(uint32_t dex_pc, const char* postfix) { std::string name; #if !defined(NDEBUG) if (postfix) { StringAppendF(&name, "B%04x.%s", dex_pc, postfix); } else { StringAppendF(&name, "B%04x", dex_pc); } #endif return llvm::BasicBlock::Create(*context_, name, func_); } llvm::BasicBlock* MethodCompiler::GetBasicBlock(uint32_t dex_pc) { DCHECK(dex_pc < code_item_->insns_size_in_code_units_); llvm::BasicBlock* basic_block = basic_blocks_[dex_pc]; if (!basic_block) { basic_block = CreateBasicBlockWithDexPC(dex_pc); basic_blocks_[dex_pc] = basic_block; } return basic_block; } llvm::BasicBlock* MethodCompiler::GetNextBasicBlock(uint32_t dex_pc) { const Instruction* insn = Instruction::At(code_item_->insns_ + dex_pc); return GetBasicBlock(dex_pc + insn->SizeInCodeUnits()); } int32_t MethodCompiler::GetTryItemOffset(uint32_t dex_pc) { // TODO: Since we are emitting the dex instructions in ascending order // w.r.t. address, we can cache the lastest try item offset so that we // don't have to do binary search for every query. int32_t min = 0; int32_t max = code_item_->tries_size_ - 1; while (min <= max) { int32_t mid = min + (max - min) / 2; const DexFile::TryItem* ti = DexFile::GetTryItems(*code_item_, mid); uint32_t start = ti->start_addr_; uint32_t end = start + ti->insn_count_; if (dex_pc < start) { max = mid - 1; } else if (dex_pc >= end) { min = mid + 1; } else { return mid; // found } } return -1; // not found } llvm::BasicBlock* MethodCompiler::GetLandingPadBasicBlock(uint32_t dex_pc) { // Find the try item for this address in this method int32_t ti_offset = GetTryItemOffset(dex_pc); if (ti_offset == -1) { return NULL; // No landing pad is available for this address. } // Check for the existing landing pad basic block DCHECK_GT(basic_block_landing_pads_.size(), static_cast(ti_offset)); llvm::BasicBlock* block_lpad = basic_block_landing_pads_[ti_offset]; if (block_lpad) { // We have generated landing pad for this try item already. Return the // same basic block. return block_lpad; } // Get try item from code item const DexFile::TryItem* ti = DexFile::GetTryItems(*code_item_, ti_offset); std::string lpadname; #if !defined(NDEBUG) StringAppendF(&lpadname, "lpad%d_%04x_to_%04x", ti_offset, ti->start_addr_, ti->handler_off_); #endif // Create landing pad basic block block_lpad = llvm::BasicBlock::Create(*context_, lpadname, func_); // Change IRBuilder insert point llvm::IRBuilderBase::InsertPoint irb_ip_original = irb_.saveIP(); irb_.SetInsertPoint(block_lpad); // Find catch block with matching type llvm::Value* method_object_addr = EmitLoadMethodObjectAddr(); llvm::Value* ti_offset_value = irb_.getInt32(ti_offset); llvm::Value* catch_handler_index_value = irb_.CreateCall2(irb_.GetRuntime(FindCatchBlock), method_object_addr, ti_offset_value); // Switch instruction (Go to unwind basic block by default) llvm::SwitchInst* sw = irb_.CreateSwitch(catch_handler_index_value, GetUnwindBasicBlock()); // Cases with matched catch block CatchHandlerIterator iter(*code_item_, ti->start_addr_); for (uint32_t c = 0; iter.HasNext(); iter.Next(), ++c) { sw->addCase(irb_.getInt32(c), GetBasicBlock(iter.GetHandlerAddress())); } // Restore the orignal insert point for IRBuilder irb_.restoreIP(irb_ip_original); // Cache this landing pad DCHECK_GT(basic_block_landing_pads_.size(), static_cast(ti_offset)); basic_block_landing_pads_[ti_offset] = block_lpad; return block_lpad; } llvm::BasicBlock* MethodCompiler::GetUnwindBasicBlock() { // Check the existing unwinding baisc block block if (basic_block_unwind_ != NULL) { return basic_block_unwind_; } // Create new basic block for unwinding basic_block_unwind_ = llvm::BasicBlock::Create(*context_, "exception_unwind", func_); // Change IRBuilder insert point llvm::IRBuilderBase::InsertPoint irb_ip_original = irb_.saveIP(); irb_.SetInsertPoint(basic_block_unwind_); // Pop the shadow frame EmitPopShadowFrame(); // Emit the code to return default value (zero) for the given return type. char ret_shorty = oat_compilation_unit_->GetShorty()[0]; if (ret_shorty == 'V') { irb_.CreateRetVoid(); } else { irb_.CreateRet(irb_.getJZero(ret_shorty)); } // Restore the orignal insert point for IRBuilder irb_.restoreIP(irb_ip_original); return basic_block_unwind_; } llvm::Value* MethodCompiler::AllocDalvikReg(RegCategory cat, const std::string& name) { // Get reg_type and reg_name from DalvikReg llvm::Type* reg_type = DalvikReg::GetRegCategoryEquivSizeTy(irb_, cat); std::string reg_name; #if !defined(NDEBUG) StringAppendF(®_name, "%c%s", DalvikReg::GetRegCategoryNamePrefix(cat), name.c_str()); #endif // Save current IR builder insert point llvm::IRBuilderBase::InsertPoint irb_ip_original = irb_.saveIP(); irb_.SetInsertPoint(basic_block_alloca_); // Alloca llvm::Value* reg_addr = irb_.CreateAlloca(reg_type, 0, reg_name); // Restore IRBuilder insert point irb_.restoreIP(irb_ip_original); DCHECK_NE(reg_addr, static_cast(NULL)); return reg_addr; } llvm::Value* MethodCompiler::GetShadowFrameEntry(uint32_t reg_idx) { if (reg_to_shadow_frame_index_[reg_idx] == -1) { // This register dosen't need ShadowFrame entry return NULL; } if (!method_info_.need_shadow_frame_entry) { return NULL; } std::string reg_name; #if !defined(NDEBUG) StringAppendF(®_name, "s%u", reg_idx); #endif // Save current IR builder insert point llvm::IRBuilderBase::InsertPoint irb_ip_original = irb_.saveIP(); irb_.SetInsertPoint(basic_block_shadow_frame_); llvm::Value* gep_index[] = { irb_.getInt32(0), // No pointer displacement irb_.getInt32(1), // SIRT irb_.getInt32(reg_to_shadow_frame_index_[reg_idx]) // Pointer field }; llvm::Value* reg_addr = irb_.CreateGEP(shadow_frame_, gep_index, reg_name); // Restore IRBuilder insert point irb_.restoreIP(irb_ip_original); DCHECK_NE(reg_addr, static_cast(NULL)); return reg_addr; } void MethodCompiler::EmitPushShadowFrame(bool is_inline) { if (!method_info_.need_shadow_frame) { return; } DCHECK(shadow_frame_ != NULL); DCHECK(old_shadow_frame_ != NULL); // Get method object llvm::Value* method_object_addr = EmitLoadMethodObjectAddr(); // Push the shadow frame llvm::Value* shadow_frame_upcast = irb_.CreateConstGEP2_32(shadow_frame_, 0, 0); llvm::Value* result; if (is_inline) { result = irb_.Runtime().EmitPushShadowFrame(shadow_frame_upcast, method_object_addr, shadow_frame_size_); } else { DCHECK(shadow_frame_size_ == 0); result = irb_.Runtime().EmitPushShadowFrameNoInline(shadow_frame_upcast, method_object_addr, shadow_frame_size_); } irb_.CreateStore(result, old_shadow_frame_, kTBAARegister); } void MethodCompiler::EmitPopShadowFrame() { if (!method_info_.need_shadow_frame) { return; } DCHECK(old_shadow_frame_ != NULL); if (method_info_.lazy_push_shadow_frame) { llvm::BasicBlock* bb_pop = llvm::BasicBlock::Create(*context_, "pop", func_); llvm::BasicBlock* bb_cont = llvm::BasicBlock::Create(*context_, "cont", func_); llvm::Value* need_pop = irb_.CreateLoad(already_pushed_shadow_frame_, kTBAARegister); irb_.CreateCondBr(need_pop, bb_pop, bb_cont, kUnlikely); irb_.SetInsertPoint(bb_pop); irb_.Runtime().EmitPopShadowFrame(irb_.CreateLoad(old_shadow_frame_, kTBAARegister)); irb_.CreateBr(bb_cont); irb_.SetInsertPoint(bb_cont); } else { irb_.Runtime().EmitPopShadowFrame(irb_.CreateLoad(old_shadow_frame_, kTBAARegister)); } } void MethodCompiler::EmitUpdateDexPC(uint32_t dex_pc) { if (!method_info_.need_shadow_frame) { return; } irb_.StoreToObjectOffset(shadow_frame_, ShadowFrame::DexPCOffset(), irb_.getInt32(dex_pc), kTBAAShadowFrame); // Lazy pushing shadow frame if (method_info_.lazy_push_shadow_frame) { llvm::BasicBlock* bb_push = CreateBasicBlockWithDexPC(dex_pc, "push"); llvm::BasicBlock* bb_cont = CreateBasicBlockWithDexPC(dex_pc, "cont"); llvm::Value* no_need_push = irb_.CreateLoad(already_pushed_shadow_frame_, kTBAARegister); irb_.CreateCondBr(no_need_push, bb_cont, bb_push, kLikely); irb_.SetInsertPoint(bb_push); EmitPushShadowFrame(false); irb_.CreateStore(irb_.getTrue(), already_pushed_shadow_frame_, kTBAARegister); irb_.CreateBr(bb_cont); irb_.SetInsertPoint(bb_cont); } } llvm::Value* MethodCompiler::EmitLoadDalvikReg(uint32_t reg_idx, JType jty, JTypeSpace space) { return regs_[reg_idx]->GetValue(jty, space); } llvm::Value* MethodCompiler::EmitLoadDalvikReg(uint32_t reg_idx, char shorty, JTypeSpace space) { return EmitLoadDalvikReg(reg_idx, GetJTypeFromShorty(shorty), space); } void MethodCompiler::EmitStoreDalvikReg(uint32_t reg_idx, JType jty, JTypeSpace space, llvm::Value* new_value) { regs_[reg_idx]->SetValue(jty, space, new_value); if (jty == kObject && shadow_frame_entries_[reg_idx] != NULL) { irb_.CreateStore(new_value, shadow_frame_entries_[reg_idx], kTBAAShadowFrame); } } void MethodCompiler::EmitStoreDalvikReg(uint32_t reg_idx, char shorty, JTypeSpace space, llvm::Value* new_value) { EmitStoreDalvikReg(reg_idx, GetJTypeFromShorty(shorty), space, new_value); } llvm::Value* MethodCompiler::EmitLoadDalvikRetValReg(JType jty, JTypeSpace space) { return retval_reg_->GetValue(jty, space); } llvm::Value* MethodCompiler::EmitLoadDalvikRetValReg(char shorty, JTypeSpace space) { return EmitLoadDalvikRetValReg(GetJTypeFromShorty(shorty), space); } void MethodCompiler::EmitStoreDalvikRetValReg(JType jty, JTypeSpace space, llvm::Value* new_value) { retval_reg_->SetValue(jty, space, new_value); } void MethodCompiler::EmitStoreDalvikRetValReg(char shorty, JTypeSpace space, llvm::Value* new_value) { EmitStoreDalvikRetValReg(GetJTypeFromShorty(shorty), space, new_value); } // TODO: Use high-level IR to do this bool MethodCompiler::EmitInlineJavaIntrinsic(const std::string& callee_method_name, const std::vector& args, llvm::BasicBlock* after_invoke) { if (callee_method_name == "char java.lang.String.charAt(int)") { return EmitInlinedStringCharAt(args, after_invoke); } if (callee_method_name == "int java.lang.String.length()") { return EmitInlinedStringLength(args, after_invoke); } if (callee_method_name == "int java.lang.String.indexOf(int, int)") { return EmitInlinedStringIndexOf(args, after_invoke, false /* base 0 */); } if (callee_method_name == "int java.lang.String.indexOf(int)") { return EmitInlinedStringIndexOf(args, after_invoke, true /* base 0 */); } if (callee_method_name == "int java.lang.String.compareTo(java.lang.String)") { return EmitInlinedStringCompareTo(args, after_invoke); } return true; } bool MethodCompiler::EmitInlinedStringCharAt(const std::vector& args, llvm::BasicBlock* after_invoke) { DCHECK_EQ(args.size(), 3U) << "char java.lang.String.charAt(int) has 3 args: method, this, char_index"; llvm::Value* this_object = args[1]; llvm::Value* char_index = args[2]; llvm::BasicBlock* block_retry = llvm::BasicBlock::Create(*context_, "CharAtRetry", func_); llvm::BasicBlock* block_cont = llvm::BasicBlock::Create(*context_, "CharAtCont", func_); llvm::Value* string_count = irb_.LoadFromObjectOffset(this_object, String::CountOffset().Int32Value(), irb_.getJIntTy(), kTBAAConstJObject); // Two's complement, so we can use only one "less than" to check "in bounds" llvm::Value* in_bounds = irb_.CreateICmpULT(char_index, string_count); irb_.CreateCondBr(in_bounds, block_cont, block_retry, kLikely); irb_.SetInsertPoint(block_cont); llvm::Value* string_offset = irb_.LoadFromObjectOffset(this_object, String::OffsetOffset().Int32Value(), irb_.getJIntTy(), kTBAAConstJObject); llvm::Value* string_value = irb_.LoadFromObjectOffset(this_object, String::ValueOffset().Int32Value(), irb_.getJObjectTy(), kTBAAConstJObject); // index_value = string.offset + char_index llvm::Value* index_value = irb_.CreateAdd(string_offset, char_index); // array_elem_value = string.value[index_value] llvm::Value* array_elem_addr = EmitArrayGEP(string_value, index_value, kChar); llvm::Value* array_elem_value = irb_.CreateLoad(array_elem_addr, kTBAAHeapArray, kChar); EmitStoreDalvikRetValReg(kChar, kArray, array_elem_value); irb_.CreateBr(after_invoke); irb_.SetInsertPoint(block_retry); return true; } bool MethodCompiler::EmitInlinedStringLength(const std::vector& args, llvm::BasicBlock* after_invoke) { DCHECK_EQ(args.size(), 2U) << "int java.lang.String.length() has 2 args: method, this"; llvm::Value* this_object = args[1]; llvm::Value* string_count = irb_.LoadFromObjectOffset(this_object, String::CountOffset().Int32Value(), irb_.getJIntTy(), kTBAAConstJObject); EmitStoreDalvikRetValReg(kInt, kAccurate, string_count); irb_.CreateBr(after_invoke); return false; } bool MethodCompiler::EmitInlinedStringIndexOf(const std::vector& args, llvm::BasicBlock* after_invoke, bool zero_based) { // TODO: Don't generate target specific bitcode, using intrinsic to delay to codegen. if (compiler_->GetInstructionSet() == kArm || compiler_->GetInstructionSet() == kThumb2) { DCHECK_EQ(args.size(), (zero_based ? 3U : 4U)) << "int java.lang.String.indexOf(int, int = 0) has 3~4 args: method, this, char, start"; llvm::Value* this_object = args[1]; llvm::Value* char_target = args[2]; llvm::Value* start_index = (zero_based ? irb_.getJInt(0) : args[3]); llvm::BasicBlock* block_retry = llvm::BasicBlock::Create(*context_, "IndexOfRetry", func_); llvm::BasicBlock* block_cont = llvm::BasicBlock::Create(*context_, "IndexOfCont", func_); llvm::Value* slowpath = irb_.CreateICmpSGT(char_target, irb_.getJInt(0xFFFF)); irb_.CreateCondBr(slowpath, block_retry, block_cont, kUnlikely); irb_.SetInsertPoint(block_cont); llvm::Type* args_type[] = { irb_.getJObjectTy(), irb_.getJIntTy(), irb_.getJIntTy() }; llvm::FunctionType* func_ty = llvm::FunctionType::get(irb_.getJIntTy(), args_type, false); llvm::Value* func = irb_.Runtime().EmitLoadFromThreadOffset(ENTRYPOINT_OFFSET(pIndexOf), func_ty->getPointerTo(), kTBAAConstJObject); llvm::Value* result = irb_.CreateCall3(func, this_object, char_target, start_index); EmitStoreDalvikRetValReg(kInt, kAccurate, result); irb_.CreateBr(after_invoke); irb_.SetInsertPoint(block_retry); } return true; } bool MethodCompiler::EmitInlinedStringCompareTo(const std::vector& args, llvm::BasicBlock* after_invoke) { // TODO: Don't generate target specific bitcode, using intrinsic to delay to codegen. if (compiler_->GetInstructionSet() == kArm || compiler_->GetInstructionSet() == kThumb2) { DCHECK_EQ(args.size(), 3U) << "int java.lang.String.compareTo(java.lang.String) has 3 args: method, this, cmpto"; llvm::Value* this_object = args[1]; llvm::Value* cmp_object = args[2]; llvm::BasicBlock* block_retry = llvm::BasicBlock::Create(*context_, "CompareToRetry", func_); llvm::BasicBlock* block_cont = llvm::BasicBlock::Create(*context_, "CompareToCont", func_); llvm::Value* is_null = irb_.CreateICmpEQ(cmp_object, irb_.getJNull()); irb_.CreateCondBr(is_null, block_retry, block_cont, kUnlikely); irb_.SetInsertPoint(block_cont); llvm::Type* args_type[] = { irb_.getJObjectTy(), irb_.getJObjectTy() }; llvm::FunctionType* func_ty = llvm::FunctionType::get(irb_.getJIntTy(), args_type, false); llvm::Value* func = irb_.Runtime().EmitLoadFromThreadOffset(ENTRYPOINT_OFFSET(pStringCompareTo), func_ty->getPointerTo(), kTBAAConstJObject); llvm::Value* result = irb_.CreateCall2(func, this_object, cmp_object); EmitStoreDalvikRetValReg(kInt, kAccurate, result); irb_.CreateBr(after_invoke); irb_.SetInsertPoint(block_retry); } return true; } bool MethodCompiler::IsInstructionDirectToReturn(uint32_t dex_pc) { for (int i = 0; i < 8; ++i) { // Trace at most 8 instructions. if (dex_pc >= code_item_->insns_size_in_code_units_) { return false; } const Instruction* insn = Instruction::At(code_item_->insns_ + dex_pc); if (insn->IsReturn()) { return true; } // Is throw, switch, invoke or conditional branch. if (insn->IsThrow() || insn->IsSwitch() || insn->IsInvoke() || (insn->IsBranch() && !insn->IsUnconditional())) { return false; } switch (insn->Opcode()) { default: dex_pc += insn->SizeInCodeUnits(); break; // This instruction will remove the exception. Consider as a side effect. case Instruction::MOVE_EXCEPTION: return false; break; case Instruction::GOTO: case Instruction::GOTO_16: case Instruction::GOTO_32: { DecodedInstruction dec_insn(insn); int32_t branch_offset = dec_insn.vA; dex_pc += branch_offset; } break; } } return false; } // TODO: Use high-level IR to do this void MethodCompiler::ComputeMethodInfo() { // If this method is static, we set the "this" register index to -1. So we don't worry about this // method is static or not in the following comparison. int64_t this_reg_idx = (oat_compilation_unit_->IsStatic()) ? (-1) : (code_item_->registers_size_ - code_item_->ins_size_); bool has_invoke = false; bool may_have_loop = false; bool may_throw_exception = false; bool assume_this_non_null = false; std::vector& set_to_another_object = method_info_.set_to_another_object; set_to_another_object.resize(code_item_->registers_size_, false); const Instruction* insn; for (uint32_t dex_pc = 0; dex_pc < code_item_->insns_size_in_code_units_; dex_pc += insn->SizeInCodeUnits()) { insn = Instruction::At(code_item_->insns_ + dex_pc); DecodedInstruction dec_insn(insn); switch (insn->Opcode()) { case Instruction::NOP: break; case Instruction::MOVE: case Instruction::MOVE_FROM16: case Instruction::MOVE_16: case Instruction::MOVE_WIDE: case Instruction::MOVE_WIDE_FROM16: case Instruction::MOVE_WIDE_16: case Instruction::MOVE_RESULT: case Instruction::MOVE_RESULT_WIDE: break; case Instruction::MOVE_OBJECT: case Instruction::MOVE_OBJECT_FROM16: case Instruction::MOVE_OBJECT_16: case Instruction::MOVE_RESULT_OBJECT: case Instruction::MOVE_EXCEPTION: set_to_another_object[dec_insn.vA] = true; break; case Instruction::RETURN_VOID: case Instruction::RETURN: case Instruction::RETURN_WIDE: case Instruction::RETURN_OBJECT: break; case Instruction::CONST_4: case Instruction::CONST_16: case Instruction::CONST: case Instruction::CONST_HIGH16: set_to_another_object[dec_insn.vA] = true; break; case Instruction::CONST_WIDE_16: case Instruction::CONST_WIDE_32: case Instruction::CONST_WIDE: case Instruction::CONST_WIDE_HIGH16: break; case Instruction::CONST_STRING: case Instruction::CONST_STRING_JUMBO: // TODO: Will the ResolveString throw exception? if (!compiler_->CanAssumeStringIsPresentInDexCache(*dex_file_, dec_insn.vB)) { may_throw_exception = true; } set_to_another_object[dec_insn.vA] = true; break; case Instruction::CONST_CLASS: may_throw_exception = true; set_to_another_object[dec_insn.vA] = true; break; case Instruction::MONITOR_ENTER: case Instruction::MONITOR_EXIT: case Instruction::CHECK_CAST: may_throw_exception = true; break; case Instruction::ARRAY_LENGTH: may_throw_exception = true; break; case Instruction::INSTANCE_OF: case Instruction::NEW_INSTANCE: case Instruction::NEW_ARRAY: may_throw_exception = true; set_to_another_object[dec_insn.vA] = true; break; case Instruction::FILLED_NEW_ARRAY: case Instruction::FILLED_NEW_ARRAY_RANGE: case Instruction::FILL_ARRAY_DATA: case Instruction::THROW: may_throw_exception = true; break; case Instruction::GOTO: case Instruction::GOTO_16: case Instruction::GOTO_32: { int32_t branch_offset = dec_insn.vA; if (branch_offset <= 0 && !IsInstructionDirectToReturn(dex_pc + branch_offset)) { may_have_loop = true; } } break; case Instruction::PACKED_SWITCH: case Instruction::SPARSE_SWITCH: case Instruction::CMPL_FLOAT: case Instruction::CMPG_FLOAT: case Instruction::CMPL_DOUBLE: case Instruction::CMPG_DOUBLE: case Instruction::CMP_LONG: break; case Instruction::IF_EQ: case Instruction::IF_NE: case Instruction::IF_LT: case Instruction::IF_GE: case Instruction::IF_GT: case Instruction::IF_LE: { int32_t branch_offset = dec_insn.vC; if (branch_offset <= 0 && !IsInstructionDirectToReturn(dex_pc + branch_offset)) { may_have_loop = true; } } break; case Instruction::IF_EQZ: case Instruction::IF_NEZ: case Instruction::IF_LTZ: case Instruction::IF_GEZ: case Instruction::IF_GTZ: case Instruction::IF_LEZ: { int32_t branch_offset = dec_insn.vB; if (branch_offset <= 0 && !IsInstructionDirectToReturn(dex_pc + branch_offset)) { may_have_loop = true; } } break; case Instruction::AGET: case Instruction::AGET_WIDE: case Instruction::AGET_OBJECT: case Instruction::AGET_BOOLEAN: case Instruction::AGET_BYTE: case Instruction::AGET_CHAR: case Instruction::AGET_SHORT: may_throw_exception = true; if (insn->Opcode() == Instruction::AGET_OBJECT) { set_to_another_object[dec_insn.vA] = true; } break; case Instruction::APUT: case Instruction::APUT_WIDE: case Instruction::APUT_OBJECT: case Instruction::APUT_BOOLEAN: case Instruction::APUT_BYTE: case Instruction::APUT_CHAR: case Instruction::APUT_SHORT: may_throw_exception = true; break; case Instruction::IGET: case Instruction::IGET_WIDE: case Instruction::IGET_OBJECT: case Instruction::IGET_BOOLEAN: case Instruction::IGET_BYTE: case Instruction::IGET_CHAR: case Instruction::IGET_SHORT: { if (insn->Opcode() == Instruction::IGET_OBJECT) { set_to_another_object[dec_insn.vA] = true; } uint32_t reg_idx = dec_insn.vB; uint32_t field_idx = dec_insn.vC; int field_offset; bool is_volatile; bool is_fast_path = compiler_->ComputeInstanceFieldInfo( field_idx, oat_compilation_unit_, field_offset, is_volatile, false); if (!is_fast_path) { may_throw_exception = true; } else { // Fast-path, may throw NullPointerException if (reg_idx == this_reg_idx) { // We assume "this" will not be null at first. assume_this_non_null = true; } else { may_throw_exception = true; } } } break; case Instruction::IPUT: case Instruction::IPUT_WIDE: case Instruction::IPUT_OBJECT: case Instruction::IPUT_BOOLEAN: case Instruction::IPUT_BYTE: case Instruction::IPUT_CHAR: case Instruction::IPUT_SHORT: { uint32_t reg_idx = dec_insn.vB; uint32_t field_idx = dec_insn.vC; int field_offset; bool is_volatile; bool is_fast_path = compiler_->ComputeInstanceFieldInfo( field_idx, oat_compilation_unit_, field_offset, is_volatile, true); if (!is_fast_path) { may_throw_exception = true; } else { // Fast-path, may throw NullPointerException if (reg_idx == this_reg_idx) { // We assume "this" will not be null at first. assume_this_non_null = true; } else { may_throw_exception = true; } } } break; case Instruction::SGET: case Instruction::SGET_WIDE: case Instruction::SGET_OBJECT: case Instruction::SGET_BOOLEAN: case Instruction::SGET_BYTE: case Instruction::SGET_CHAR: case Instruction::SGET_SHORT: { if (insn->Opcode() == Instruction::AGET_OBJECT) { set_to_another_object[dec_insn.vA] = true; } uint32_t field_idx = dec_insn.vB; int field_offset; int ssb_index; bool is_referrers_class; bool is_volatile; bool is_fast_path = compiler_->ComputeStaticFieldInfo( field_idx, oat_compilation_unit_, field_offset, ssb_index, is_referrers_class, is_volatile, false); if (!is_fast_path || !is_referrers_class) { may_throw_exception = true; } } break; case Instruction::SPUT: case Instruction::SPUT_WIDE: case Instruction::SPUT_OBJECT: case Instruction::SPUT_BOOLEAN: case Instruction::SPUT_BYTE: case Instruction::SPUT_CHAR: case Instruction::SPUT_SHORT: { uint32_t field_idx = dec_insn.vB; int field_offset; int ssb_index; bool is_referrers_class; bool is_volatile; bool is_fast_path = compiler_->ComputeStaticFieldInfo( field_idx, oat_compilation_unit_, field_offset, ssb_index, is_referrers_class, is_volatile, true); if (!is_fast_path || !is_referrers_class) { may_throw_exception = true; } } break; case Instruction::INVOKE_VIRTUAL: case Instruction::INVOKE_SUPER: case Instruction::INVOKE_DIRECT: case Instruction::INVOKE_STATIC: case Instruction::INVOKE_INTERFACE: case Instruction::INVOKE_VIRTUAL_RANGE: case Instruction::INVOKE_SUPER_RANGE: case Instruction::INVOKE_DIRECT_RANGE: case Instruction::INVOKE_STATIC_RANGE: case Instruction::INVOKE_INTERFACE_RANGE: has_invoke = true; may_throw_exception = true; break; case Instruction::NEG_INT: case Instruction::NOT_INT: case Instruction::NEG_LONG: case Instruction::NOT_LONG: case Instruction::NEG_FLOAT: case Instruction::NEG_DOUBLE: case Instruction::INT_TO_LONG: case Instruction::INT_TO_FLOAT: case Instruction::INT_TO_DOUBLE: case Instruction::LONG_TO_INT: case Instruction::LONG_TO_FLOAT: case Instruction::LONG_TO_DOUBLE: case Instruction::FLOAT_TO_INT: case Instruction::FLOAT_TO_LONG: case Instruction::FLOAT_TO_DOUBLE: case Instruction::DOUBLE_TO_INT: case Instruction::DOUBLE_TO_LONG: case Instruction::DOUBLE_TO_FLOAT: case Instruction::INT_TO_BYTE: case Instruction::INT_TO_CHAR: case Instruction::INT_TO_SHORT: case Instruction::ADD_INT: case Instruction::SUB_INT: case Instruction::MUL_INT: case Instruction::AND_INT: case Instruction::OR_INT: case Instruction::XOR_INT: case Instruction::SHL_INT: case Instruction::SHR_INT: case Instruction::USHR_INT: case Instruction::ADD_LONG: case Instruction::SUB_LONG: case Instruction::MUL_LONG: case Instruction::AND_LONG: case Instruction::OR_LONG: case Instruction::XOR_LONG: case Instruction::SHL_LONG: case Instruction::SHR_LONG: case Instruction::USHR_LONG: case Instruction::ADD_INT_2ADDR: case Instruction::SUB_INT_2ADDR: case Instruction::MUL_INT_2ADDR: case Instruction::AND_INT_2ADDR: case Instruction::OR_INT_2ADDR: case Instruction::XOR_INT_2ADDR: case Instruction::SHL_INT_2ADDR: case Instruction::SHR_INT_2ADDR: case Instruction::USHR_INT_2ADDR: case Instruction::ADD_LONG_2ADDR: case Instruction::SUB_LONG_2ADDR: case Instruction::MUL_LONG_2ADDR: case Instruction::AND_LONG_2ADDR: case Instruction::OR_LONG_2ADDR: case Instruction::XOR_LONG_2ADDR: case Instruction::SHL_LONG_2ADDR: case Instruction::SHR_LONG_2ADDR: case Instruction::USHR_LONG_2ADDR: break; case Instruction::DIV_INT: case Instruction::REM_INT: case Instruction::DIV_LONG: case Instruction::REM_LONG: case Instruction::DIV_INT_2ADDR: case Instruction::REM_INT_2ADDR: case Instruction::DIV_LONG_2ADDR: case Instruction::REM_LONG_2ADDR: may_throw_exception = true; break; case Instruction::ADD_FLOAT: case Instruction::SUB_FLOAT: case Instruction::MUL_FLOAT: case Instruction::DIV_FLOAT: case Instruction::REM_FLOAT: case Instruction::ADD_DOUBLE: case Instruction::SUB_DOUBLE: case Instruction::MUL_DOUBLE: case Instruction::DIV_DOUBLE: case Instruction::REM_DOUBLE: case Instruction::ADD_FLOAT_2ADDR: case Instruction::SUB_FLOAT_2ADDR: case Instruction::MUL_FLOAT_2ADDR: case Instruction::DIV_FLOAT_2ADDR: case Instruction::REM_FLOAT_2ADDR: case Instruction::ADD_DOUBLE_2ADDR: case Instruction::SUB_DOUBLE_2ADDR: case Instruction::MUL_DOUBLE_2ADDR: case Instruction::DIV_DOUBLE_2ADDR: case Instruction::REM_DOUBLE_2ADDR: break; case Instruction::ADD_INT_LIT16: case Instruction::ADD_INT_LIT8: case Instruction::RSUB_INT: case Instruction::RSUB_INT_LIT8: case Instruction::MUL_INT_LIT16: case Instruction::MUL_INT_LIT8: case Instruction::AND_INT_LIT16: case Instruction::AND_INT_LIT8: case Instruction::OR_INT_LIT16: case Instruction::OR_INT_LIT8: case Instruction::XOR_INT_LIT16: case Instruction::XOR_INT_LIT8: case Instruction::SHL_INT_LIT8: case Instruction::SHR_INT_LIT8: case Instruction::USHR_INT_LIT8: break; case Instruction::DIV_INT_LIT16: case Instruction::DIV_INT_LIT8: case Instruction::REM_INT_LIT16: case Instruction::REM_INT_LIT8: if (dec_insn.vC == 0) { may_throw_exception = true; } break; case Instruction::UNUSED_3E: case Instruction::UNUSED_3F: case Instruction::UNUSED_40: case Instruction::UNUSED_41: case Instruction::UNUSED_42: case Instruction::UNUSED_43: case Instruction::UNUSED_73: case Instruction::UNUSED_79: case Instruction::UNUSED_7A: case Instruction::UNUSED_E3: case Instruction::UNUSED_E4: case Instruction::UNUSED_E5: case Instruction::UNUSED_E6: case Instruction::UNUSED_E7: case Instruction::UNUSED_E8: case Instruction::UNUSED_E9: case Instruction::UNUSED_EA: case Instruction::UNUSED_EB: case Instruction::UNUSED_EC: case Instruction::UNUSED_ED: case Instruction::UNUSED_EE: case Instruction::UNUSED_EF: case Instruction::UNUSED_F0: case Instruction::UNUSED_F1: case Instruction::UNUSED_F2: case Instruction::UNUSED_F3: case Instruction::UNUSED_F4: case Instruction::UNUSED_F5: case Instruction::UNUSED_F6: case Instruction::UNUSED_F7: case Instruction::UNUSED_F8: case Instruction::UNUSED_F9: case Instruction::UNUSED_FA: case Instruction::UNUSED_FB: case Instruction::UNUSED_FC: case Instruction::UNUSED_FD: case Instruction::UNUSED_FE: case Instruction::UNUSED_FF: LOG(FATAL) << "Dex file contains UNUSED bytecode: " << insn->Opcode(); break; } } method_info_.this_reg_idx = this_reg_idx; // According to the statistics, there are few methods that modify the "this" pointer. So this is a // simple way to avoid data flow analysis. After we have a high-level IR before IRBuilder, we // should remove this trick. method_info_.this_will_not_be_null = (oat_compilation_unit_->IsStatic()) ? (true) : (!set_to_another_object[this_reg_idx]); method_info_.has_invoke = has_invoke; // If this method has loop or invoke instruction, it may suspend. Thus we need a shadow frame entry // for GC. method_info_.need_shadow_frame_entry = has_invoke || may_have_loop; // If this method may throw an exception, we need a shadow frame for stack trace (dexpc). method_info_.need_shadow_frame = method_info_.need_shadow_frame_entry || may_throw_exception || (assume_this_non_null && !method_info_.this_will_not_be_null); // If can only throw exception, but can't suspend check (no loop, no invoke), // then there is no shadow frame entry. Only Shadow frame is needed. method_info_.lazy_push_shadow_frame = method_info_.need_shadow_frame && !method_info_.need_shadow_frame_entry; } } // namespace compiler_llvm } // namespace art