// Copyright 2011 Google Inc. All Rights Reserved. #include #include #include #include #include "class_linker.h" #include "class_loader.h" #include "compiler.h" #include "image_writer.h" #include "oat_writer.h" #include "runtime.h" #include "stringpiece.h" namespace art { static void usage() { fprintf(stderr, "Usage: dex2oat [options]...\n" "\n"); fprintf(stderr, " --dex-file=: specifies a .dex file to compile. At least one .dex\n" " file must be specified. \n" " Example: --dex-file=/system/framework/core.jar\n" "\n"); fprintf(stderr, " --image=: specifies the required output image filename.\n" " Example: --image=/data/art-cache/boot.art\n" "\n"); // TODO: remove this by inferring from --image fprintf(stderr, " --oat=: specifies the required oat filename.\n" " Example: --image=/data/art-cache/boot.oat\n" "\n"); fprintf(stderr, " --base=: specifies the base address when creating a boot image.\n" " Example: --base=0x50000000\n" "\n"); fprintf(stderr, " --boot-image=: provide the image file for the boot class path.\n" " Example: --boot-image=/data/art-cache/boot.art\n" "\n"); fprintf(stderr, " --method may be used to limit compilation to a subset of methods.\n" " Example: --method=Ljava/lang/Object;()V\n" "\n"); fprintf(stderr, " --host-prefix may be used to translate host paths to target paths during\n" " cross compilation.\n" " Example: --host-prefix=out/target/product/crespo\n" "\n"); fprintf(stderr, " -Xms may be used to specify an initial heap size for the runtime used to\n" " run dex2oat\n" " Example: -Xms256m\n" "\n"); fprintf(stderr, " -Xmx may be used to specify a maximum heap size for the runtime used to\n" " run dex2oat\n" " Example: -Xmx256m\n" "\n"); exit(EXIT_FAILURE); } int dex2oat(int argc, char** argv) { // Skip over argv[0]. argv++; argc--; if (argc == 0) { fprintf(stderr, "no arguments specified\n"); usage(); } std::vector dex_filenames; std::vector method_names; std::string oat_filename; const char* image_filename = NULL; std::string boot_image_option; uintptr_t image_base = 0; std::string host_prefix; const char* Xms = NULL; const char* Xmx = NULL; const char* verbose = NULL; for (int i = 0; i < argc; i++) { const StringPiece option(argv[i]); if (false) { LOG(INFO) << "dex2oat: option[" << i << "]=" << argv[i]; } if (option.starts_with("--dex-file=")) { dex_filenames.push_back(option.substr(strlen("--dex-file=")).data()); } else if (option.starts_with("--method=")) { method_names.push_back(option.substr(strlen("--method=")).data()); } else if (option.starts_with("--oat=")) { oat_filename = option.substr(strlen("--oat=")).data(); } else if (option.starts_with("--image=")) { image_filename = option.substr(strlen("--image=")).data(); } else if (option.starts_with("--base=")) { const char* image_base_str = option.substr(strlen("--base=")).data(); char* end; image_base = strtoul(image_base_str, &end, 16); if (end == image_base_str || *end != '\0') { fprintf(stderr, "Failed to parse hexadecimal value for option %s\n", option.data()); usage(); } } else if (option.starts_with("--boot-image=")) { const char* boot_image_filename = option.substr(strlen("--boot-image=")).data(); boot_image_option.clear(); boot_image_option += "-Ximage:"; boot_image_option += boot_image_filename; } else if (option.starts_with("--host-prefix=")) { host_prefix = option.substr(strlen("--host-prefix=")).data(); } else if (option.starts_with("-Xms")) { Xms = option.data(); } else if (option.starts_with("-Xmx")) { Xmx = option.data(); } else if (option.starts_with("-verbose:")) { verbose = option.data(); } else { fprintf(stderr, "unknown argument %s\n", option.data()); usage(); } } if (oat_filename == NULL) { fprintf(stderr, "--oat file name not specified\n"); return EXIT_FAILURE; } if (image_filename == NULL && boot_image_option.empty()) { fprintf(stderr, "Either --image or --boot-image must be specified\n"); return EXIT_FAILURE; } if (dex_filenames.empty()) { fprintf(stderr, "no --dex-file values specified\n"); return EXIT_FAILURE; } if (boot_image_option.empty()) { if (image_base == 0) { fprintf(stderr, "non-zero --base not specified\n"); return EXIT_FAILURE; } } Runtime::Options options; options.push_back(std::make_pair("compiler", reinterpret_cast(NULL))); std::string boot_class_path_string; if (boot_image_option.empty()) { boot_class_path_string += "-Xbootclasspath:"; for (size_t i = 0; i < dex_filenames.size()-1; i++) { boot_class_path_string += dex_filenames[i]; boot_class_path_string += ":"; } boot_class_path_string += dex_filenames[dex_filenames.size()-1]; options.push_back(std::make_pair(boot_class_path_string.c_str(), reinterpret_cast(NULL))); } else { options.push_back(std::make_pair(boot_image_option.c_str(), reinterpret_cast(NULL))); } if (Xms != NULL) { options.push_back(std::make_pair(Xms, reinterpret_cast(NULL))); } if (Xmx != NULL) { options.push_back(std::make_pair(Xmx, reinterpret_cast(NULL))); } if (verbose != NULL) { options.push_back(std::make_pair(verbose, reinterpret_cast(NULL))); } if (!host_prefix.empty()) { options.push_back(std::make_pair("host-prefix", host_prefix.c_str())); } UniquePtr runtime(Runtime::Create(options, false)); if (runtime.get() == NULL) { fprintf(stderr, "could not create runtime\n"); return EXIT_FAILURE; } ClassLinker* class_linker = runtime->GetClassLinker(); // If we have an existing boot image, position new space after its oat file if (Heap::GetSpaces().size() > 1) { Space* last_image_space = Heap::GetSpaces()[Heap::GetSpaces().size()-2]; CHECK(last_image_space != NULL); CHECK(last_image_space->IsImageSpace()); CHECK(!Heap::GetSpaces()[Heap::GetSpaces().size()-1]->IsImageSpace()); byte* oat_limit_addr = last_image_space->GetImageHeader().GetOatLimitAddr(); image_base = RoundUp(reinterpret_cast(oat_limit_addr), kPageSize); } // ClassLoader creation needs to come after Runtime::Create SirtRef class_loader(NULL); if (!boot_image_option.empty()) { std::vector dex_files; DexFile::OpenDexFiles(dex_filenames, dex_files, host_prefix); for (size_t i = 0; i < dex_files.size(); i++) { class_linker->RegisterDexFile(*dex_files[i]); } class_loader.reset(PathClassLoader::AllocCompileTime(dex_files)); } // if we loaded an existing image, we will reuse values from the image roots. if (!runtime->HasJniStubArray()) { runtime->SetJniStubArray(JniCompiler::CreateJniStub(kThumb2)); } if (!runtime->HasAbstractMethodErrorStubArray()) { runtime->SetAbstractMethodErrorStubArray(Compiler::CreateAbstractMethodErrorStub(kThumb2)); } for (int i = 0; i < Runtime::kLastTrampolineMethodType; i++) { Runtime::TrampolineType type = Runtime::TrampolineType(i); if (!runtime->HasResolutionStubArray(type)) { runtime->SetResolutionStubArray(Compiler::CreateResolutionStub(kThumb2, type), type); } } for (int i = 0; i < Runtime::kLastCalleeSaveType; i++) { Runtime::CalleeSaveType type = Runtime::CalleeSaveType(i); if (!runtime->HasCalleeSaveMethod(type)) { runtime->SetCalleeSaveMethod(runtime->CreateCalleeSaveMethod(kThumb2, type), type); } } Compiler compiler(kThumb2, image_filename != NULL); if (method_names.empty()) { compiler.CompileAll(class_loader.get()); } else { for (size_t i = 0; i < method_names.size(); i++) { // names are actually class_descriptor + name + signature. // example: Ljava/lang/Object;()V StringPiece method_name = method_names[i]; size_t end_of_class_descriptor = method_name.find(';'); if (end_of_class_descriptor == method_name.npos) { fprintf(stderr, "could not find class descriptor in method %s\n", method_name.data()); return EXIT_FAILURE; } end_of_class_descriptor++; // want to include ; std::string class_descriptor = method_name.substr(0, end_of_class_descriptor).ToString(); size_t end_of_name = method_name.find('(', end_of_class_descriptor); if (end_of_name == method_name.npos) { fprintf(stderr, "could not find start of method signature in method %s\n", method_name.data()); return EXIT_FAILURE; } std::string name = method_name.substr(end_of_class_descriptor, end_of_name - end_of_class_descriptor).ToString(); std::string signature = method_name.substr(end_of_name).ToString(); Class* klass = class_linker->FindClass(class_descriptor, class_loader.get()); if (klass == NULL) { fprintf(stderr, "could not find class for descriptor %s in method %s\n", class_descriptor.c_str(), method_name.data()); return EXIT_FAILURE; } Method* method = klass->FindDirectMethod(name, signature); if (method == NULL) { method = klass->FindVirtualMethod(name, signature); } if (method == NULL) { fprintf(stderr, "could not find method %s with signature %s in class %s for method argument %s\n", name.c_str(), signature.c_str(), class_descriptor.c_str(), method_name.data()); return EXIT_FAILURE; } compiler.CompileOne(method); } } if (!OatWriter::Create(oat_filename, class_loader.get(), compiler)) { fprintf(stderr, "Failed to create oat file %s\n", oat_filename.c_str()); return EXIT_FAILURE; } if (image_filename == NULL) { return EXIT_SUCCESS; } CHECK(compiler.IsImage()); ImageWriter image_writer; if (!image_writer.Write(image_filename, image_base, oat_filename, host_prefix)) { fprintf(stderr, "Failed to create image file %s\n", image_filename); return EXIT_FAILURE; } return EXIT_SUCCESS; } } // namespace art int main(int argc, char** argv) { return art::dex2oat(argc, argv); }