/* * Copyright (C) 2012 The Android Open Source Project * * Licensed under the Apache License, Version 2.0 (the "License"); * you may not use this file except in compliance with the License. * You may obtain a copy of the License at * * http://www.apache.org/licenses/LICENSE-2.0 * * Unless required by applicable law or agreed to in writing, software * distributed under the License is distributed on an "AS IS" BASIS, * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. * See the License for the specific language governing permissions and * limitations under the License. */ #ifndef ART_SRC_GREENLAND_DEX_LANG_H_ #define ART_SRC_GREENLAND_DEX_LANG_H_ #include "backend_types.h" #include "dalvik_reg.h" #include "ir_builder.h" #include "dex_file.h" #include "dex_instruction.h" #include "invoke_type.h" #include "macros.h" #include #include #include namespace llvm { class BasicBlock; class Function; class LLVMContext; class Type; } namespace art { class Compiler; class OatCompilationUnit; } namespace art { namespace greenland { class DalvikReg; class InferredRegCategoryMap; class IntrinsicHelper; class DexLang { public: class Context { private: llvm::Module& module_; IntrinsicHelper* intrinsic_helper_; public: Context(llvm::Module& module); ~Context(); inline llvm::LLVMContext& GetLLVMContext() { return module_.getContext(); } inline llvm::Module& GetOutputModule() { return module_; } inline IntrinsicHelper& GetIntrinsicHelper() { return *intrinsic_helper_; } inline const IntrinsicHelper& GetIntrinsicHelper() const { return *intrinsic_helper_; } private: DISALLOW_COPY_AND_ASSIGN(Context); }; public: DexLang(Context& context, Compiler& compiler, OatCompilationUnit& cunit); ~DexLang(); llvm::Function* Build(); inline IRBuilder& GetIRBuilder() { return irb_; } llvm::Value* AllocateDalvikReg(RegCategory cat, unsigned reg_idx); private: Context& dex_lang_ctx_; Compiler& compiler_; OatCompilationUnit& cunit_; const DexFile* dex_file_; const DexFile::CodeItem* code_item_; uint32_t method_idx_; llvm::LLVMContext& context_; llvm::Module& module_; IntrinsicHelper& intrinsic_helper_; IRBuilder irb_; llvm::Function* func_; private: //---------------------------------------------------------------------------- // Basic Block Helper Functions //---------------------------------------------------------------------------- llvm::BasicBlock* reg_alloc_bb_; llvm::BasicBlock* arg_reg_init_bb_; std::vector basic_blocks_; llvm::BasicBlock* GetBasicBlock(unsigned dex_pc); llvm::BasicBlock* CreateBasicBlockWithDexPC(unsigned dex_pc, char const* postfix = NULL); llvm::BasicBlock* GetNextBasicBlock(unsigned dex_pc); private: //---------------------------------------------------------------------------- // Register Helper Functions //---------------------------------------------------------------------------- std::vector regs_; llvm::Value* EmitLoadDalvikReg(unsigned reg_idx, JType jty, JTypeSpace space); llvm::Value* EmitLoadDalvikReg(unsigned reg_idx, char shorty, JTypeSpace space); void EmitStoreDalvikReg(unsigned reg_idx, JType jty, JTypeSpace space, llvm::Value* new_value); void EmitStoreDalvikReg(unsigned reg_idx, char shorty, JTypeSpace space, llvm::Value* new_value); private: //---------------------------------------------------------------------------- // Return Value Related //---------------------------------------------------------------------------- // Hold the return value returned from the lastest invoke-* instruction DalvikReg* retval_reg_; llvm::Value* EmitLoadDalvikRetValReg(JType jty, JTypeSpace space); llvm::Value* EmitLoadDalvikRetValReg(char shorty, JTypeSpace space); void EmitStoreDalvikRetValReg(JType jty, JTypeSpace space, llvm::Value* new_value); void EmitStoreDalvikRetValReg(char shorty, JTypeSpace space, llvm::Value* new_value); private: //---------------------------------------------------------------------------- // Shadow Frame //---------------------------------------------------------------------------- unsigned num_shadow_frame_entries_; std::vector reg_to_shadow_frame_index_; void EmitUpdateDexPC(unsigned dex_pc); void EmitPopShadowFrame(); private: //---------------------------------------------------------------------------- // RegCategory //---------------------------------------------------------------------------- RegCategory GetInferredRegCategory(unsigned dex_pc, unsigned reg_idx); InferredRegCategoryMap const* GetInferredRegCategoryMap(); bool IsRegCanBeObject(unsigned reg_idx); private: //---------------------------------------------------------------------------- // Exception Handling //---------------------------------------------------------------------------- std::vector landing_pads_bb_; llvm::BasicBlock* exception_unwind_bb_; // cur_try_item_offset caches the latest try item offset such that we don't // have to call DexFile::FindCatchHandlerOffset(...) (using binary search) for // every query of the try item for the given dex_pc. int32_t cur_try_item_offset; int32_t GetTryItemOffset(unsigned dex_pc); llvm::BasicBlock* GetLandingPadBasicBlock(unsigned dex_pc); llvm::BasicBlock* GetUnwindBasicBlock(); void EmitBranchExceptionLandingPad(unsigned dex_pc); void EmitGuard_DivZeroException(unsigned dex_pc, llvm::Value* denominator, JType op_jty); void EmitGuard_NullPointerException(unsigned dex_pc, llvm::Value* object); void EmitGuard_ArrayIndexOutOfBoundsException(unsigned dex_pc, llvm::Value* array, llvm::Value* index); void EmitGuard_ArrayException(unsigned dex_pc, llvm::Value* array, llvm::Value* index); void EmitGuard_ExceptionLandingPad(unsigned dex_pc, bool can_skip_unwind); private: //---------------------------------------------------------------------------- // Garbage Collection Safe Point //---------------------------------------------------------------------------- void EmitGuard_GarbageCollectionSuspend(); private: //---------------------------------------------------------------------------- // Code Generation //---------------------------------------------------------------------------- bool CreateFunction(); llvm::FunctionType* GetFunctionType(); bool EmitPrologue(); bool EmitPrologueAssignArgRegister(); bool EmitPrologueAllcaShadowFrame(); bool EmitPrologueLinkBasicBlocks(); bool PrettyLayoutExceptionBasicBlocks(); bool VerifyFunction(); bool OptimizeFunction(); // Our optimization passes bool RemoveRedundantPendingExceptionChecks(); //---------------------------------------------------------------------------- // Emit* Helper Functions //---------------------------------------------------------------------------- enum CondBranchKind { kCondBranch_EQ, kCondBranch_NE, kCondBranch_LT, kCondBranch_GE, kCondBranch_GT, kCondBranch_LE, }; enum IntArithmKind { kIntArithm_Add, kIntArithm_Sub, kIntArithm_Mul, kIntArithm_Div, kIntArithm_Rem, kIntArithm_And, kIntArithm_Or, kIntArithm_Xor, }; enum IntShiftArithmKind { kIntArithm_Shl, kIntArithm_Shr, kIntArithm_UShr, }; enum FPArithmKind { kFPArithm_Add, kFPArithm_Sub, kFPArithm_Mul, kFPArithm_Div, kFPArithm_Rem, }; enum InvokeArgFmt { kArgReg, kArgRange, }; llvm::Value* EmitLoadMethodObjectAddr(); llvm::Value* EmitGetCurrentThread(); void EmitMarkGCCard(llvm::Value* value, llvm::Value* target_addr); llvm::Value* EmitInvokeIntrinsicNoThrow(IntrinsicHelper::IntrinsicId intr_id, llvm::ArrayRef args = llvm::ArrayRef()); llvm::Value* EmitInvokeIntrinsic2NoThrow(IntrinsicHelper::IntrinsicId intr_id, llvm::Value* arg1, llvm::Value* arg2) { llvm::Value* args[] = { arg1, arg2 }; return EmitInvokeIntrinsicNoThrow(intr_id, args); } llvm::Value* EmitInvokeIntrinsic3NoThrow(IntrinsicHelper::IntrinsicId intr_id, llvm::Value* arg1, llvm::Value* arg2, llvm::Value* arg3) { llvm::Value* args[] = { arg1, arg2, arg3 }; return EmitInvokeIntrinsicNoThrow(intr_id, args); } llvm::Value* EmitInvokeIntrinsic4NoThrow(IntrinsicHelper::IntrinsicId intr_id, llvm::Value* arg1, llvm::Value* arg2, llvm::Value* arg3, llvm::Value* arg4) { llvm::Value* args[] = { arg1, arg2, arg3, arg4 }; return EmitInvokeIntrinsicNoThrow(intr_id, args); } llvm::Value* EmitInvokeIntrinsic(unsigned dex_pc, bool can_skip_unwind, IntrinsicHelper::IntrinsicId intr_id, llvm::ArrayRef args = llvm::ArrayRef()); llvm::Value* EmitInvokeIntrinsic2(unsigned dex_pc, bool can_skip_unwind, IntrinsicHelper::IntrinsicId intr_id, llvm::Value* arg1, llvm::Value* arg2) { llvm::Value* args[] = { arg1, arg2 }; return EmitInvokeIntrinsic(dex_pc, can_skip_unwind, intr_id, args); } llvm::Value* EmitInvokeIntrinsic3(unsigned dex_pc, bool can_skip_unwind, IntrinsicHelper::IntrinsicId intr_id, llvm::Value* arg1, llvm::Value* arg2, llvm::Value* arg3) { llvm::Value* args[] = { arg1, arg2, arg3 }; return EmitInvokeIntrinsic(dex_pc, can_skip_unwind, intr_id, args); } llvm::Value* EmitInvokeIntrinsic4(unsigned dex_pc, bool can_skip_unwind, IntrinsicHelper::IntrinsicId intr_id, llvm::Value* arg1, llvm::Value* arg2, llvm::Value* arg3, llvm::Value* arg4) { llvm::Value* args[] = { arg1, arg2, arg3, arg4 }; return EmitInvokeIntrinsic(dex_pc, can_skip_unwind, intr_id, args); } llvm::Value* EmitInvokeIntrinsic5(unsigned dex_pc, bool can_skip_unwind, IntrinsicHelper::IntrinsicId intr_id, llvm::Value* arg1, llvm::Value* arg2, llvm::Value* arg3, llvm::Value* arg4, llvm::Value* arg5) { llvm::Value* args[] = { arg1, arg2, arg3, arg4, arg5 }; return EmitInvokeIntrinsic(dex_pc, can_skip_unwind, intr_id, args); } llvm::Value* EmitLoadConstantClass(unsigned dex_pc, uint32_t type_idx); llvm::Value* EmitLoadArrayLength(llvm::Value* array); llvm::Value* EmitAllocNewArray(unsigned dex_pc, int32_t length, uint32_t type_idx, bool is_filled_new_array); llvm::Value* EmitCompareResultSelection(llvm::Value* cmp_eq, llvm::Value* cmp_lt); llvm::Value* EmitLoadStaticStorage(unsigned dex_pc, unsigned type_idx); llvm::Value* EmitConditionResult(llvm::Value* lhs, llvm::Value* rhs, CondBranchKind cond); llvm::Value* EmitIntArithmResultComputation(unsigned dex_pc, llvm::Value* lhs, llvm::Value* rhs, IntArithmKind arithm, JType op_jty); llvm::Value* EmitIntShiftArithmResultComputation(uint32_t dex_pc, llvm::Value* lhs, llvm::Value* rhs, IntShiftArithmKind arithm, JType op_jty); llvm::Value* EmitIntDivRemResultComputation(unsigned dex_pc, llvm::Value* dividend, llvm::Value* divisor, IntArithmKind arithm, JType op_jty); #define GEN_INSN_ARGS unsigned dex_pc, const Instruction* insn // NOP, PAYLOAD (unreachable) instructions void EmitInsn_Nop(GEN_INSN_ARGS); // MOVE, MOVE_RESULT instructions void EmitInsn_Move(GEN_INSN_ARGS, JType jty); void EmitInsn_MoveResult(GEN_INSN_ARGS, JType jty); // MOVE_EXCEPTION, THROW instructions void EmitInsn_MoveException(GEN_INSN_ARGS); void EmitInsn_ThrowException(GEN_INSN_ARGS); // RETURN instructions void EmitInsn_ReturnVoid(GEN_INSN_ARGS); void EmitInsn_Return(GEN_INSN_ARGS); // CONST, CONST_CLASS, CONST_STRING instructions void EmitInsn_LoadConstant(GEN_INSN_ARGS, JType imm_jty); void EmitInsn_LoadConstantString(GEN_INSN_ARGS); void EmitInsn_LoadConstantClass(GEN_INSN_ARGS); // MONITOR_ENTER, MONITOR_EXIT instructions void EmitInsn_MonitorEnter(GEN_INSN_ARGS); void EmitInsn_MonitorExit(GEN_INSN_ARGS); // CHECK_CAST, INSTANCE_OF instructions void EmitInsn_CheckCast(GEN_INSN_ARGS); void EmitInsn_InstanceOf(GEN_INSN_ARGS); // NEW_INSTANCE instructions void EmitInsn_NewInstance(GEN_INSN_ARGS); // ARRAY_LEN, NEW_ARRAY, FILLED_NEW_ARRAY, FILL_ARRAY_DATA instructions void EmitInsn_ArrayLength(GEN_INSN_ARGS); void EmitInsn_NewArray(GEN_INSN_ARGS); void EmitInsn_FilledNewArray(GEN_INSN_ARGS, bool is_range); void EmitInsn_FillArrayData(GEN_INSN_ARGS); // GOTO, IF_TEST, IF_TESTZ instructions void EmitInsn_UnconditionalBranch(GEN_INSN_ARGS); void EmitInsn_UnaryConditionalBranch(GEN_INSN_ARGS, CondBranchKind cond); void EmitInsn_BinaryConditionalBranch(GEN_INSN_ARGS, CondBranchKind cond); // PACKED_SWITCH, SPARSE_SWITCH instrutions void EmitInsn_PackedSwitch(GEN_INSN_ARGS); void EmitInsn_SparseSwitch(GEN_INSN_ARGS); // CMPX_FLOAT, CMPX_DOUBLE, CMP_LONG instructions void EmitInsn_FPCompare(GEN_INSN_ARGS, JType fp_jty, bool gt_bias); void EmitInsn_LongCompare(GEN_INSN_ARGS); // AGET, APUT instrutions void EmitInsn_AGet(GEN_INSN_ARGS, JType elem_jty); void EmitInsn_APut(GEN_INSN_ARGS, JType elem_jty); // IGET, IPUT instructions void EmitInsn_IGet(GEN_INSN_ARGS, JType field_jty); void EmitInsn_IPut(GEN_INSN_ARGS, JType field_jty); // SGET, SPUT instructions void EmitInsn_SGet(GEN_INSN_ARGS, JType field_jty); void EmitInsn_SPut(GEN_INSN_ARGS, JType field_jty); void EmitInsn_Invoke(GEN_INSN_ARGS, InvokeType invoke_type, InvokeArgFmt arg_fmt); // Unary instructions void EmitInsn_Neg(GEN_INSN_ARGS, JType op_jty); void EmitInsn_Not(GEN_INSN_ARGS, JType op_jty); void EmitInsn_SExt(GEN_INSN_ARGS); void EmitInsn_Trunc(GEN_INSN_ARGS); void EmitInsn_TruncAndSExt(GEN_INSN_ARGS, unsigned N); void EmitInsn_TruncAndZExt(GEN_INSN_ARGS, unsigned N); void EmitInsn_FNeg(GEN_INSN_ARGS, JType op_jty); void EmitInsn_IntToFP(GEN_INSN_ARGS, JType src_jty, JType dest_jty); void EmitInsn_FPToInt(GEN_INSN_ARGS, JType src_jty, JType dest_jty, IntrinsicHelper::IntrinsicId intr_id); void EmitInsn_FExt(GEN_INSN_ARGS); void EmitInsn_FTrunc(GEN_INSN_ARGS); // Integer binary arithmetic instructions void EmitInsn_IntArithm(GEN_INSN_ARGS, IntArithmKind arithm, JType op_jty, bool is_2addr); void EmitInsn_IntArithmImmediate(GEN_INSN_ARGS, IntArithmKind arithm); void EmitInsn_IntShiftArithm(GEN_INSN_ARGS, IntShiftArithmKind arithm, JType op_jty, bool is_2addr); void EmitInsn_IntShiftArithmImmediate(GEN_INSN_ARGS, IntShiftArithmKind arithm); void EmitInsn_RSubImmediate(GEN_INSN_ARGS); // Floating-point binary arithmetic instructions void EmitInsn_FPArithm(GEN_INSN_ARGS, FPArithmKind arithm, JType op_jty, bool is_2addr); #undef GEN_INSN_ARGS bool EmitInstructions(); bool EmitInstruction(unsigned dex_pc, const Instruction* insn); // TODO: Use high-level IR to do this bool IsInstructionDirectToReturn(uint32_t dex_pc); struct MethodInfo { int64_t this_reg_idx; bool this_will_not_be_null; bool has_invoke; bool need_shadow_frame_entry; bool need_shadow_frame; bool lazy_push_shadow_frame; std::vector set_to_another_object; }; MethodInfo method_info_; void ComputeMethodInfo(); DISALLOW_COPY_AND_ASSIGN(DexLang); }; } // namespace greenland } // namespace art #endif // ART_SRC_GREENLAND_DEX_LANG_H_