1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
|
/*
* Copyright (C) 2013 The Android Open Source Project
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
#include <algorithm>
#include <memory>
#include "base/logging.h"
#include "base/scoped_arena_containers.h"
#include "dataflow_iterator-inl.h"
#include "compiler_ir.h"
#include "dex_flags.h"
#include "dex_instruction-inl.h"
#include "dex/mir_field_info.h"
#include "dex/verified_method.h"
#include "dex/quick/dex_file_method_inliner.h"
#include "dex/quick/dex_file_to_method_inliner_map.h"
#include "driver/compiler_driver.h"
#include "driver/compiler_options.h"
#include "driver/dex_compilation_unit.h"
namespace art {
enum InstructionAnalysisAttributeOps : uint8_t {
kUninterestingOp = 0,
kArithmeticOp,
kFpOp,
kSingleOp,
kDoubleOp,
kIntOp,
kLongOp,
kBranchOp,
kInvokeOp,
kArrayOp,
kHeavyweightOp,
kSimpleConstOp,
kMoveOp,
kSwitch
};
enum InstructionAnalysisAttributeMasks : uint16_t {
kAnNone = 1 << kUninterestingOp,
kAnMath = 1 << kArithmeticOp,
kAnFp = 1 << kFpOp,
kAnLong = 1 << kLongOp,
kAnInt = 1 << kIntOp,
kAnSingle = 1 << kSingleOp,
kAnDouble = 1 << kDoubleOp,
kAnFloatMath = 1 << kFpOp,
kAnBranch = 1 << kBranchOp,
kAnInvoke = 1 << kInvokeOp,
kAnArrayOp = 1 << kArrayOp,
kAnHeavyWeight = 1 << kHeavyweightOp,
kAnSimpleConst = 1 << kSimpleConstOp,
kAnMove = 1 << kMoveOp,
kAnSwitch = 1 << kSwitch,
kAnComputational = kAnMath | kAnArrayOp | kAnMove | kAnSimpleConst,
};
// Instruction characteristics used to statically identify computation-intensive methods.
static const uint16_t kAnalysisAttributes[kMirOpLast] = {
// 00 NOP
kAnNone,
// 01 MOVE vA, vB
kAnMove,
// 02 MOVE_FROM16 vAA, vBBBB
kAnMove,
// 03 MOVE_16 vAAAA, vBBBB
kAnMove,
// 04 MOVE_WIDE vA, vB
kAnMove,
// 05 MOVE_WIDE_FROM16 vAA, vBBBB
kAnMove,
// 06 MOVE_WIDE_16 vAAAA, vBBBB
kAnMove,
// 07 MOVE_OBJECT vA, vB
kAnMove,
// 08 MOVE_OBJECT_FROM16 vAA, vBBBB
kAnMove,
// 09 MOVE_OBJECT_16 vAAAA, vBBBB
kAnMove,
// 0A MOVE_RESULT vAA
kAnMove,
// 0B MOVE_RESULT_WIDE vAA
kAnMove,
// 0C MOVE_RESULT_OBJECT vAA
kAnMove,
// 0D MOVE_EXCEPTION vAA
kAnMove,
// 0E RETURN_VOID
kAnBranch,
// 0F RETURN vAA
kAnBranch,
// 10 RETURN_WIDE vAA
kAnBranch,
// 11 RETURN_OBJECT vAA
kAnBranch,
// 12 CONST_4 vA, #+B
kAnSimpleConst,
// 13 CONST_16 vAA, #+BBBB
kAnSimpleConst,
// 14 CONST vAA, #+BBBBBBBB
kAnSimpleConst,
// 15 CONST_HIGH16 VAA, #+BBBB0000
kAnSimpleConst,
// 16 CONST_WIDE_16 vAA, #+BBBB
kAnSimpleConst,
// 17 CONST_WIDE_32 vAA, #+BBBBBBBB
kAnSimpleConst,
// 18 CONST_WIDE vAA, #+BBBBBBBBBBBBBBBB
kAnSimpleConst,
// 19 CONST_WIDE_HIGH16 vAA, #+BBBB000000000000
kAnSimpleConst,
// 1A CONST_STRING vAA, string@BBBB
kAnNone,
// 1B CONST_STRING_JUMBO vAA, string@BBBBBBBB
kAnNone,
// 1C CONST_CLASS vAA, type@BBBB
kAnNone,
// 1D MONITOR_ENTER vAA
kAnNone,
// 1E MONITOR_EXIT vAA
kAnNone,
// 1F CHK_CAST vAA, type@BBBB
kAnNone,
// 20 INSTANCE_OF vA, vB, type@CCCC
kAnNone,
// 21 ARRAY_LENGTH vA, vB
kAnArrayOp,
// 22 NEW_INSTANCE vAA, type@BBBB
kAnHeavyWeight,
// 23 NEW_ARRAY vA, vB, type@CCCC
kAnHeavyWeight,
// 24 FILLED_NEW_ARRAY {vD, vE, vF, vG, vA}
kAnHeavyWeight,
// 25 FILLED_NEW_ARRAY_RANGE {vCCCC .. vNNNN}, type@BBBB
kAnHeavyWeight,
// 26 FILL_ARRAY_DATA vAA, +BBBBBBBB
kAnNone,
// 27 THROW vAA
kAnHeavyWeight | kAnBranch,
// 28 GOTO
kAnBranch,
// 29 GOTO_16
kAnBranch,
// 2A GOTO_32
kAnBranch,
// 2B PACKED_SWITCH vAA, +BBBBBBBB
kAnSwitch,
// 2C SPARSE_SWITCH vAA, +BBBBBBBB
kAnSwitch,
// 2D CMPL_FLOAT vAA, vBB, vCC
kAnMath | kAnFp | kAnSingle,
// 2E CMPG_FLOAT vAA, vBB, vCC
kAnMath | kAnFp | kAnSingle,
// 2F CMPL_DOUBLE vAA, vBB, vCC
kAnMath | kAnFp | kAnDouble,
// 30 CMPG_DOUBLE vAA, vBB, vCC
kAnMath | kAnFp | kAnDouble,
// 31 CMP_LONG vAA, vBB, vCC
kAnMath | kAnLong,
// 32 IF_EQ vA, vB, +CCCC
kAnMath | kAnBranch | kAnInt,
// 33 IF_NE vA, vB, +CCCC
kAnMath | kAnBranch | kAnInt,
// 34 IF_LT vA, vB, +CCCC
kAnMath | kAnBranch | kAnInt,
// 35 IF_GE vA, vB, +CCCC
kAnMath | kAnBranch | kAnInt,
// 36 IF_GT vA, vB, +CCCC
kAnMath | kAnBranch | kAnInt,
// 37 IF_LE vA, vB, +CCCC
kAnMath | kAnBranch | kAnInt,
// 38 IF_EQZ vAA, +BBBB
kAnMath | kAnBranch | kAnInt,
// 39 IF_NEZ vAA, +BBBB
kAnMath | kAnBranch | kAnInt,
// 3A IF_LTZ vAA, +BBBB
kAnMath | kAnBranch | kAnInt,
// 3B IF_GEZ vAA, +BBBB
kAnMath | kAnBranch | kAnInt,
// 3C IF_GTZ vAA, +BBBB
kAnMath | kAnBranch | kAnInt,
// 3D IF_LEZ vAA, +BBBB
kAnMath | kAnBranch | kAnInt,
// 3E UNUSED_3E
kAnNone,
// 3F UNUSED_3F
kAnNone,
// 40 UNUSED_40
kAnNone,
// 41 UNUSED_41
kAnNone,
// 42 UNUSED_42
kAnNone,
// 43 UNUSED_43
kAnNone,
// 44 AGET vAA, vBB, vCC
kAnArrayOp,
// 45 AGET_WIDE vAA, vBB, vCC
kAnArrayOp,
// 46 AGET_OBJECT vAA, vBB, vCC
kAnArrayOp,
// 47 AGET_BOOLEAN vAA, vBB, vCC
kAnArrayOp,
// 48 AGET_BYTE vAA, vBB, vCC
kAnArrayOp,
// 49 AGET_CHAR vAA, vBB, vCC
kAnArrayOp,
// 4A AGET_SHORT vAA, vBB, vCC
kAnArrayOp,
// 4B APUT vAA, vBB, vCC
kAnArrayOp,
// 4C APUT_WIDE vAA, vBB, vCC
kAnArrayOp,
// 4D APUT_OBJECT vAA, vBB, vCC
kAnArrayOp,
// 4E APUT_BOOLEAN vAA, vBB, vCC
kAnArrayOp,
// 4F APUT_BYTE vAA, vBB, vCC
kAnArrayOp,
// 50 APUT_CHAR vAA, vBB, vCC
kAnArrayOp,
// 51 APUT_SHORT vAA, vBB, vCC
kAnArrayOp,
// 52 IGET vA, vB, field@CCCC
kAnNone,
// 53 IGET_WIDE vA, vB, field@CCCC
kAnNone,
// 54 IGET_OBJECT vA, vB, field@CCCC
kAnNone,
// 55 IGET_BOOLEAN vA, vB, field@CCCC
kAnNone,
// 56 IGET_BYTE vA, vB, field@CCCC
kAnNone,
// 57 IGET_CHAR vA, vB, field@CCCC
kAnNone,
// 58 IGET_SHORT vA, vB, field@CCCC
kAnNone,
// 59 IPUT vA, vB, field@CCCC
kAnNone,
// 5A IPUT_WIDE vA, vB, field@CCCC
kAnNone,
// 5B IPUT_OBJECT vA, vB, field@CCCC
kAnNone,
// 5C IPUT_BOOLEAN vA, vB, field@CCCC
kAnNone,
// 5D IPUT_BYTE vA, vB, field@CCCC
kAnNone,
// 5E IPUT_CHAR vA, vB, field@CCCC
kAnNone,
// 5F IPUT_SHORT vA, vB, field@CCCC
kAnNone,
// 60 SGET vAA, field@BBBB
kAnNone,
// 61 SGET_WIDE vAA, field@BBBB
kAnNone,
// 62 SGET_OBJECT vAA, field@BBBB
kAnNone,
// 63 SGET_BOOLEAN vAA, field@BBBB
kAnNone,
// 64 SGET_BYTE vAA, field@BBBB
kAnNone,
// 65 SGET_CHAR vAA, field@BBBB
kAnNone,
// 66 SGET_SHORT vAA, field@BBBB
kAnNone,
// 67 SPUT vAA, field@BBBB
kAnNone,
// 68 SPUT_WIDE vAA, field@BBBB
kAnNone,
// 69 SPUT_OBJECT vAA, field@BBBB
kAnNone,
// 6A SPUT_BOOLEAN vAA, field@BBBB
kAnNone,
// 6B SPUT_BYTE vAA, field@BBBB
kAnNone,
// 6C SPUT_CHAR vAA, field@BBBB
kAnNone,
// 6D SPUT_SHORT vAA, field@BBBB
kAnNone,
// 6E INVOKE_VIRTUAL {vD, vE, vF, vG, vA}
kAnInvoke | kAnHeavyWeight,
// 6F INVOKE_SUPER {vD, vE, vF, vG, vA}
kAnInvoke | kAnHeavyWeight,
// 70 INVOKE_DIRECT {vD, vE, vF, vG, vA}
kAnInvoke | kAnHeavyWeight,
// 71 INVOKE_STATIC {vD, vE, vF, vG, vA}
kAnInvoke | kAnHeavyWeight,
// 72 INVOKE_INTERFACE {vD, vE, vF, vG, vA}
kAnInvoke | kAnHeavyWeight,
// 73 RETURN_VOID_BARRIER
kAnBranch,
// 74 INVOKE_VIRTUAL_RANGE {vCCCC .. vNNNN}
kAnInvoke | kAnHeavyWeight,
// 75 INVOKE_SUPER_RANGE {vCCCC .. vNNNN}
kAnInvoke | kAnHeavyWeight,
// 76 INVOKE_DIRECT_RANGE {vCCCC .. vNNNN}
kAnInvoke | kAnHeavyWeight,
// 77 INVOKE_STATIC_RANGE {vCCCC .. vNNNN}
kAnInvoke | kAnHeavyWeight,
// 78 INVOKE_INTERFACE_RANGE {vCCCC .. vNNNN}
kAnInvoke | kAnHeavyWeight,
// 79 UNUSED_79
kAnNone,
// 7A UNUSED_7A
kAnNone,
// 7B NEG_INT vA, vB
kAnMath | kAnInt,
// 7C NOT_INT vA, vB
kAnMath | kAnInt,
// 7D NEG_LONG vA, vB
kAnMath | kAnLong,
// 7E NOT_LONG vA, vB
kAnMath | kAnLong,
// 7F NEG_FLOAT vA, vB
kAnMath | kAnFp | kAnSingle,
// 80 NEG_DOUBLE vA, vB
kAnMath | kAnFp | kAnDouble,
// 81 INT_TO_LONG vA, vB
kAnMath | kAnInt | kAnLong,
// 82 INT_TO_FLOAT vA, vB
kAnMath | kAnFp | kAnInt | kAnSingle,
// 83 INT_TO_DOUBLE vA, vB
kAnMath | kAnFp | kAnInt | kAnDouble,
// 84 LONG_TO_INT vA, vB
kAnMath | kAnInt | kAnLong,
// 85 LONG_TO_FLOAT vA, vB
kAnMath | kAnFp | kAnLong | kAnSingle,
// 86 LONG_TO_DOUBLE vA, vB
kAnMath | kAnFp | kAnLong | kAnDouble,
// 87 FLOAT_TO_INT vA, vB
kAnMath | kAnFp | kAnInt | kAnSingle,
// 88 FLOAT_TO_LONG vA, vB
kAnMath | kAnFp | kAnLong | kAnSingle,
// 89 FLOAT_TO_DOUBLE vA, vB
kAnMath | kAnFp | kAnSingle | kAnDouble,
// 8A DOUBLE_TO_INT vA, vB
kAnMath | kAnFp | kAnInt | kAnDouble,
// 8B DOUBLE_TO_LONG vA, vB
kAnMath | kAnFp | kAnLong | kAnDouble,
// 8C DOUBLE_TO_FLOAT vA, vB
kAnMath | kAnFp | kAnSingle | kAnDouble,
// 8D INT_TO_BYTE vA, vB
kAnMath | kAnInt,
// 8E INT_TO_CHAR vA, vB
kAnMath | kAnInt,
// 8F INT_TO_SHORT vA, vB
kAnMath | kAnInt,
// 90 ADD_INT vAA, vBB, vCC
kAnMath | kAnInt,
// 91 SUB_INT vAA, vBB, vCC
kAnMath | kAnInt,
// 92 MUL_INT vAA, vBB, vCC
kAnMath | kAnInt,
// 93 DIV_INT vAA, vBB, vCC
kAnMath | kAnInt,
// 94 REM_INT vAA, vBB, vCC
kAnMath | kAnInt,
// 95 AND_INT vAA, vBB, vCC
kAnMath | kAnInt,
// 96 OR_INT vAA, vBB, vCC
kAnMath | kAnInt,
// 97 XOR_INT vAA, vBB, vCC
kAnMath | kAnInt,
// 98 SHL_INT vAA, vBB, vCC
kAnMath | kAnInt,
// 99 SHR_INT vAA, vBB, vCC
kAnMath | kAnInt,
// 9A USHR_INT vAA, vBB, vCC
kAnMath | kAnInt,
// 9B ADD_LONG vAA, vBB, vCC
kAnMath | kAnLong,
// 9C SUB_LONG vAA, vBB, vCC
kAnMath | kAnLong,
// 9D MUL_LONG vAA, vBB, vCC
kAnMath | kAnLong,
// 9E DIV_LONG vAA, vBB, vCC
kAnMath | kAnLong,
// 9F REM_LONG vAA, vBB, vCC
kAnMath | kAnLong,
// A0 AND_LONG vAA, vBB, vCC
kAnMath | kAnLong,
// A1 OR_LONG vAA, vBB, vCC
kAnMath | kAnLong,
// A2 XOR_LONG vAA, vBB, vCC
kAnMath | kAnLong,
// A3 SHL_LONG vAA, vBB, vCC
kAnMath | kAnLong,
// A4 SHR_LONG vAA, vBB, vCC
kAnMath | kAnLong,
// A5 USHR_LONG vAA, vBB, vCC
kAnMath | kAnLong,
// A6 ADD_FLOAT vAA, vBB, vCC
kAnMath | kAnFp | kAnSingle,
// A7 SUB_FLOAT vAA, vBB, vCC
kAnMath | kAnFp | kAnSingle,
// A8 MUL_FLOAT vAA, vBB, vCC
kAnMath | kAnFp | kAnSingle,
// A9 DIV_FLOAT vAA, vBB, vCC
kAnMath | kAnFp | kAnSingle,
// AA REM_FLOAT vAA, vBB, vCC
kAnMath | kAnFp | kAnSingle,
// AB ADD_DOUBLE vAA, vBB, vCC
kAnMath | kAnFp | kAnDouble,
// AC SUB_DOUBLE vAA, vBB, vCC
kAnMath | kAnFp | kAnDouble,
// AD MUL_DOUBLE vAA, vBB, vCC
kAnMath | kAnFp | kAnDouble,
// AE DIV_DOUBLE vAA, vBB, vCC
kAnMath | kAnFp | kAnDouble,
// AF REM_DOUBLE vAA, vBB, vCC
kAnMath | kAnFp | kAnDouble,
// B0 ADD_INT_2ADDR vA, vB
kAnMath | kAnInt,
// B1 SUB_INT_2ADDR vA, vB
kAnMath | kAnInt,
// B2 MUL_INT_2ADDR vA, vB
kAnMath | kAnInt,
// B3 DIV_INT_2ADDR vA, vB
kAnMath | kAnInt,
// B4 REM_INT_2ADDR vA, vB
kAnMath | kAnInt,
// B5 AND_INT_2ADDR vA, vB
kAnMath | kAnInt,
// B6 OR_INT_2ADDR vA, vB
kAnMath | kAnInt,
// B7 XOR_INT_2ADDR vA, vB
kAnMath | kAnInt,
// B8 SHL_INT_2ADDR vA, vB
kAnMath | kAnInt,
// B9 SHR_INT_2ADDR vA, vB
kAnMath | kAnInt,
// BA USHR_INT_2ADDR vA, vB
kAnMath | kAnInt,
// BB ADD_LONG_2ADDR vA, vB
kAnMath | kAnLong,
// BC SUB_LONG_2ADDR vA, vB
kAnMath | kAnLong,
// BD MUL_LONG_2ADDR vA, vB
kAnMath | kAnLong,
// BE DIV_LONG_2ADDR vA, vB
kAnMath | kAnLong,
// BF REM_LONG_2ADDR vA, vB
kAnMath | kAnLong,
// C0 AND_LONG_2ADDR vA, vB
kAnMath | kAnLong,
// C1 OR_LONG_2ADDR vA, vB
kAnMath | kAnLong,
// C2 XOR_LONG_2ADDR vA, vB
kAnMath | kAnLong,
// C3 SHL_LONG_2ADDR vA, vB
kAnMath | kAnLong,
// C4 SHR_LONG_2ADDR vA, vB
kAnMath | kAnLong,
// C5 USHR_LONG_2ADDR vA, vB
kAnMath | kAnLong,
// C6 ADD_FLOAT_2ADDR vA, vB
kAnMath | kAnFp | kAnSingle,
// C7 SUB_FLOAT_2ADDR vA, vB
kAnMath | kAnFp | kAnSingle,
// C8 MUL_FLOAT_2ADDR vA, vB
kAnMath | kAnFp | kAnSingle,
// C9 DIV_FLOAT_2ADDR vA, vB
kAnMath | kAnFp | kAnSingle,
// CA REM_FLOAT_2ADDR vA, vB
kAnMath | kAnFp | kAnSingle,
// CB ADD_DOUBLE_2ADDR vA, vB
kAnMath | kAnFp | kAnDouble,
// CC SUB_DOUBLE_2ADDR vA, vB
kAnMath | kAnFp | kAnDouble,
// CD MUL_DOUBLE_2ADDR vA, vB
kAnMath | kAnFp | kAnDouble,
// CE DIV_DOUBLE_2ADDR vA, vB
kAnMath | kAnFp | kAnDouble,
// CF REM_DOUBLE_2ADDR vA, vB
kAnMath | kAnFp | kAnDouble,
// D0 ADD_INT_LIT16 vA, vB, #+CCCC
kAnMath | kAnInt,
// D1 RSUB_INT vA, vB, #+CCCC
kAnMath | kAnInt,
// D2 MUL_INT_LIT16 vA, vB, #+CCCC
kAnMath | kAnInt,
// D3 DIV_INT_LIT16 vA, vB, #+CCCC
kAnMath | kAnInt,
// D4 REM_INT_LIT16 vA, vB, #+CCCC
kAnMath | kAnInt,
// D5 AND_INT_LIT16 vA, vB, #+CCCC
kAnMath | kAnInt,
// D6 OR_INT_LIT16 vA, vB, #+CCCC
kAnMath | kAnInt,
// D7 XOR_INT_LIT16 vA, vB, #+CCCC
kAnMath | kAnInt,
// D8 ADD_INT_LIT8 vAA, vBB, #+CC
kAnMath | kAnInt,
// D9 RSUB_INT_LIT8 vAA, vBB, #+CC
kAnMath | kAnInt,
// DA MUL_INT_LIT8 vAA, vBB, #+CC
kAnMath | kAnInt,
// DB DIV_INT_LIT8 vAA, vBB, #+CC
kAnMath | kAnInt,
// DC REM_INT_LIT8 vAA, vBB, #+CC
kAnMath | kAnInt,
// DD AND_INT_LIT8 vAA, vBB, #+CC
kAnMath | kAnInt,
// DE OR_INT_LIT8 vAA, vBB, #+CC
kAnMath | kAnInt,
// DF XOR_INT_LIT8 vAA, vBB, #+CC
kAnMath | kAnInt,
// E0 SHL_INT_LIT8 vAA, vBB, #+CC
kAnMath | kAnInt,
// E1 SHR_INT_LIT8 vAA, vBB, #+CC
kAnMath | kAnInt,
// E2 USHR_INT_LIT8 vAA, vBB, #+CC
kAnMath | kAnInt,
// E3 IGET_QUICK
kAnNone,
// E4 IGET_WIDE_QUICK
kAnNone,
// E5 IGET_OBJECT_QUICK
kAnNone,
// E6 IPUT_QUICK
kAnNone,
// E7 IPUT_WIDE_QUICK
kAnNone,
// E8 IPUT_OBJECT_QUICK
kAnNone,
// E9 INVOKE_VIRTUAL_QUICK
kAnInvoke | kAnHeavyWeight,
// EA INVOKE_VIRTUAL_RANGE_QUICK
kAnInvoke | kAnHeavyWeight,
// EB IPUT_BOOLEAN_QUICK
kAnNone,
// EC IPUT_BYTE_QUICK
kAnNone,
// ED IPUT_CHAR_QUICK
kAnNone,
// EE IPUT_SHORT_QUICK
kAnNone,
// EF IGET_BOOLEAN_QUICK
kAnNone,
// F0 IGET_BYTE_QUICK
kAnNone,
// F1 IGET_CHAR_QUICK
kAnNone,
// F2 IGET_SHORT_QUICK
kAnNone,
// F3 UNUSED_F3
kAnNone,
// F4 UNUSED_F4
kAnNone,
// F5 UNUSED_F5
kAnNone,
// F6 UNUSED_F6
kAnNone,
// F7 UNUSED_F7
kAnNone,
// F8 UNUSED_F8
kAnNone,
// F9 UNUSED_F9
kAnNone,
// FA UNUSED_FA
kAnNone,
// FB UNUSED_FB
kAnNone,
// FC UNUSED_FC
kAnNone,
// FD UNUSED_FD
kAnNone,
// FE UNUSED_FE
kAnNone,
// FF UNUSED_FF
kAnNone,
// Beginning of extended MIR opcodes
// 100 MIR_PHI
kAnNone,
// 101 MIR_COPY
kAnNone,
// 102 MIR_FUSED_CMPL_FLOAT
kAnNone,
// 103 MIR_FUSED_CMPG_FLOAT
kAnNone,
// 104 MIR_FUSED_CMPL_DOUBLE
kAnNone,
// 105 MIR_FUSED_CMPG_DOUBLE
kAnNone,
// 106 MIR_FUSED_CMP_LONG
kAnNone,
// 107 MIR_NOP
kAnNone,
// 108 MIR_NULL_CHECK
kAnNone,
// 109 MIR_RANGE_CHECK
kAnNone,
// 10A MIR_DIV_ZERO_CHECK
kAnNone,
// 10B MIR_CHECK
kAnNone,
// 10C MIR_CHECKPART2
kAnNone,
// 10D MIR_SELECT
kAnNone,
// 10E MirOpConstVector
kAnNone,
// 10F MirOpMoveVector
kAnNone,
// 110 MirOpPackedMultiply
kAnNone,
// 111 MirOpPackedAddition
kAnNone,
// 112 MirOpPackedSubtract
kAnNone,
// 113 MirOpPackedShiftLeft
kAnNone,
// 114 MirOpPackedSignedShiftRight
kAnNone,
// 115 MirOpPackedUnsignedShiftRight
kAnNone,
// 116 MirOpPackedAnd
kAnNone,
// 117 MirOpPackedOr
kAnNone,
// 118 MirOpPackedXor
kAnNone,
// 119 MirOpPackedAddReduce
kAnNone,
// 11A MirOpPackedReduce
kAnNone,
// 11B MirOpPackedSet
kAnNone,
// 11C MirOpReserveVectorRegisters
kAnNone,
// 11D MirOpReturnVectorRegisters
kAnNone,
// 11E MirOpMemBarrier
kAnNone,
// 11F MirOpPackedArrayGet
kAnArrayOp,
// 120 MirOpPackedArrayPut
kAnArrayOp,
};
struct MethodStats {
int dex_instructions;
int math_ops;
int fp_ops;
int array_ops;
int branch_ops;
int heavyweight_ops;
bool has_computational_loop;
bool has_switch;
float math_ratio;
float fp_ratio;
float array_ratio;
float branch_ratio;
float heavyweight_ratio;
};
void MIRGraph::AnalyzeBlock(BasicBlock* bb, MethodStats* stats) {
if (bb->visited || (bb->block_type != kDalvikByteCode)) {
return;
}
bool computational_block = true;
bool has_math = false;
/*
* For the purposes of this scan, we want to treat the set of basic blocks broken
* by an exception edge as a single basic block. We'll scan forward along the fallthrough
* edges until we reach an explicit branch or return.
*/
BasicBlock* ending_bb = bb;
if (ending_bb->last_mir_insn != NULL) {
uint32_t ending_flags = kAnalysisAttributes[ending_bb->last_mir_insn->dalvikInsn.opcode];
while ((ending_flags & kAnBranch) == 0) {
ending_bb = GetBasicBlock(ending_bb->fall_through);
ending_flags = kAnalysisAttributes[ending_bb->last_mir_insn->dalvikInsn.opcode];
}
}
/*
* Ideally, we'd weight the operations by loop nesting level, but to do so we'd
* first need to do some expensive loop detection - and the point of this is to make
* an informed guess before investing in computation. However, we can cheaply detect
* many simple loop forms without having to do full dataflow analysis.
*/
int loop_scale_factor = 1;
// Simple for and while loops
if ((ending_bb->taken != NullBasicBlockId) && (ending_bb->fall_through == NullBasicBlockId)) {
if ((GetBasicBlock(ending_bb->taken)->taken == bb->id) ||
(GetBasicBlock(ending_bb->taken)->fall_through == bb->id)) {
loop_scale_factor = 25;
}
}
// Simple do-while loop
if ((ending_bb->taken != NullBasicBlockId) && (ending_bb->taken == bb->id)) {
loop_scale_factor = 25;
}
BasicBlock* tbb = bb;
bool done = false;
while (!done) {
tbb->visited = true;
for (MIR* mir = tbb->first_mir_insn; mir != NULL; mir = mir->next) {
if (MIR::DecodedInstruction::IsPseudoMirOp(mir->dalvikInsn.opcode)) {
// Skip any MIR pseudo-op.
continue;
}
uint16_t flags = kAnalysisAttributes[mir->dalvikInsn.opcode];
stats->dex_instructions += loop_scale_factor;
if ((flags & kAnBranch) == 0) {
computational_block &= ((flags & kAnComputational) != 0);
} else {
stats->branch_ops += loop_scale_factor;
}
if ((flags & kAnMath) != 0) {
stats->math_ops += loop_scale_factor;
has_math = true;
}
if ((flags & kAnFp) != 0) {
stats->fp_ops += loop_scale_factor;
}
if ((flags & kAnArrayOp) != 0) {
stats->array_ops += loop_scale_factor;
}
if ((flags & kAnHeavyWeight) != 0) {
stats->heavyweight_ops += loop_scale_factor;
}
if ((flags & kAnSwitch) != 0) {
stats->has_switch = true;
}
}
if (tbb == ending_bb) {
done = true;
} else {
tbb = GetBasicBlock(tbb->fall_through);
}
}
if (has_math && computational_block && (loop_scale_factor > 1)) {
stats->has_computational_loop = true;
}
}
bool MIRGraph::ComputeSkipCompilation(MethodStats* stats, bool skip_default,
std::string* skip_message) {
float count = stats->dex_instructions;
stats->math_ratio = stats->math_ops / count;
stats->fp_ratio = stats->fp_ops / count;
stats->branch_ratio = stats->branch_ops / count;
stats->array_ratio = stats->array_ops / count;
stats->heavyweight_ratio = stats->heavyweight_ops / count;
if (cu_->enable_debug & (1 << kDebugShowFilterStats)) {
LOG(INFO) << "STATS " << stats->dex_instructions << ", math:"
<< stats->math_ratio << ", fp:"
<< stats->fp_ratio << ", br:"
<< stats->branch_ratio << ", hw:"
<< stats->heavyweight_ratio << ", arr:"
<< stats->array_ratio << ", hot:"
<< stats->has_computational_loop << ", "
<< PrettyMethod(cu_->method_idx, *cu_->dex_file);
}
// Computation intensive?
if (stats->has_computational_loop && (stats->heavyweight_ratio < 0.04)) {
return false;
}
// Complex, logic-intensive?
if (cu_->compiler_driver->GetCompilerOptions().IsSmallMethod(GetNumDalvikInsns()) &&
stats->branch_ratio > 0.3) {
return false;
}
// Significant floating point?
if (stats->fp_ratio > 0.05) {
return false;
}
// Significant generic math?
if (stats->math_ratio > 0.3) {
return false;
}
// If array-intensive, compiling is probably worthwhile.
if (stats->array_ratio > 0.1) {
return false;
}
// Switch operations benefit greatly from compilation, so go ahead and spend the cycles.
if (stats->has_switch) {
return false;
}
// If significant in size and high proportion of expensive operations, skip.
if (cu_->compiler_driver->GetCompilerOptions().IsSmallMethod(GetNumDalvikInsns()) &&
(stats->heavyweight_ratio > 0.3)) {
*skip_message = "Is a small method with heavyweight ratio " +
std::to_string(stats->heavyweight_ratio);
return true;
}
return skip_default;
}
/*
* Will eventually want this to be a bit more sophisticated and happen at verification time.
*/
bool MIRGraph::SkipCompilation(std::string* skip_message) {
const CompilerOptions& compiler_options = cu_->compiler_driver->GetCompilerOptions();
CompilerOptions::CompilerFilter compiler_filter = compiler_options.GetCompilerFilter();
if (compiler_filter == CompilerOptions::kEverything) {
return false;
}
// Contains a pattern we don't want to compile?
if (PuntToInterpreter()) {
*skip_message = "Punt to interpreter set";
return true;
}
DCHECK(compiler_options.IsCompilationEnabled());
// Set up compilation cutoffs based on current filter mode.
size_t small_cutoff;
size_t default_cutoff;
switch (compiler_filter) {
case CompilerOptions::kBalanced:
small_cutoff = compiler_options.GetSmallMethodThreshold();
default_cutoff = compiler_options.GetLargeMethodThreshold();
break;
case CompilerOptions::kSpace:
small_cutoff = compiler_options.GetTinyMethodThreshold();
default_cutoff = compiler_options.GetSmallMethodThreshold();
break;
case CompilerOptions::kSpeed:
case CompilerOptions::kTime:
small_cutoff = compiler_options.GetHugeMethodThreshold();
default_cutoff = compiler_options.GetHugeMethodThreshold();
break;
default:
LOG(FATAL) << "Unexpected compiler_filter_: " << compiler_filter;
UNREACHABLE();
}
// If size < cutoff, assume we'll compile - but allow removal.
bool skip_compilation = (GetNumDalvikInsns() >= default_cutoff);
if (skip_compilation) {
*skip_message = "#Insns >= default_cutoff: " + std::to_string(GetNumDalvikInsns());
}
/*
* Filter 1: Huge methods are likely to be machine generated, but some aren't.
* If huge, assume we won't compile, but allow futher analysis to turn it back on.
*/
if (compiler_options.IsHugeMethod(GetNumDalvikInsns())) {
skip_compilation = true;
*skip_message = "Huge method: " + std::to_string(GetNumDalvikInsns());
// If we're got a huge number of basic blocks, don't bother with further analysis.
if (static_cast<size_t>(GetNumBlocks()) > (compiler_options.GetHugeMethodThreshold() / 2)) {
return true;
}
} else if (compiler_options.IsLargeMethod(GetNumDalvikInsns()) &&
/* If it's large and contains no branches, it's likely to be machine generated initialization */
(GetBranchCount() == 0)) {
*skip_message = "Large method with no branches";
return true;
} else if (compiler_filter == CompilerOptions::kSpeed) {
// If not huge, compile.
return false;
}
// Filter 2: Skip class initializers.
if (((cu_->access_flags & kAccConstructor) != 0) && ((cu_->access_flags & kAccStatic) != 0)) {
*skip_message = "Class initializer";
return true;
}
// Filter 3: if this method is a special pattern, go ahead and emit the canned pattern.
if (cu_->compiler_driver->GetMethodInlinerMap() != nullptr &&
cu_->compiler_driver->GetMethodInlinerMap()->GetMethodInliner(cu_->dex_file)
->IsSpecial(cu_->method_idx)) {
return false;
}
// Filter 4: if small, just compile.
if (GetNumDalvikInsns() < small_cutoff) {
return false;
}
// Analyze graph for:
// o floating point computation
// o basic blocks contained in loop with heavy arithmetic.
// o proportion of conditional branches.
MethodStats stats;
memset(&stats, 0, sizeof(stats));
ClearAllVisitedFlags();
AllNodesIterator iter(this);
for (BasicBlock* bb = iter.Next(); bb != NULL; bb = iter.Next()) {
AnalyzeBlock(bb, &stats);
}
return ComputeSkipCompilation(&stats, skip_compilation, skip_message);
}
void MIRGraph::DoCacheFieldLoweringInfo() {
static constexpr uint32_t kFieldIndexFlagQuickened = 0x80000000;
// All IGET/IPUT/SGET/SPUT instructions take 2 code units and there must also be a RETURN.
const uint32_t max_refs = (GetNumDalvikInsns() - 1u) / 2u;
ScopedArenaAllocator allocator(&cu_->arena_stack);
auto* field_idxs = allocator.AllocArray<uint32_t>(max_refs, kArenaAllocMisc);
DexMemAccessType* field_types = allocator.AllocArray<DexMemAccessType>(
max_refs, kArenaAllocMisc);
// Find IGET/IPUT/SGET/SPUT insns, store IGET/IPUT fields at the beginning, SGET/SPUT at the end.
size_t ifield_pos = 0u;
size_t sfield_pos = max_refs;
AllNodesIterator iter(this);
for (BasicBlock* bb = iter.Next(); bb != nullptr; bb = iter.Next()) {
if (bb->block_type != kDalvikByteCode) {
continue;
}
for (MIR* mir = bb->first_mir_insn; mir != nullptr; mir = mir->next) {
// Get field index and try to find it among existing indexes. If found, it's usually among
// the last few added, so we'll start the search from ifield_pos/sfield_pos. Though this
// is a linear search, it actually performs much better than map based approach.
const bool is_iget_or_iput = IsInstructionIGetOrIPut(mir->dalvikInsn.opcode);
const bool is_iget_or_iput_quick = IsInstructionIGetQuickOrIPutQuick(mir->dalvikInsn.opcode);
if (is_iget_or_iput || is_iget_or_iput_quick) {
uint32_t field_idx;
DexMemAccessType access_type;
if (is_iget_or_iput) {
field_idx = mir->dalvikInsn.vC;
access_type = IGetOrIPutMemAccessType(mir->dalvikInsn.opcode);
} else {
DCHECK(is_iget_or_iput_quick);
// Set kFieldIndexFlagQuickened so that we don't deduplicate against non quickened field
// indexes.
field_idx = mir->offset | kFieldIndexFlagQuickened;
access_type = IGetQuickOrIPutQuickMemAccessType(mir->dalvikInsn.opcode);
}
size_t i = ifield_pos;
while (i != 0u && field_idxs[i - 1] != field_idx) {
--i;
}
if (i != 0u) {
mir->meta.ifield_lowering_info = i - 1;
DCHECK_EQ(field_types[i - 1], access_type);
} else {
mir->meta.ifield_lowering_info = ifield_pos;
field_idxs[ifield_pos] = field_idx;
field_types[ifield_pos] = access_type;
++ifield_pos;
}
} else if (IsInstructionSGetOrSPut(mir->dalvikInsn.opcode)) {
auto field_idx = mir->dalvikInsn.vB;
size_t i = sfield_pos;
while (i != max_refs && field_idxs[i] != field_idx) {
++i;
}
if (i != max_refs) {
mir->meta.sfield_lowering_info = max_refs - i - 1u;
DCHECK_EQ(field_types[i], SGetOrSPutMemAccessType(mir->dalvikInsn.opcode));
} else {
mir->meta.sfield_lowering_info = max_refs - sfield_pos;
--sfield_pos;
field_idxs[sfield_pos] = field_idx;
field_types[sfield_pos] = SGetOrSPutMemAccessType(mir->dalvikInsn.opcode);
}
}
DCHECK_LE(ifield_pos, sfield_pos);
}
}
if (ifield_pos != 0u) {
// Resolve instance field infos.
DCHECK_EQ(ifield_lowering_infos_.size(), 0u);
ifield_lowering_infos_.reserve(ifield_pos);
for (size_t pos = 0u; pos != ifield_pos; ++pos) {
const uint32_t field_idx = field_idxs[pos];
const bool is_quickened = (field_idx & kFieldIndexFlagQuickened) != 0;
const uint32_t masked_field_idx = field_idx & ~kFieldIndexFlagQuickened;
CHECK_LT(masked_field_idx, 1u << 16);
ifield_lowering_infos_.push_back(
MirIFieldLoweringInfo(masked_field_idx, field_types[pos], is_quickened));
}
MirIFieldLoweringInfo::Resolve(cu_->compiler_driver, GetCurrentDexCompilationUnit(),
ifield_lowering_infos_.data(), ifield_pos);
}
if (sfield_pos != max_refs) {
// Resolve static field infos.
DCHECK_EQ(sfield_lowering_infos_.size(), 0u);
sfield_lowering_infos_.reserve(max_refs - sfield_pos);
for (size_t pos = max_refs; pos != sfield_pos;) {
--pos;
sfield_lowering_infos_.push_back(MirSFieldLoweringInfo(field_idxs[pos], field_types[pos]));
}
MirSFieldLoweringInfo::Resolve(cu_->compiler_driver, GetCurrentDexCompilationUnit(),
sfield_lowering_infos_.data(), max_refs - sfield_pos);
}
}
void MIRGraph::DoCacheMethodLoweringInfo() {
static constexpr uint16_t invoke_types[] = { kVirtual, kSuper, kDirect, kStatic, kInterface };
static constexpr uint32_t kMethodIdxFlagQuickened = 0x80000000;
// Embed the map value in the entry to avoid extra padding in 64-bit builds.
struct MapEntry {
// Map key: target_method_idx, invoke_type, devirt_target. Ordered to avoid padding.
const MethodReference* devirt_target;
uint32_t target_method_idx;
uint32_t vtable_idx;
uint16_t invoke_type;
// Map value.
uint32_t lowering_info_index;
};
struct MapEntryComparator {
bool operator()(const MapEntry& lhs, const MapEntry& rhs) const {
if (lhs.target_method_idx != rhs.target_method_idx) {
return lhs.target_method_idx < rhs.target_method_idx;
}
if (lhs.invoke_type != rhs.invoke_type) {
return lhs.invoke_type < rhs.invoke_type;
}
if (lhs.vtable_idx != rhs.vtable_idx) {
return lhs.vtable_idx < rhs.vtable_idx;
}
if (lhs.devirt_target != rhs.devirt_target) {
if (lhs.devirt_target == nullptr) {
return true;
}
if (rhs.devirt_target == nullptr) {
return false;
}
return devirt_cmp(*lhs.devirt_target, *rhs.devirt_target);
}
return false;
}
MethodReferenceComparator devirt_cmp;
};
ScopedArenaAllocator allocator(&cu_->arena_stack);
// All INVOKE instructions take 3 code units and there must also be a RETURN.
const uint32_t max_refs = (GetNumDalvikInsns() - 1u) / 3u;
// Map invoke key (see MapEntry) to lowering info index and vice versa.
// The invoke_map and sequential entries are essentially equivalent to Boost.MultiIndex's
// multi_index_container with one ordered index and one sequential index.
ScopedArenaSet<MapEntry, MapEntryComparator> invoke_map(MapEntryComparator(),
allocator.Adapter());
const MapEntry** sequential_entries =
allocator.AllocArray<const MapEntry*>(max_refs, kArenaAllocMisc);
// Find INVOKE insns and their devirtualization targets.
const VerifiedMethod* verified_method = GetCurrentDexCompilationUnit()->GetVerifiedMethod();
AllNodesIterator iter(this);
for (BasicBlock* bb = iter.Next(); bb != nullptr; bb = iter.Next()) {
if (bb->block_type != kDalvikByteCode) {
continue;
}
for (MIR* mir = bb->first_mir_insn; mir != nullptr; mir = mir->next) {
const bool is_quick_invoke = IsInstructionQuickInvoke(mir->dalvikInsn.opcode);
const bool is_invoke = IsInstructionInvoke(mir->dalvikInsn.opcode);
if (is_quick_invoke || is_invoke) {
uint32_t vtable_index = 0;
uint32_t target_method_idx = 0;
uint32_t invoke_type_idx = 0; // Default to virtual (in case of quickened).
DCHECK_EQ(invoke_types[invoke_type_idx], kVirtual);
if (is_quick_invoke) {
// We need to store the vtable index since we can't necessarily recreate it at resolve
// phase if the dequickening resolved to an interface method.
vtable_index = mir->dalvikInsn.vB;
// Fake up the method index by storing the mir offset so that we can read the dequicken
// info in resolve.
target_method_idx = mir->offset | kMethodIdxFlagQuickened;
} else {
DCHECK(is_invoke);
// Decode target method index and invoke type.
invoke_type_idx = InvokeInstructionType(mir->dalvikInsn.opcode);
target_method_idx = mir->dalvikInsn.vB;
}
// Find devirtualization target.
// TODO: The devirt map is ordered by the dex pc here. Is there a way to get INVOKEs
// ordered by dex pc as well? That would allow us to keep an iterator to devirt targets
// and increment it as needed instead of making O(log n) lookups.
const MethodReference* devirt_target = verified_method->GetDevirtTarget(mir->offset);
// Try to insert a new entry. If the insertion fails, we will have found an old one.
MapEntry entry = {
devirt_target,
target_method_idx,
vtable_index,
invoke_types[invoke_type_idx],
static_cast<uint32_t>(invoke_map.size())
};
auto it = invoke_map.insert(entry).first; // Iterator to either the old or the new entry.
mir->meta.method_lowering_info = it->lowering_info_index;
// If we didn't actually insert, this will just overwrite an existing value with the same.
sequential_entries[it->lowering_info_index] = &*it;
}
}
}
if (invoke_map.empty()) {
return;
}
// Prepare unique method infos, set method info indexes for their MIRs.
const size_t count = invoke_map.size();
method_lowering_infos_.reserve(count);
for (size_t pos = 0u; pos != count; ++pos) {
const MapEntry* entry = sequential_entries[pos];
const bool is_quick = (entry->target_method_idx & kMethodIdxFlagQuickened) != 0;
const uint32_t masked_method_idx = entry->target_method_idx & ~kMethodIdxFlagQuickened;
MirMethodLoweringInfo method_info(masked_method_idx,
static_cast<InvokeType>(entry->invoke_type), is_quick);
if (entry->devirt_target != nullptr) {
method_info.SetDevirtualizationTarget(*entry->devirt_target);
}
if (is_quick) {
method_info.SetVTableIndex(entry->vtable_idx);
}
method_lowering_infos_.push_back(method_info);
}
MirMethodLoweringInfo::Resolve(cu_->compiler_driver, GetCurrentDexCompilationUnit(),
method_lowering_infos_.data(), count);
}
bool MIRGraph::SkipCompilationByName(const std::string& methodname) {
return cu_->compiler_driver->SkipCompilation(methodname);
}
} // namespace art
|