summaryrefslogtreecommitdiffstats
path: root/compiler/dex/mir_graph.h
blob: 23b7c4292bdd3e12c83b8f36100a8b0d52b45e09 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
/*
 * Copyright (C) 2013 The Android Open Source Project
 *
 * Licensed under the Apache License, Version 2.0 (the "License");
 * you may not use this file except in compliance with the License.
 * You may obtain a copy of the License at
 *
 *      http://www.apache.org/licenses/LICENSE-2.0
 *
 * Unless required by applicable law or agreed to in writing, software
 * distributed under the License is distributed on an "AS IS" BASIS,
 * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
 * See the License for the specific language governing permissions and
 * limitations under the License.
 */

#ifndef ART_COMPILER_DEX_MIR_GRAPH_H_
#define ART_COMPILER_DEX_MIR_GRAPH_H_

#include <stdint.h>

#include "base/arena_containers.h"
#include "base/bit_utils.h"
#include "base/scoped_arena_containers.h"
#include "dex_file.h"
#include "dex_instruction.h"
#include "dex_types.h"
#include "invoke_type.h"
#include "mir_field_info.h"
#include "mir_method_info.h"
#include "reg_location.h"
#include "reg_storage.h"
#include "utils/arena_bit_vector.h"

namespace art {

struct CompilationUnit;
class DexCompilationUnit;
class DexFileMethodInliner;
class GlobalValueNumbering;
class GvnDeadCodeElimination;
class PassManager;
class TypeInference;

// Forward declaration.
class MIRGraph;

enum DataFlowAttributePos {
  kUA = 0,
  kUB,
  kUC,
  kAWide,
  kBWide,
  kCWide,
  kDA,
  kIsMove,
  kSetsConst,
  kFormat35c,
  kFormat3rc,
  kFormatExtended,       // Extended format for extended MIRs.
  kNullCheckA,           // Null check of A.
  kNullCheckB,           // Null check of B.
  kNullCheckOut0,        // Null check out outgoing arg0.
  kDstNonNull,           // May assume dst is non-null.
  kRetNonNull,           // May assume retval is non-null.
  kNullTransferSrc0,     // Object copy src[0] -> dst.
  kNullTransferSrcN,     // Phi null check state transfer.
  kRangeCheckC,          // Range check of C.
  kCheckCastA,           // Check cast of A.
  kFPA,
  kFPB,
  kFPC,
  kCoreA,
  kCoreB,
  kCoreC,
  kRefA,
  kRefB,
  kRefC,
  kSameTypeAB,           // A and B have the same type but it can be core/ref/fp (IF_cc).
  kUsesMethodStar,       // Implicit use of Method*.
  kUsesIField,           // Accesses an instance field (IGET/IPUT).
  kUsesSField,           // Accesses a static field (SGET/SPUT).
  kCanInitializeClass,   // Can trigger class initialization (SGET/SPUT/INVOKE_STATIC).
  kDoLVN,                // Worth computing local value numbers.
};

#define DF_NOP                  UINT64_C(0)
#define DF_UA                   (UINT64_C(1) << kUA)
#define DF_UB                   (UINT64_C(1) << kUB)
#define DF_UC                   (UINT64_C(1) << kUC)
#define DF_A_WIDE               (UINT64_C(1) << kAWide)
#define DF_B_WIDE               (UINT64_C(1) << kBWide)
#define DF_C_WIDE               (UINT64_C(1) << kCWide)
#define DF_DA                   (UINT64_C(1) << kDA)
#define DF_IS_MOVE              (UINT64_C(1) << kIsMove)
#define DF_SETS_CONST           (UINT64_C(1) << kSetsConst)
#define DF_FORMAT_35C           (UINT64_C(1) << kFormat35c)
#define DF_FORMAT_3RC           (UINT64_C(1) << kFormat3rc)
#define DF_FORMAT_EXTENDED      (UINT64_C(1) << kFormatExtended)
#define DF_NULL_CHK_A           (UINT64_C(1) << kNullCheckA)
#define DF_NULL_CHK_B           (UINT64_C(1) << kNullCheckB)
#define DF_NULL_CHK_OUT0        (UINT64_C(1) << kNullCheckOut0)
#define DF_NON_NULL_DST         (UINT64_C(1) << kDstNonNull)
#define DF_NON_NULL_RET         (UINT64_C(1) << kRetNonNull)
#define DF_NULL_TRANSFER_0      (UINT64_C(1) << kNullTransferSrc0)
#define DF_NULL_TRANSFER_N      (UINT64_C(1) << kNullTransferSrcN)
#define DF_RANGE_CHK_C          (UINT64_C(1) << kRangeCheckC)
#define DF_CHK_CAST             (UINT64_C(1) << kCheckCastA)
#define DF_FP_A                 (UINT64_C(1) << kFPA)
#define DF_FP_B                 (UINT64_C(1) << kFPB)
#define DF_FP_C                 (UINT64_C(1) << kFPC)
#define DF_CORE_A               (UINT64_C(1) << kCoreA)
#define DF_CORE_B               (UINT64_C(1) << kCoreB)
#define DF_CORE_C               (UINT64_C(1) << kCoreC)
#define DF_REF_A                (UINT64_C(1) << kRefA)
#define DF_REF_B                (UINT64_C(1) << kRefB)
#define DF_REF_C                (UINT64_C(1) << kRefC)
#define DF_SAME_TYPE_AB         (UINT64_C(1) << kSameTypeAB)
#define DF_UMS                  (UINT64_C(1) << kUsesMethodStar)
#define DF_IFIELD               (UINT64_C(1) << kUsesIField)
#define DF_SFIELD               (UINT64_C(1) << kUsesSField)
#define DF_CLINIT               (UINT64_C(1) << kCanInitializeClass)
#define DF_LVN                  (UINT64_C(1) << kDoLVN)

#define DF_HAS_USES             (DF_UA | DF_UB | DF_UC)

#define DF_HAS_DEFS             (DF_DA)

#define DF_HAS_NULL_CHKS        (DF_NULL_CHK_A | \
                                 DF_NULL_CHK_B | \
                                 DF_NULL_CHK_OUT0)

#define DF_HAS_RANGE_CHKS       (DF_RANGE_CHK_C)

#define DF_HAS_NR_CHKS          (DF_HAS_NULL_CHKS | \
                                 DF_HAS_RANGE_CHKS)

#define DF_A_IS_REG             (DF_UA | DF_DA)
#define DF_B_IS_REG             (DF_UB)
#define DF_C_IS_REG             (DF_UC)
#define DF_USES_FP              (DF_FP_A | DF_FP_B | DF_FP_C)
#define DF_NULL_TRANSFER        (DF_NULL_TRANSFER_0 | DF_NULL_TRANSFER_N)
#define DF_IS_INVOKE            (DF_FORMAT_35C | DF_FORMAT_3RC)

enum OatMethodAttributes {
  kIsLeaf,            // Method is leaf.
};

#define METHOD_IS_LEAF          (1 << kIsLeaf)

// Minimum field size to contain Dalvik v_reg number.
#define VREG_NUM_WIDTH 16

#define INVALID_VREG (0xFFFFU)
#define INVALID_OFFSET (0xDEADF00FU)

#define MIR_IGNORE_NULL_CHECK           (1 << kMIRIgnoreNullCheck)
#define MIR_IGNORE_RANGE_CHECK          (1 << kMIRIgnoreRangeCheck)
#define MIR_IGNORE_CHECK_CAST           (1 << kMIRIgnoreCheckCast)
#define MIR_STORE_NON_NULL_VALUE        (1 << kMIRStoreNonNullValue)
#define MIR_CLASS_IS_INITIALIZED        (1 << kMIRClassIsInitialized)
#define MIR_CLASS_IS_IN_DEX_CACHE       (1 << kMIRClassIsInDexCache)
#define MIR_IGNORE_DIV_ZERO_CHECK       (1 << kMirIgnoreDivZeroCheck)
#define MIR_INLINED                     (1 << kMIRInlined)
#define MIR_INLINED_PRED                (1 << kMIRInlinedPred)
#define MIR_CALLEE                      (1 << kMIRCallee)
#define MIR_IGNORE_SUSPEND_CHECK        (1 << kMIRIgnoreSuspendCheck)
#define MIR_DUP                         (1 << kMIRDup)
#define MIR_MARK                        (1 << kMIRMark)
#define MIR_STORE_NON_TEMPORAL          (1 << kMIRStoreNonTemporal)

#define BLOCK_NAME_LEN 80

typedef uint16_t BasicBlockId;
static const BasicBlockId NullBasicBlockId = 0;

// Leaf optimization is basically the removal of suspend checks from leaf methods.
// This is incompatible with SuspendCheckElimination (SCE) which eliminates suspend
// checks from loops that call any non-intrinsic method, since a loop that calls
// only a leaf method would end up without any suspend checks at all. So turning
// this on automatically disables the SCE in MIRGraph::EliminateSuspendChecksGate().
//
// Since the Optimizing compiler is actually applying the same optimization, Quick
// must not run SCE anyway, so we enable this optimization as a way to disable SCE
// while keeping a consistent behavior across the backends, b/22657404.
static constexpr bool kLeafOptimization = true;

/*
 * In general, vreg/sreg describe Dalvik registers that originated with dx.  However,
 * it is useful to have compiler-generated temporary registers and have them treated
 * in the same manner as dx-generated virtual registers.  This struct records the SSA
 * name of compiler-introduced temporaries.
 */
struct CompilerTemp {
  int32_t v_reg;      // Virtual register number for temporary.
  int32_t s_reg_low;  // SSA name for low Dalvik word.
};

enum CompilerTempType {
  kCompilerTempVR,                // A virtual register temporary.
  kCompilerTempSpecialMethodPtr,  // Temporary that keeps track of current method pointer.
  kCompilerTempBackend,           // Temporary that is used by backend.
};

// When debug option enabled, records effectiveness of null and range check elimination.
struct Checkstats {
  int32_t null_checks;
  int32_t null_checks_eliminated;
  int32_t range_checks;
  int32_t range_checks_eliminated;
};

// Dataflow attributes of a basic block.
struct BasicBlockDataFlow {
  ArenaBitVector* use_v;
  ArenaBitVector* def_v;
  ArenaBitVector* live_in_v;
  int32_t* vreg_to_ssa_map_exit;
};

/*
 * Normalized use/def for a MIR operation using SSA names rather than vregs.  Note that
 * uses/defs retain the Dalvik convention that long operations operate on a pair of 32-bit
 * vregs.  For example, "ADD_LONG v0, v2, v3" would have 2 defs (v0/v1) and 4 uses (v2/v3, v4/v5).
 * Following SSA renaming, this is the primary struct used by code generators to locate
 * operand and result registers.  This is a somewhat confusing and unhelpful convention that
 * we may want to revisit in the future.
 *
 * TODO:
 *  1. Add accessors for uses/defs and make data private
 *  2. Change fp_use/fp_def to a bit array (could help memory usage)
 *  3. Combine array storage into internal array and handled via accessors from 1.
 */
struct SSARepresentation {
  int32_t* uses;
  int32_t* defs;
  uint16_t num_uses_allocated;
  uint16_t num_defs_allocated;
  uint16_t num_uses;
  uint16_t num_defs;

  static uint32_t GetStartUseIndex(Instruction::Code opcode);
};

/*
 * The Midlevel Intermediate Representation node, which may be largely considered a
 * wrapper around a Dalvik byte code.
 */
class MIR : public ArenaObject<kArenaAllocMIR> {
 public:
  /*
   * TODO: remove embedded DecodedInstruction to save space, keeping only opcode.  Recover
   * additional fields on as-needed basis.  Question: how to support MIR Pseudo-ops; probably
   * need to carry aux data pointer.
   */
  struct DecodedInstruction {
    uint32_t vA;
    uint32_t vB;
    uint64_t vB_wide;        /* for k51l */
    uint32_t vC;
    uint32_t arg[5];         /* vC/D/E/F/G in invoke or filled-new-array */
    Instruction::Code opcode;

    explicit DecodedInstruction():vA(0), vB(0), vB_wide(0), vC(0), opcode(Instruction::NOP) {
    }

    /*
     * Given a decoded instruction representing a const bytecode, it updates
     * the out arguments with proper values as dictated by the constant bytecode.
     */
    bool GetConstant(int64_t* ptr_value, bool* wide) const;

    static bool IsPseudoMirOp(Instruction::Code opcode) {
      return static_cast<int>(opcode) >= static_cast<int>(kMirOpFirst);
    }

    static bool IsPseudoMirOp(int opcode) {
      return opcode >= static_cast<int>(kMirOpFirst);
    }

    bool IsInvoke() const {
      return ((FlagsOf() & Instruction::kInvoke) == Instruction::kInvoke);
    }

    bool IsStore() const {
      return ((FlagsOf() & Instruction::kStore) == Instruction::kStore);
    }

    bool IsLoad() const {
      return ((FlagsOf() & Instruction::kLoad) == Instruction::kLoad);
    }

    bool IsConditionalBranch() const {
      return (FlagsOf() == (Instruction::kContinue | Instruction::kBranch));
    }

    /**
     * @brief Is the register C component of the decoded instruction a constant?
     */
    bool IsCFieldOrConstant() const {
      return ((FlagsOf() & Instruction::kRegCFieldOrConstant) == Instruction::kRegCFieldOrConstant);
    }

    /**
     * @brief Is the register C component of the decoded instruction a constant?
     */
    bool IsBFieldOrConstant() const {
      return ((FlagsOf() & Instruction::kRegBFieldOrConstant) == Instruction::kRegBFieldOrConstant);
    }

    bool IsCast() const {
      return ((FlagsOf() & Instruction::kCast) == Instruction::kCast);
    }

    /**
     * @brief Does the instruction clobber memory?
     * @details Clobber means that the instruction changes the memory not in a punctual way.
     *          Therefore any supposition on memory aliasing or memory contents should be disregarded
     *            when crossing such an instruction.
     */
    bool Clobbers() const {
      return ((FlagsOf() & Instruction::kClobber) == Instruction::kClobber);
    }

    bool IsLinear() const {
      return (FlagsOf() & (Instruction::kAdd | Instruction::kSubtract)) != 0;
    }

    int FlagsOf() const;
  } dalvikInsn;

  NarrowDexOffset offset;         // Offset of the instruction in code units.
  uint16_t optimization_flags;
  int16_t m_unit_index;           // From which method was this MIR included
  BasicBlockId bb;
  MIR* next;
  SSARepresentation* ssa_rep;
  union {
    // Incoming edges for phi node.
    BasicBlockId* phi_incoming;
    // Establish link from check instruction (kMirOpCheck) to the actual throwing instruction.
    MIR* throw_insn;
    // Branch condition for fused cmp or select.
    ConditionCode ccode;
    // IGET/IPUT lowering info index, points to MIRGraph::ifield_lowering_infos_. Due to limit on
    // the number of code points (64K) and size of IGET/IPUT insn (2), this will never exceed 32K.
    uint32_t ifield_lowering_info;
    // SGET/SPUT lowering info index, points to MIRGraph::sfield_lowering_infos_. Due to limit on
    // the number of code points (64K) and size of SGET/SPUT insn (2), this will never exceed 32K.
    uint32_t sfield_lowering_info;
    // INVOKE data index, points to MIRGraph::method_lowering_infos_. Also used for inlined
    // CONST and MOVE insn (with MIR_CALLEE) to remember the invoke for type inference.
    uint32_t method_lowering_info;
  } meta;

  explicit MIR() : offset(0), optimization_flags(0), m_unit_index(0), bb(NullBasicBlockId),
                 next(nullptr), ssa_rep(nullptr) {
    memset(&meta, 0, sizeof(meta));
  }

  uint32_t GetStartUseIndex() const {
    return SSARepresentation::GetStartUseIndex(dalvikInsn.opcode);
  }

  MIR* Copy(CompilationUnit *c_unit);
  MIR* Copy(MIRGraph* mir_Graph);
};

struct SuccessorBlockInfo;

class BasicBlock : public DeletableArenaObject<kArenaAllocBB> {
 public:
  BasicBlock(BasicBlockId block_id, BBType type, ArenaAllocator* allocator)
      : id(block_id),
        dfs_id(), start_offset(), fall_through(), taken(), i_dom(), nesting_depth(),
        block_type(type),
        successor_block_list_type(kNotUsed),
        visited(), hidden(), catch_entry(), explicit_throw(), conditional_branch(),
        terminated_by_return(), dominates_return(), use_lvn(), first_mir_insn(),
        last_mir_insn(), data_flow_info(), dominators(), i_dominated(), dom_frontier(),
        predecessors(allocator->Adapter(kArenaAllocBBPredecessors)),
        successor_blocks(allocator->Adapter(kArenaAllocSuccessor)) {
  }
  BasicBlockId id;
  BasicBlockId dfs_id;
  NarrowDexOffset start_offset;     // Offset in code units.
  BasicBlockId fall_through;
  BasicBlockId taken;
  BasicBlockId i_dom;               // Immediate dominator.
  uint16_t nesting_depth;
  BBType block_type:4;
  BlockListType successor_block_list_type:4;
  bool visited:1;
  bool hidden:1;
  bool catch_entry:1;
  bool explicit_throw:1;
  bool conditional_branch:1;
  bool terminated_by_return:1;  // Block ends with a Dalvik return opcode.
  bool dominates_return:1;      // Is a member of return extended basic block.
  bool use_lvn:1;               // Run local value numbering on this block.
  MIR* first_mir_insn;
  MIR* last_mir_insn;
  BasicBlockDataFlow* data_flow_info;
  ArenaBitVector* dominators;
  ArenaBitVector* i_dominated;      // Set nodes being immediately dominated.
  ArenaBitVector* dom_frontier;     // Dominance frontier.
  ArenaVector<BasicBlockId> predecessors;
  ArenaVector<SuccessorBlockInfo*> successor_blocks;

  void AppendMIR(MIR* mir);
  void AppendMIRList(MIR* first_list_mir, MIR* last_list_mir);
  void AppendMIRList(const std::vector<MIR*>& insns);
  void PrependMIR(MIR* mir);
  void PrependMIRList(MIR* first_list_mir, MIR* last_list_mir);
  void PrependMIRList(const std::vector<MIR*>& to_add);
  void InsertMIRAfter(MIR* current_mir, MIR* new_mir);
  void InsertMIRListAfter(MIR* insert_after, MIR* first_list_mir, MIR* last_list_mir);
  MIR* FindPreviousMIR(MIR* mir);
  void InsertMIRBefore(MIR* insert_before, MIR* list);
  void InsertMIRListBefore(MIR* insert_before, MIR* first_list_mir, MIR* last_list_mir);
  bool RemoveMIR(MIR* mir);
  bool RemoveMIRList(MIR* first_list_mir, MIR* last_list_mir);

  BasicBlock* Copy(CompilationUnit* c_unit);
  BasicBlock* Copy(MIRGraph* mir_graph);

  /**
   * @brief Reset the optimization_flags field of each MIR.
   */
  void ResetOptimizationFlags(uint16_t reset_flags);

  /**
   * @brief Kill the BasicBlock.
   * @details Unlink predecessors and successors, remove all MIRs, set the block type to kDead
   *          and set hidden to true.
   */
  void Kill(MIRGraph* mir_graph);

  /**
   * @brief Is ssa_reg the last SSA definition of that VR in the block?
   */
  bool IsSSALiveOut(const CompilationUnit* c_unit, int ssa_reg);

  /**
   * @brief Replace the edge going to old_bb to now go towards new_bb.
   */
  bool ReplaceChild(BasicBlockId old_bb, BasicBlockId new_bb);

  /**
   * @brief Erase the predecessor old_pred.
   */
  void ErasePredecessor(BasicBlockId old_pred);

  /**
   * @brief Update the predecessor array from old_pred to new_pred.
   */
  void UpdatePredecessor(BasicBlockId old_pred, BasicBlockId new_pred);

  /**
   * @brief Return first non-Phi insn.
   */
  MIR* GetFirstNonPhiInsn();

  /**
   * @brief Checks whether the block ends with if-nez or if-eqz that branches to
   *        the given successor only if the register in not zero.
   */
  bool BranchesToSuccessorOnlyIfNotZero(BasicBlockId succ_id) const {
    if (last_mir_insn == nullptr) {
      return false;
    }
    Instruction::Code last_opcode = last_mir_insn->dalvikInsn.opcode;
    return ((last_opcode == Instruction::IF_EQZ && fall_through == succ_id) ||
        (last_opcode == Instruction::IF_NEZ && taken == succ_id)) &&
        // Make sure the other successor isn't the same (empty if), b/21614284.
        (fall_through != taken);
  }

  /**
   * @brief Used to obtain the next MIR that follows unconditionally.
   * @details The implementation does not guarantee that a MIR does not
   * follow even if this method returns nullptr.
   * @param mir_graph the MIRGraph.
   * @param current The MIR for which to find an unconditional follower.
   * @return Returns the following MIR if one can be found.
   */
  MIR* GetNextUnconditionalMir(MIRGraph* mir_graph, MIR* current);
  bool IsExceptionBlock() const;

 private:
  DISALLOW_COPY_AND_ASSIGN(BasicBlock);
};

/*
 * The "blocks" field in "successor_block_list" points to an array of elements with the type
 * "SuccessorBlockInfo".  For catch blocks, key is type index for the exception.  For switch
 * blocks, key is the case value.
 */
struct SuccessorBlockInfo {
  BasicBlockId block;
  int key;
};

/**
 * @class ChildBlockIterator
 * @brief Enable an easy iteration of the children.
 */
class ChildBlockIterator {
 public:
  /**
   * @brief Constructs a child iterator.
   * @param bb The basic whose children we need to iterate through.
   * @param mir_graph The MIRGraph used to get the basic block during iteration.
   */
  ChildBlockIterator(BasicBlock* bb, MIRGraph* mir_graph);
  BasicBlock* Next();

 private:
  BasicBlock* basic_block_;
  MIRGraph* mir_graph_;
  bool visited_fallthrough_;
  bool visited_taken_;
  bool have_successors_;
  ArenaVector<SuccessorBlockInfo*>::const_iterator successor_iter_;
};

/*
 * Collection of information describing an invoke, and the destination of
 * the subsequent MOVE_RESULT (if applicable).  Collected as a unit to enable
 * more efficient invoke code generation.
 */
struct CallInfo {
  size_t num_arg_words;   // Note: word count, not arg count.
  RegLocation* args;      // One for each word of arguments.
  RegLocation result;     // Eventual target of MOVE_RESULT.
  int opt_flags;
  InvokeType type;
  uint32_t dex_idx;
  MethodReference method_ref;
  uint32_t index;         // Method idx for invokes, type idx for FilledNewArray.
  uintptr_t direct_code;
  uintptr_t direct_method;
  RegLocation target;     // Target of following move_result.
  bool skip_this;
  bool is_range;
  DexOffset offset;       // Offset in code units.
  MIR* mir;
  int32_t string_init_offset;
};


const RegLocation bad_loc = {kLocDalvikFrame, 0, 0, 0, 0, 0, 0, 0, 0, RegStorage(), INVALID_SREG,
                             INVALID_SREG};

class MIRGraph {
 public:
  MIRGraph(CompilationUnit* cu, ArenaAllocator* arena);
  virtual ~MIRGraph();

  /*
   * Examine the graph to determine whether it's worthwile to spend the time compiling
   * this method.
   */
  bool SkipCompilation(std::string* skip_message);

  /*
   * Should we skip the compilation of this method based on its name?
   */
  bool SkipCompilationByName(const std::string& methodname);

  /*
   * Parse dex method and add MIR at current insert point.  Returns id (which is
   * actually the index of the method in the m_units_ array).
   */
  void InlineMethod(const DexFile::CodeItem* code_item, uint32_t access_flags,
                    InvokeType invoke_type, uint16_t class_def_idx,
                    uint32_t method_idx, jobject class_loader, const DexFile& dex_file);

  /* Find existing block */
  BasicBlock* FindBlock(DexOffset code_offset,
                        ScopedArenaVector<uint16_t>* dex_pc_to_block_map) {
    return FindBlock(code_offset, false, nullptr, dex_pc_to_block_map);
  }

  const uint16_t* GetCurrentInsns() const {
    return current_code_item_->insns_;
  }

  /**
   * @brief Used to obtain the raw dex bytecode instruction pointer.
   * @param m_unit_index The method index in MIRGraph (caused by having multiple methods).
   * This is guaranteed to contain index 0 which is the base method being compiled.
   * @return Returns the raw instruction pointer.
   */
  const uint16_t* GetInsns(int m_unit_index) const;

  /**
   * @brief Used to obtain the raw data table.
   * @param mir sparse switch, packed switch, of fill-array-data
   * @param table_offset The table offset from start of method.
   * @return Returns the raw table pointer.
   */
  const uint16_t* GetTable(MIR* mir, uint32_t table_offset) const {
    return GetInsns(mir->m_unit_index) + mir->offset + static_cast<int32_t>(table_offset);
  }

  unsigned int GetNumBlocks() const {
    return block_list_.size();
  }

  /**
   * @brief Provides the total size in code units of all instructions in MIRGraph.
   * @details Includes the sizes of all methods in compilation unit.
   * @return Returns the cumulative sum of all insn sizes (in code units).
   */
  size_t GetNumDalvikInsns() const;

  ArenaBitVector* GetTryBlockAddr() const {
    return try_block_addr_;
  }

  BasicBlock* GetEntryBlock() const {
    return entry_block_;
  }

  BasicBlock* GetExitBlock() const {
    return exit_block_;
  }

  BasicBlock* GetBasicBlock(unsigned int block_id) const {
    DCHECK_LT(block_id, block_list_.size());  // NOTE: NullBasicBlockId is 0.
    return (block_id == NullBasicBlockId) ? nullptr : block_list_[block_id];
  }

  size_t GetBasicBlockListCount() const {
    return block_list_.size();
  }

  const ArenaVector<BasicBlock*>& GetBlockList() {
    return block_list_;
  }

  const ArenaVector<BasicBlockId>& GetDfsOrder() {
    return dfs_order_;
  }

  const ArenaVector<BasicBlockId>& GetDfsPostOrder() {
    return dfs_post_order_;
  }

  const ArenaVector<BasicBlockId>& GetDomPostOrder() {
    return dom_post_order_traversal_;
  }

  int GetDefCount() const {
    return def_count_;
  }

  ArenaAllocator* GetArena() const {
    return arena_;
  }

  void EnableOpcodeCounting() {
    opcode_count_ = arena_->AllocArray<int>(kNumPackedOpcodes, kArenaAllocMisc);
  }

  void ShowOpcodeStats();

  DexCompilationUnit* GetCurrentDexCompilationUnit() const {
    return m_units_[current_method_];
  }

  /**
   * @brief Dump a CFG into a dot file format.
   * @param dir_prefix the directory the file will be created in.
   * @param all_blocks does the dumper use all the basic blocks or use the reachable blocks.
   * @param suffix does the filename require a suffix or not (default = nullptr).
   */
  void DumpCFG(const char* dir_prefix, bool all_blocks, const char* suffix = nullptr);

  bool HasCheckCast() const {
    return (merged_df_flags_ & DF_CHK_CAST) != 0u;
  }

  bool HasFieldAccess() const {
    return (merged_df_flags_ & (DF_IFIELD | DF_SFIELD)) != 0u;
  }

  bool HasStaticFieldAccess() const {
    return (merged_df_flags_ & DF_SFIELD) != 0u;
  }

  bool HasInvokes() const {
    // NOTE: These formats include the rare filled-new-array/range.
    return (merged_df_flags_ & (DF_FORMAT_35C | DF_FORMAT_3RC)) != 0u;
  }

  void DoCacheFieldLoweringInfo();

  const MirIFieldLoweringInfo& GetIFieldLoweringInfo(MIR* mir) const {
    return GetIFieldLoweringInfo(mir->meta.ifield_lowering_info);
  }

  const MirIFieldLoweringInfo& GetIFieldLoweringInfo(uint32_t lowering_info) const {
    DCHECK_LT(lowering_info, ifield_lowering_infos_.size());
    return ifield_lowering_infos_[lowering_info];
  }

  size_t GetIFieldLoweringInfoCount() const {
    return ifield_lowering_infos_.size();
  }

  const MirSFieldLoweringInfo& GetSFieldLoweringInfo(MIR* mir) const {
    return GetSFieldLoweringInfo(mir->meta.sfield_lowering_info);
  }

  const MirSFieldLoweringInfo& GetSFieldLoweringInfo(uint32_t lowering_info) const {
    DCHECK_LT(lowering_info, sfield_lowering_infos_.size());
    return sfield_lowering_infos_[lowering_info];
  }

  size_t GetSFieldLoweringInfoCount() const {
    return sfield_lowering_infos_.size();
  }

  void DoCacheMethodLoweringInfo();

  const MirMethodLoweringInfo& GetMethodLoweringInfo(MIR* mir) const {
    return GetMethodLoweringInfo(mir->meta.method_lowering_info);
  }

  const MirMethodLoweringInfo& GetMethodLoweringInfo(uint32_t lowering_info) const {
    DCHECK_LT(lowering_info, method_lowering_infos_.size());
    return method_lowering_infos_[lowering_info];
  }

  size_t GetMethodLoweringInfoCount() const {
    return method_lowering_infos_.size();
  }

  void ComputeInlineIFieldLoweringInfo(uint16_t field_idx, MIR* invoke, MIR* iget_or_iput);

  void InitRegLocations();

  void RemapRegLocations();

  void DumpRegLocTable(RegLocation* table, int count);

  void BasicBlockOptimizationStart();
  void BasicBlockOptimization();
  void BasicBlockOptimizationEnd();

  void StringChange();

  const ArenaVector<BasicBlockId>& GetTopologicalSortOrder() {
    DCHECK(!topological_order_.empty());
    return topological_order_;
  }

  const ArenaVector<BasicBlockId>& GetTopologicalSortOrderLoopEnds() {
    DCHECK(!topological_order_loop_ends_.empty());
    return topological_order_loop_ends_;
  }

  const ArenaVector<BasicBlockId>& GetTopologicalSortOrderIndexes() {
    DCHECK(!topological_order_indexes_.empty());
    return topological_order_indexes_;
  }

  ArenaVector<std::pair<uint16_t, bool>>* GetTopologicalSortOrderLoopHeadStack() {
    DCHECK(!topological_order_.empty());  // Checking the main array, not the stack.
    return &topological_order_loop_head_stack_;
  }

  size_t GetMaxNestedLoops() const {
    return max_nested_loops_;
  }

  bool IsLoopHead(BasicBlockId bb_id) {
    return topological_order_loop_ends_[topological_order_indexes_[bb_id]] != 0u;
  }

  bool IsConst(int32_t s_reg) const {
    return is_constant_v_->IsBitSet(s_reg);
  }

  bool IsConst(RegLocation loc) const {
    return loc.orig_sreg < 0 ? false : IsConst(loc.orig_sreg);
  }

  int32_t ConstantValue(RegLocation loc) const {
    DCHECK(IsConst(loc));
    return constant_values_[loc.orig_sreg];
  }

  int32_t ConstantValue(int32_t s_reg) const {
    DCHECK(IsConst(s_reg));
    return constant_values_[s_reg];
  }

  /**
   * @brief Used to obtain 64-bit value of a pair of ssa registers.
   * @param s_reg_low The ssa register representing the low bits.
   * @param s_reg_high The ssa register representing the high bits.
   * @return Retusn the 64-bit constant value.
   */
  int64_t ConstantValueWide(int32_t s_reg_low, int32_t s_reg_high) const {
    DCHECK(IsConst(s_reg_low));
    DCHECK(IsConst(s_reg_high));
    return (static_cast<int64_t>(constant_values_[s_reg_high]) << 32) |
        Low32Bits(static_cast<int64_t>(constant_values_[s_reg_low]));
  }

  int64_t ConstantValueWide(RegLocation loc) const {
    DCHECK(IsConst(loc));
    DCHECK(!loc.high_word);  // Do not allow asking for the high partner.
    DCHECK_LT(loc.orig_sreg + 1, GetNumSSARegs());
    return (static_cast<int64_t>(constant_values_[loc.orig_sreg + 1]) << 32) |
        Low32Bits(static_cast<int64_t>(constant_values_[loc.orig_sreg]));
  }

  /**
   * @brief Used to mark ssa register as being constant.
   * @param ssa_reg The ssa register.
   * @param value The constant value of ssa register.
   */
  void SetConstant(int32_t ssa_reg, int32_t value);

  /**
   * @brief Used to mark ssa register and its wide counter-part as being constant.
   * @param ssa_reg The ssa register.
   * @param value The 64-bit constant value of ssa register and its pair.
   */
  void SetConstantWide(int32_t ssa_reg, int64_t value);

  bool IsConstantNullRef(RegLocation loc) const {
    return loc.ref && loc.is_const && (ConstantValue(loc) == 0);
  }

  int GetNumSSARegs() const {
    return num_ssa_regs_;
  }

  void SetNumSSARegs(int new_num) {
     /*
      * TODO: It's theoretically possible to exceed 32767, though any cases which did
      * would be filtered out with current settings.  When orig_sreg field is removed
      * from RegLocation, expand s_reg_low to handle all possible cases and remove DCHECK().
      */
    CHECK_EQ(new_num, static_cast<int16_t>(new_num));
    num_ssa_regs_ = new_num;
  }

  unsigned int GetNumReachableBlocks() const {
    return num_reachable_blocks_;
  }

  uint32_t GetUseCount(int sreg) const {
    DCHECK_LT(static_cast<size_t>(sreg), use_counts_.size());
    return use_counts_[sreg];
  }

  uint32_t GetRawUseCount(int sreg) const {
    DCHECK_LT(static_cast<size_t>(sreg), raw_use_counts_.size());
    return raw_use_counts_[sreg];
  }

  int GetSSASubscript(int ssa_reg) const {
    DCHECK_LT(static_cast<size_t>(ssa_reg), ssa_subscripts_.size());
    return ssa_subscripts_[ssa_reg];
  }

  RegLocation GetRawSrc(MIR* mir, int num) {
    DCHECK(num < mir->ssa_rep->num_uses);
    RegLocation res = reg_location_[mir->ssa_rep->uses[num]];
    return res;
  }

  RegLocation GetRawDest(MIR* mir) {
    DCHECK_GT(mir->ssa_rep->num_defs, 0);
    RegLocation res = reg_location_[mir->ssa_rep->defs[0]];
    return res;
  }

  RegLocation GetDest(MIR* mir) {
    RegLocation res = GetRawDest(mir);
    DCHECK(!res.wide);
    return res;
  }

  RegLocation GetSrc(MIR* mir, int num) {
    RegLocation res = GetRawSrc(mir, num);
    DCHECK(!res.wide);
    return res;
  }

  RegLocation GetDestWide(MIR* mir) {
    RegLocation res = GetRawDest(mir);
    DCHECK(res.wide);
    return res;
  }

  RegLocation GetSrcWide(MIR* mir, int low) {
    RegLocation res = GetRawSrc(mir, low);
    DCHECK(res.wide);
    return res;
  }

  RegLocation GetBadLoc() {
    return bad_loc;
  }

  int GetMethodSReg() const {
    return method_sreg_;
  }

  /**
   * @brief Used to obtain the number of compiler temporaries being used.
   * @return Returns the number of compiler temporaries.
   */
  size_t GetNumUsedCompilerTemps() const {
    // Assume that the special temps will always be used.
    return GetNumNonSpecialCompilerTemps() + max_available_special_compiler_temps_;
  }

  /**
   * @brief Used to obtain number of bytes needed for special temps.
   * @details This space is always needed because temps have special location on stack.
   * @return Returns number of bytes for the special temps.
   */
  size_t GetNumBytesForSpecialTemps() const;

  /**
   * @brief Used by backend as a hint for maximum number of bytes for non-special temps.
   * @details Returns 4 bytes for each temp because that is the maximum amount needed
   * for storing each temp. The BE could be smarter though and allocate a smaller
   * spill region.
   * @return Returns the maximum number of bytes needed for non-special temps.
   */
  size_t GetMaximumBytesForNonSpecialTemps() const {
    return GetNumNonSpecialCompilerTemps() * sizeof(uint32_t);
  }

  /**
   * @brief Used to obtain the number of non-special compiler temporaries being used.
   * @return Returns the number of non-special compiler temporaries.
   */
  size_t GetNumNonSpecialCompilerTemps() const {
    return num_non_special_compiler_temps_;
  }

  /**
   * @brief Used to set the total number of available non-special compiler temporaries.
   * @details Can fail setting the new max if there are more temps being used than the new_max.
   * @param new_max The new maximum number of non-special compiler temporaries.
   * @return Returns true if the max was set and false if failed to set.
   */
  bool SetMaxAvailableNonSpecialCompilerTemps(size_t new_max) {
    // Make sure that enough temps still exist for backend and also that the
    // new max can still keep around all of the already requested temps.
    if (new_max < (GetNumNonSpecialCompilerTemps() + reserved_temps_for_backend_)) {
      return false;
    } else {
      max_available_non_special_compiler_temps_ = new_max;
      return true;
    }
  }

  /**
   * @brief Provides the number of non-special compiler temps available for use by ME.
   * @details Even if this returns zero, special compiler temps are guaranteed to be available.
   * Additionally, this makes sure to not use any temps reserved for BE only.
   * @return Returns the number of available temps.
   */
  size_t GetNumAvailableVRTemps();

  /**
   * @brief Used to obtain the maximum number of compiler temporaries that can be requested.
   * @return Returns the maximum number of compiler temporaries, whether used or not.
   */
  size_t GetMaxPossibleCompilerTemps() const {
    return max_available_special_compiler_temps_ + max_available_non_special_compiler_temps_;
  }

  /**
   * @brief Used to signal that the compiler temps have been committed.
   * @details This should be used once the number of temps can no longer change,
   * such as after frame size is committed and cannot be changed.
   */
  void CommitCompilerTemps() {
    compiler_temps_committed_ = true;
  }

  /**
   * @brief Used to obtain a new unique compiler temporary.
   * @details Two things are done for convenience when allocating a new compiler
   * temporary. The ssa register is automatically requested and the information
   * about reg location is filled. This helps when the temp is requested post
   * ssa initialization, such as when temps are requested by the backend.
   * @warning If the temp requested will be used for ME and have multiple versions,
   * the sreg provided by the temp will be invalidated on next ssa recalculation.
   * @param ct_type Type of compiler temporary requested.
   * @param wide Whether we should allocate a wide temporary.
   * @return Returns the newly created compiler temporary.
   */
  CompilerTemp* GetNewCompilerTemp(CompilerTempType ct_type, bool wide);

  /**
   * @brief Used to remove last created compiler temporary when it's not needed.
   * @param temp the temporary to remove.
   */
  void RemoveLastCompilerTemp(CompilerTempType ct_type, bool wide, CompilerTemp* temp);

  bool MethodIsLeaf() {
    return attributes_ & METHOD_IS_LEAF;
  }

  RegLocation GetRegLocation(int index) {
    DCHECK((index >= 0) && (index < num_ssa_regs_));
    return reg_location_[index];
  }

  RegLocation GetMethodLoc() {
    return reg_location_[method_sreg_];
  }

  bool IsBackEdge(BasicBlock* branch_bb, BasicBlockId target_bb_id) {
    DCHECK_NE(target_bb_id, NullBasicBlockId);
    DCHECK_LT(target_bb_id, topological_order_indexes_.size());
    DCHECK_LT(branch_bb->id, topological_order_indexes_.size());
    return topological_order_indexes_[target_bb_id] <= topological_order_indexes_[branch_bb->id];
  }

  bool IsSuspendCheckEdge(BasicBlock* branch_bb, BasicBlockId target_bb_id) {
    if (!IsBackEdge(branch_bb, target_bb_id)) {
      return false;
    }
    if (suspend_checks_in_loops_ == nullptr) {
      // We didn't run suspend check elimination.
      return true;
    }
    uint16_t target_depth = GetBasicBlock(target_bb_id)->nesting_depth;
    return (suspend_checks_in_loops_[branch_bb->id] & (1u << (target_depth - 1u))) == 0;
  }

  void CountBranch(DexOffset target_offset) {
    if (target_offset <= current_offset_) {
      backward_branches_++;
    } else {
      forward_branches_++;
    }
  }

  int GetBranchCount() {
    return backward_branches_ + forward_branches_;
  }

  // Is this vreg in the in set?
  bool IsInVReg(uint32_t vreg) {
    return (vreg >= GetFirstInVR()) && (vreg < GetFirstTempVR());
  }

  uint32_t GetNumOfCodeVRs() const {
    return current_code_item_->registers_size_;
  }

  uint32_t GetNumOfCodeAndTempVRs() const {
    // Include all of the possible temps so that no structures overflow when initialized.
    return GetNumOfCodeVRs() + GetMaxPossibleCompilerTemps();
  }

  uint32_t GetNumOfLocalCodeVRs() const {
    // This also refers to the first "in" VR.
    return GetNumOfCodeVRs() - current_code_item_->ins_size_;
  }

  uint32_t GetNumOfInVRs() const {
    return current_code_item_->ins_size_;
  }

  uint32_t GetNumOfOutVRs() const {
    return current_code_item_->outs_size_;
  }

  uint32_t GetFirstInVR() const {
    return GetNumOfLocalCodeVRs();
  }

  uint32_t GetFirstTempVR() const {
    // Temp VRs immediately follow code VRs.
    return GetNumOfCodeVRs();
  }

  uint32_t GetFirstSpecialTempVR() const {
    // Special temps appear first in the ordering before non special temps.
    return GetFirstTempVR();
  }

  uint32_t GetFirstNonSpecialTempVR() const {
    // We always leave space for all the special temps before the non-special ones.
    return GetFirstSpecialTempVR() + max_available_special_compiler_temps_;
  }

  bool HasTryCatchBlocks() const {
    return current_code_item_->tries_size_ != 0;
  }

  void DumpCheckStats();
  MIR* FindMoveResult(BasicBlock* bb, MIR* mir);

  /* Return the base virtual register for a SSA name */
  int SRegToVReg(int ssa_reg) const {
    return ssa_base_vregs_[ssa_reg];
  }

  void VerifyDataflow();
  void CheckForDominanceFrontier(BasicBlock* dom_bb, const BasicBlock* succ_bb);
  bool EliminateNullChecksGate();
  bool EliminateNullChecks(BasicBlock* bb);
  void EliminateNullChecksEnd();
  void InferTypesStart();
  bool InferTypes(BasicBlock* bb);
  void InferTypesEnd();
  bool EliminateClassInitChecksGate();
  bool EliminateClassInitChecks(BasicBlock* bb);
  void EliminateClassInitChecksEnd();
  bool ApplyGlobalValueNumberingGate();
  bool ApplyGlobalValueNumbering(BasicBlock* bb);
  void ApplyGlobalValueNumberingEnd();
  bool EliminateDeadCodeGate();
  bool EliminateDeadCode(BasicBlock* bb);
  void EliminateDeadCodeEnd();
  void GlobalValueNumberingCleanup();
  bool EliminateSuspendChecksGate();
  bool EliminateSuspendChecks(BasicBlock* bb);

  uint16_t GetGvnIFieldId(MIR* mir) const {
    DCHECK(IsInstructionIGetOrIPut(mir->dalvikInsn.opcode));
    DCHECK_LT(mir->meta.ifield_lowering_info, ifield_lowering_infos_.size());
    DCHECK(temp_.gvn.ifield_ids != nullptr);
    return temp_.gvn.ifield_ids[mir->meta.ifield_lowering_info];
  }

  uint16_t GetGvnSFieldId(MIR* mir) const {
    DCHECK(IsInstructionSGetOrSPut(mir->dalvikInsn.opcode));
    DCHECK_LT(mir->meta.sfield_lowering_info, sfield_lowering_infos_.size());
    DCHECK(temp_.gvn.sfield_ids != nullptr);
    return temp_.gvn.sfield_ids[mir->meta.sfield_lowering_info];
  }

  bool PuntToInterpreter() {
    return punt_to_interpreter_;
  }

  void SetPuntToInterpreter(bool val);

  void DisassembleExtendedInstr(const MIR* mir, std::string* decoded_mir);
  char* GetDalvikDisassembly(const MIR* mir);
  void ReplaceSpecialChars(std::string& str);
  std::string GetSSAName(int ssa_reg);
  std::string GetSSANameWithConst(int ssa_reg, bool singles_only);
  void GetBlockName(BasicBlock* bb, char* name);
  const char* GetShortyFromMethodReference(const MethodReference& target_method);
  void DumpMIRGraph();
  CallInfo* NewMemCallInfo(BasicBlock* bb, MIR* mir, InvokeType type, bool is_range);
  BasicBlock* NewMemBB(BBType block_type, int block_id);
  MIR* NewMIR();
  MIR* AdvanceMIR(BasicBlock** p_bb, MIR* mir);
  BasicBlock* NextDominatedBlock(BasicBlock* bb);
  bool LayoutBlocks(BasicBlock* bb);
  void ComputeTopologicalSortOrder();
  BasicBlock* CreateNewBB(BBType block_type);

  bool InlineSpecialMethodsGate();
  void InlineSpecialMethodsStart();
  void InlineSpecialMethods(BasicBlock* bb);
  void InlineSpecialMethodsEnd();

  /**
   * @brief Perform the initial preparation for the Method Uses.
   */
  void InitializeMethodUses();

  /**
   * @brief Perform the initial preparation for the Constant Propagation.
   */
  void InitializeConstantPropagation();

  /**
   * @brief Perform the initial preparation for the SSA Transformation.
   */
  void SSATransformationStart();

  /**
   * @brief Insert a the operands for the Phi nodes.
   * @param bb the considered BasicBlock.
   * @return true
   */
  bool InsertPhiNodeOperands(BasicBlock* bb);

  /**
   * @brief Perform the cleanup after the SSA Transformation.
   */
  void SSATransformationEnd();

  /**
   * @brief Perform constant propagation on a BasicBlock.
   * @param bb the considered BasicBlock.
   */
  void DoConstantPropagation(BasicBlock* bb);

  /**
   * @brief Get use count weight for a given block.
   * @param bb the BasicBlock.
   */
  uint32_t GetUseCountWeight(BasicBlock* bb) const;

  /**
   * @brief Count the uses in the BasicBlock
   * @param bb the BasicBlock
   */
  void CountUses(BasicBlock* bb);

  static uint64_t GetDataFlowAttributes(Instruction::Code opcode);
  static uint64_t GetDataFlowAttributes(MIR* mir);

  /**
   * @brief Combine BasicBlocks
   * @param the BasicBlock we are considering
   */
  void CombineBlocks(BasicBlock* bb);

  void ClearAllVisitedFlags();

  void AllocateSSAUseData(MIR *mir, int num_uses);
  void AllocateSSADefData(MIR *mir, int num_defs);
  void CalculateBasicBlockInformation(const PassManager* const post_opt);
  void ComputeDFSOrders();
  void ComputeDefBlockMatrix();
  void ComputeDominators();
  void CompilerInitializeSSAConversion();
  virtual void InitializeBasicBlockDataFlow();
  void FindPhiNodeBlocks();
  void DoDFSPreOrderSSARename(BasicBlock* block);

  bool DfsOrdersUpToDate() const {
    return dfs_orders_up_to_date_;
  }

  bool DominationUpToDate() const {
    return domination_up_to_date_;
  }

  bool MirSsaRepUpToDate() const {
    return mir_ssa_rep_up_to_date_;
  }

  bool TopologicalOrderUpToDate() const {
    return topological_order_up_to_date_;
  }

  /*
   * IsDebugBuild sanity check: keep track of the Dex PCs for catch entries so that later on
   * we can verify that all catch entries have native PC entries.
   */
  std::set<uint32_t> catches_;

  // TODO: make these private.
  RegLocation* reg_location_;                               // Map SSA names to location.
  ArenaSafeMap<unsigned int, unsigned int> block_id_map_;   // Block collapse lookup cache.

  static const char* extended_mir_op_names_[kMirOpLast - kMirOpFirst];

  void HandleSSADef(int* defs, int dalvik_reg, int reg_index);

 protected:
  int FindCommonParent(int block1, int block2);
  void ComputeSuccLineIn(ArenaBitVector* dest, const ArenaBitVector* src1,
                         const ArenaBitVector* src2);
  void HandleLiveInUse(ArenaBitVector* use_v, ArenaBitVector* def_v,
                       ArenaBitVector* live_in_v, int dalvik_reg_id);
  void HandleDef(ArenaBitVector* def_v, int dalvik_reg_id);
  void HandleExtended(ArenaBitVector* use_v, ArenaBitVector* def_v,
                      ArenaBitVector* live_in_v,
                      const MIR::DecodedInstruction& d_insn);
  bool DoSSAConversion(BasicBlock* bb);
  int ParseInsn(const uint16_t* code_ptr, MIR::DecodedInstruction* decoded_instruction);
  bool ContentIsInsn(const uint16_t* code_ptr);
  BasicBlock* SplitBlock(DexOffset code_offset, BasicBlock* orig_block,
                         BasicBlock** immed_pred_block_p);
  BasicBlock* FindBlock(DexOffset code_offset, bool create, BasicBlock** immed_pred_block_p,
                        ScopedArenaVector<uint16_t>* dex_pc_to_block_map);
  void ProcessTryCatchBlocks(ScopedArenaVector<uint16_t>* dex_pc_to_block_map);
  bool IsBadMonitorExitCatch(NarrowDexOffset monitor_exit_offset, NarrowDexOffset catch_offset);
  BasicBlock* ProcessCanBranch(BasicBlock* cur_block, MIR* insn, DexOffset cur_offset, int width,
                               int flags, const uint16_t* code_ptr, const uint16_t* code_end,
                               ScopedArenaVector<uint16_t>* dex_pc_to_block_map);
  BasicBlock* ProcessCanSwitch(BasicBlock* cur_block, MIR* insn, DexOffset cur_offset, int width,
                               int flags,
                               ScopedArenaVector<uint16_t>* dex_pc_to_block_map);
  BasicBlock* ProcessCanThrow(BasicBlock* cur_block, MIR* insn, DexOffset cur_offset, int width,
                              int flags, ArenaBitVector* try_block_addr, const uint16_t* code_ptr,
                              const uint16_t* code_end,
                              ScopedArenaVector<uint16_t>* dex_pc_to_block_map);
  int AddNewSReg(int v_reg);
  void HandleSSAUse(int* uses, int dalvik_reg, int reg_index);
  void DataFlowSSAFormat35C(MIR* mir);
  void DataFlowSSAFormat3RC(MIR* mir);
  void DataFlowSSAFormatExtended(MIR* mir);
  bool FindLocalLiveIn(BasicBlock* bb);
  bool VerifyPredInfo(BasicBlock* bb);
  BasicBlock* NeedsVisit(BasicBlock* bb);
  BasicBlock* NextUnvisitedSuccessor(BasicBlock* bb);
  void MarkPreOrder(BasicBlock* bb);
  void RecordDFSOrders(BasicBlock* bb);
  void ComputeDomPostOrderTraversal(BasicBlock* bb);
  int GetSSAUseCount(int s_reg);
  bool BasicBlockOpt(BasicBlock* bb);
  void MultiplyAddOpt(BasicBlock* bb);

  /**
   * @brief Check whether the given MIR is possible to throw an exception.
   * @param mir The mir to check.
   * @return Returns 'true' if the given MIR might throw an exception.
   */
  bool CanThrow(MIR* mir) const;

  /**
   * @brief Combine multiply and add/sub MIRs into corresponding extended MAC MIR.
   * @param mul_mir The multiply MIR to be combined.
   * @param add_mir The add/sub MIR to be combined.
   * @param mul_is_first_addend 'true' if multiply product is the first addend of add operation.
   * @param is_wide 'true' if the operations are long type.
   * @param is_sub 'true' if it is a multiply-subtract operation.
   */
  void CombineMultiplyAdd(MIR* mul_mir, MIR* add_mir, bool mul_is_first_addend,
                          bool is_wide, bool is_sub);
  /*
   * @brief Check whether the first MIR anti-depends on the second MIR.
   * @details To check whether one of first MIR's uses of vregs is redefined by the second MIR,
   * i.e. there is a write-after-read dependency.
   * @param first The first MIR.
   * @param second The second MIR.
   * @param Returns true if there is a write-after-read dependency.
   */
  bool HasAntiDependency(MIR* first, MIR* second);

  bool BuildExtendedBBList(class BasicBlock* bb);
  bool FillDefBlockMatrix(BasicBlock* bb);
  void InitializeDominationInfo(BasicBlock* bb);
  bool ComputeblockIDom(BasicBlock* bb);
  bool ComputeBlockDominators(BasicBlock* bb);
  bool SetDominators(BasicBlock* bb);
  bool ComputeBlockLiveIns(BasicBlock* bb);
  bool ComputeDominanceFrontier(BasicBlock* bb);

  void CountChecks(BasicBlock* bb);
  void AnalyzeBlock(BasicBlock* bb, struct MethodStats* stats);
  bool ComputeSkipCompilation(struct MethodStats* stats, bool skip_default,
                              std::string* skip_message);

  CompilationUnit* const cu_;
  ArenaVector<int> ssa_base_vregs_;
  ArenaVector<int> ssa_subscripts_;
  // Map original Dalvik virtual reg i to the current SSA name.
  int32_t* vreg_to_ssa_map_;        // length == method->registers_size
  int* ssa_last_defs_;              // length == method->registers_size
  ArenaBitVector* is_constant_v_;   // length == num_ssa_reg
  int* constant_values_;            // length == num_ssa_reg
  // Use counts of ssa names.
  ArenaVector<uint32_t> use_counts_;      // Weighted by nesting depth
  ArenaVector<uint32_t> raw_use_counts_;  // Not weighted
  unsigned int num_reachable_blocks_;
  unsigned int max_num_reachable_blocks_;
  bool dfs_orders_up_to_date_;
  bool domination_up_to_date_;
  bool mir_ssa_rep_up_to_date_;
  bool topological_order_up_to_date_;
  ArenaVector<BasicBlockId> dfs_order_;
  ArenaVector<BasicBlockId> dfs_post_order_;
  ArenaVector<BasicBlockId> dom_post_order_traversal_;
  ArenaVector<BasicBlockId> topological_order_;
  // Indexes in topological_order_ need to be only as big as the BasicBlockId.
  static_assert(sizeof(BasicBlockId) == sizeof(uint16_t), "Assuming 16 bit BasicBlockId");
  // For each loop head, remember the past-the-end index of the end of the loop. 0 if not loop head.
  ArenaVector<uint16_t> topological_order_loop_ends_;
  // Map BB ids to topological_order_ indexes. 0xffff if not included (hidden or null block).
  ArenaVector<uint16_t> topological_order_indexes_;
  // Stack of the loop head indexes and recalculation flags for RepeatingTopologicalSortIterator.
  ArenaVector<std::pair<uint16_t, bool>> topological_order_loop_head_stack_;
  size_t max_nested_loops_;
  int* i_dom_list_;
  std::unique_ptr<ScopedArenaAllocator> temp_scoped_alloc_;
  // Union of temporaries used by different passes.
  union {
    // Class init check elimination.
    struct {
      size_t num_class_bits;  // 2 bits per class: class initialized and class in dex cache.
      ArenaBitVector* work_classes_to_check;
      ArenaBitVector** ending_classes_to_check_matrix;  // num_blocks_ x num_class_bits.
      uint16_t* indexes;
    } cice;
    // Null check elimination.
    struct {
      size_t num_vregs;
      ArenaBitVector* work_vregs_to_check;
      ArenaBitVector** ending_vregs_to_check_matrix;  // num_blocks_ x num_vregs.
    } nce;
    // Special method inlining.
    struct {
      size_t num_indexes;
      ArenaBitVector* processed_indexes;
      uint16_t* lowering_infos;
    } smi;
    // SSA transformation.
    struct {
      size_t num_vregs;
      ArenaBitVector* work_live_vregs;
      ArenaBitVector** def_block_matrix;  // num_vregs x num_blocks_.
      ArenaBitVector** phi_node_blocks;  // num_vregs x num_blocks_.
      TypeInference* ti;
    } ssa;
    // Global value numbering.
    struct {
      GlobalValueNumbering* gvn;
      uint16_t* ifield_ids;  // Part of GVN/LVN but cached here for LVN to avoid recalculation.
      uint16_t* sfield_ids;  // Ditto.
      GvnDeadCodeElimination* dce;
    } gvn;
  } temp_;
  static const int kInvalidEntry = -1;
  ArenaVector<BasicBlock*> block_list_;
  ArenaBitVector* try_block_addr_;
  BasicBlock* entry_block_;
  BasicBlock* exit_block_;
  const DexFile::CodeItem* current_code_item_;
  ArenaVector<DexCompilationUnit*> m_units_;     // List of methods included in this graph
  typedef std::pair<int, int> MIRLocation;       // Insert point, (m_unit_ index, offset)
  ArenaVector<MIRLocation> method_stack_;        // Include stack
  int current_method_;
  DexOffset current_offset_;                     // Offset in code units
  int def_count_;                                // Used to estimate size of ssa name storage.
  int* opcode_count_;                            // Dex opcode coverage stats.
  int num_ssa_regs_;                             // Number of names following SSA transformation.
  ArenaVector<BasicBlockId> extended_basic_blocks_;  // Heads of block "traces".
  int method_sreg_;
  unsigned int attributes_;
  Checkstats* checkstats_;
  ArenaAllocator* const arena_;
  int backward_branches_;
  int forward_branches_;
  size_t num_non_special_compiler_temps_;  // Keeps track of allocated non-special compiler temps. These are VRs that are in compiler temp region on stack.
  size_t max_available_non_special_compiler_temps_;  // Keeps track of maximum available non-special temps.
  size_t max_available_special_compiler_temps_;      // Keeps track of maximum available special temps.
  bool requested_backend_temp_;            // Keeps track whether BE temps have been requested.
  size_t reserved_temps_for_backend_;      // Keeps track of the remaining temps that are reserved for BE.
  bool compiler_temps_committed_;          // Keeps track whether number of temps has been frozen (for example post frame size calculation).
  bool punt_to_interpreter_;               // Difficult or not worthwhile - just interpret.
  uint64_t merged_df_flags_;
  ArenaVector<MirIFieldLoweringInfo> ifield_lowering_infos_;
  ArenaVector<MirSFieldLoweringInfo> sfield_lowering_infos_;
  ArenaVector<MirMethodLoweringInfo> method_lowering_infos_;

  // In the suspend check elimination pass we determine for each basic block and enclosing
  // loop whether there's guaranteed to be a suspend check on the path from the loop head
  // to this block. If so, we can eliminate the back-edge suspend check.
  // The bb->id is index into suspend_checks_in_loops_ and the loop head's depth is bit index
  // in a suspend_checks_in_loops_[bb->id].
  uint32_t* suspend_checks_in_loops_;

  static const uint64_t oat_data_flow_attributes_[kMirOpLast];

  friend class MirOptimizationTest;
  friend class ClassInitCheckEliminationTest;
  friend class SuspendCheckEliminationTest;
  friend class NullCheckEliminationTest;
  friend class GlobalValueNumberingTest;
  friend class GvnDeadCodeEliminationTest;
  friend class LocalValueNumberingTest;
  friend class TopologicalSortOrderTest;
  friend class TypeInferenceTest;
  friend class QuickCFITest;
  friend class QuickAssembleX86TestBase;
};

}  // namespace art

#endif  // ART_COMPILER_DEX_MIR_GRAPH_H_