1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835
1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889
1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1940
1941
1942
1943
1944
1945
1946
1947
1948
1949
1950
1951
1952
1953
1954
1955
1956
|
/*
* Copyright (C) 2011 The Android Open Source Project
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
#include "base/bit_vector-inl.h"
#include "base/logging.h"
#include "base/scoped_arena_containers.h"
#include "dataflow_iterator-inl.h"
#include "dex_flags.h"
#include "driver/compiler_driver.h"
#include "driver/dex_compilation_unit.h"
#include "global_value_numbering.h"
#include "gvn_dead_code_elimination.h"
#include "local_value_numbering.h"
#include "mir_field_info.h"
#include "quick/dex_file_method_inliner.h"
#include "quick/dex_file_to_method_inliner_map.h"
#include "stack.h"
namespace art {
static unsigned int Predecessors(BasicBlock* bb) {
return bb->predecessors.size();
}
/* Setup a constant value for opcodes thare have the DF_SETS_CONST attribute */
void MIRGraph::SetConstant(int32_t ssa_reg, int32_t value) {
is_constant_v_->SetBit(ssa_reg);
constant_values_[ssa_reg] = value;
reg_location_[ssa_reg].is_const = true;
}
void MIRGraph::SetConstantWide(int32_t ssa_reg, int64_t value) {
is_constant_v_->SetBit(ssa_reg);
is_constant_v_->SetBit(ssa_reg + 1);
constant_values_[ssa_reg] = Low32Bits(value);
constant_values_[ssa_reg + 1] = High32Bits(value);
reg_location_[ssa_reg].is_const = true;
reg_location_[ssa_reg + 1].is_const = true;
}
void MIRGraph::DoConstantPropagation(BasicBlock* bb) {
MIR* mir;
for (mir = bb->first_mir_insn; mir != nullptr; mir = mir->next) {
// Skip pass if BB has MIR without SSA representation.
if (mir->ssa_rep == nullptr) {
return;
}
uint64_t df_attributes = GetDataFlowAttributes(mir);
MIR::DecodedInstruction* d_insn = &mir->dalvikInsn;
if (!(df_attributes & DF_HAS_DEFS)) continue;
/* Handle instructions that set up constants directly */
if (df_attributes & DF_SETS_CONST) {
if (df_attributes & DF_DA) {
int32_t vB = static_cast<int32_t>(d_insn->vB);
switch (d_insn->opcode) {
case Instruction::CONST_4:
case Instruction::CONST_16:
case Instruction::CONST:
SetConstant(mir->ssa_rep->defs[0], vB);
break;
case Instruction::CONST_HIGH16:
SetConstant(mir->ssa_rep->defs[0], vB << 16);
break;
case Instruction::CONST_WIDE_16:
case Instruction::CONST_WIDE_32:
SetConstantWide(mir->ssa_rep->defs[0], static_cast<int64_t>(vB));
break;
case Instruction::CONST_WIDE:
SetConstantWide(mir->ssa_rep->defs[0], d_insn->vB_wide);
break;
case Instruction::CONST_WIDE_HIGH16:
SetConstantWide(mir->ssa_rep->defs[0], static_cast<int64_t>(vB) << 48);
break;
default:
break;
}
}
/* Handle instructions that set up constants directly */
} else if (df_attributes & DF_IS_MOVE) {
int i;
for (i = 0; i < mir->ssa_rep->num_uses; i++) {
if (!is_constant_v_->IsBitSet(mir->ssa_rep->uses[i])) break;
}
/* Move a register holding a constant to another register */
if (i == mir->ssa_rep->num_uses) {
SetConstant(mir->ssa_rep->defs[0], constant_values_[mir->ssa_rep->uses[0]]);
if (df_attributes & DF_A_WIDE) {
SetConstant(mir->ssa_rep->defs[1], constant_values_[mir->ssa_rep->uses[1]]);
}
}
}
}
/* TODO: implement code to handle arithmetic operations */
}
/* Advance to next strictly dominated MIR node in an extended basic block */
MIR* MIRGraph::AdvanceMIR(BasicBlock** p_bb, MIR* mir) {
BasicBlock* bb = *p_bb;
if (mir != nullptr) {
mir = mir->next;
while (mir == nullptr) {
bb = GetBasicBlock(bb->fall_through);
if ((bb == nullptr) || Predecessors(bb) != 1) {
// mir is null and we cannot proceed further.
break;
} else {
*p_bb = bb;
mir = bb->first_mir_insn;
}
}
}
return mir;
}
/*
* To be used at an invoke mir. If the logically next mir node represents
* a move-result, return it. Else, return nullptr. If a move-result exists,
* it is required to immediately follow the invoke with no intervening
* opcodes or incoming arcs. However, if the result of the invoke is not
* used, a move-result may not be present.
*/
MIR* MIRGraph::FindMoveResult(BasicBlock* bb, MIR* mir) {
BasicBlock* tbb = bb;
mir = AdvanceMIR(&tbb, mir);
while (mir != nullptr) {
if ((mir->dalvikInsn.opcode == Instruction::MOVE_RESULT) ||
(mir->dalvikInsn.opcode == Instruction::MOVE_RESULT_OBJECT) ||
(mir->dalvikInsn.opcode == Instruction::MOVE_RESULT_WIDE)) {
break;
}
// Keep going if pseudo op, otherwise terminate
if (MIR::DecodedInstruction::IsPseudoMirOp(mir->dalvikInsn.opcode)) {
mir = AdvanceMIR(&tbb, mir);
} else {
mir = nullptr;
}
}
return mir;
}
BasicBlock* MIRGraph::NextDominatedBlock(BasicBlock* bb) {
if (bb->block_type == kDead) {
return nullptr;
}
DCHECK((bb->block_type == kEntryBlock) || (bb->block_type == kDalvikByteCode)
|| (bb->block_type == kExitBlock));
BasicBlock* bb_taken = GetBasicBlock(bb->taken);
BasicBlock* bb_fall_through = GetBasicBlock(bb->fall_through);
if (((bb_fall_through == nullptr) && (bb_taken != nullptr)) &&
((bb_taken->block_type == kDalvikByteCode) || (bb_taken->block_type == kExitBlock))) {
// Follow simple unconditional branches.
bb = bb_taken;
} else {
// Follow simple fallthrough
bb = (bb_taken != nullptr) ? nullptr : bb_fall_through;
}
if (bb == nullptr || (Predecessors(bb) != 1)) {
return nullptr;
}
DCHECK((bb->block_type == kDalvikByteCode) || (bb->block_type == kExitBlock));
return bb;
}
static MIR* FindPhi(BasicBlock* bb, int ssa_name) {
for (MIR* mir = bb->first_mir_insn; mir != nullptr; mir = mir->next) {
if (static_cast<int>(mir->dalvikInsn.opcode) == kMirOpPhi) {
for (int i = 0; i < mir->ssa_rep->num_uses; i++) {
if (mir->ssa_rep->uses[i] == ssa_name) {
return mir;
}
}
}
}
return nullptr;
}
static SelectInstructionKind SelectKind(MIR* mir) {
// Work with the case when mir is null.
if (mir == nullptr) {
return kSelectNone;
}
switch (mir->dalvikInsn.opcode) {
case Instruction::MOVE:
case Instruction::MOVE_OBJECT:
case Instruction::MOVE_16:
case Instruction::MOVE_OBJECT_16:
case Instruction::MOVE_FROM16:
case Instruction::MOVE_OBJECT_FROM16:
return kSelectMove;
case Instruction::CONST:
case Instruction::CONST_4:
case Instruction::CONST_16:
return kSelectConst;
case Instruction::GOTO:
case Instruction::GOTO_16:
case Instruction::GOTO_32:
return kSelectGoto;
default:
return kSelectNone;
}
}
static constexpr ConditionCode kIfCcZConditionCodes[] = {
kCondEq, kCondNe, kCondLt, kCondGe, kCondGt, kCondLe
};
static_assert(arraysize(kIfCcZConditionCodes) == Instruction::IF_LEZ - Instruction::IF_EQZ + 1,
"if_ccz_ccodes_size1");
static constexpr ConditionCode ConditionCodeForIfCcZ(Instruction::Code opcode) {
return kIfCcZConditionCodes[opcode - Instruction::IF_EQZ];
}
static_assert(ConditionCodeForIfCcZ(Instruction::IF_EQZ) == kCondEq, "if_eqz ccode");
static_assert(ConditionCodeForIfCcZ(Instruction::IF_NEZ) == kCondNe, "if_nez ccode");
static_assert(ConditionCodeForIfCcZ(Instruction::IF_LTZ) == kCondLt, "if_ltz ccode");
static_assert(ConditionCodeForIfCcZ(Instruction::IF_GEZ) == kCondGe, "if_gez ccode");
static_assert(ConditionCodeForIfCcZ(Instruction::IF_GTZ) == kCondGt, "if_gtz ccode");
static_assert(ConditionCodeForIfCcZ(Instruction::IF_LEZ) == kCondLe, "if_lez ccode");
int MIRGraph::GetSSAUseCount(int s_reg) {
DCHECK_LT(static_cast<size_t>(s_reg), ssa_subscripts_.size());
return raw_use_counts_[s_reg];
}
size_t MIRGraph::GetNumBytesForSpecialTemps() const {
// This logic is written with assumption that Method* is only special temp.
DCHECK_EQ(max_available_special_compiler_temps_, 1u);
return sizeof(StackReference<mirror::ArtMethod>);
}
size_t MIRGraph::GetNumAvailableVRTemps() {
// First take into account all temps reserved for backend.
if (max_available_non_special_compiler_temps_ < reserved_temps_for_backend_) {
return 0;
}
// Calculate remaining ME temps available.
size_t remaining_me_temps = max_available_non_special_compiler_temps_ -
reserved_temps_for_backend_;
if (num_non_special_compiler_temps_ >= remaining_me_temps) {
return 0;
} else {
return remaining_me_temps - num_non_special_compiler_temps_;
}
}
// FIXME - will probably need to revisit all uses of this, as type not defined.
static const RegLocation temp_loc = {kLocCompilerTemp,
0, 1 /*defined*/, 0, 0, 0, 0, 0, 1 /*home*/,
RegStorage(), INVALID_SREG, INVALID_SREG};
CompilerTemp* MIRGraph::GetNewCompilerTemp(CompilerTempType ct_type, bool wide) {
// Once the compiler temps have been committed, new ones cannot be requested anymore.
DCHECK_EQ(compiler_temps_committed_, false);
// Make sure that reserved for BE set is sane.
DCHECK_LE(reserved_temps_for_backend_, max_available_non_special_compiler_temps_);
bool verbose = cu_->verbose;
const char* ct_type_str = nullptr;
if (verbose) {
switch (ct_type) {
case kCompilerTempBackend:
ct_type_str = "backend";
break;
case kCompilerTempSpecialMethodPtr:
ct_type_str = "method*";
break;
case kCompilerTempVR:
ct_type_str = "VR";
break;
default:
ct_type_str = "unknown";
break;
}
LOG(INFO) << "CompilerTemps: A compiler temp of type " << ct_type_str << " that is "
<< (wide ? "wide is being requested." : "not wide is being requested.");
}
CompilerTemp *compiler_temp = static_cast<CompilerTemp *>(arena_->Alloc(sizeof(CompilerTemp),
kArenaAllocRegAlloc));
// Create the type of temp requested. Special temps need special handling because
// they have a specific virtual register assignment.
if (ct_type == kCompilerTempSpecialMethodPtr) {
// This has a special location on stack which is 32-bit or 64-bit depending
// on mode. However, we don't want to overlap with non-special section
// and thus even for 64-bit, we allow only a non-wide temp to be requested.
DCHECK_EQ(wide, false);
// The vreg is always the first special temp for method ptr.
compiler_temp->v_reg = GetFirstSpecialTempVR();
} else if (ct_type == kCompilerTempBackend) {
requested_backend_temp_ = true;
// Make sure that we are not exceeding temps reserved for BE.
// Since VR temps cannot be requested once the BE temps are requested, we
// allow reservation of VR temps as well for BE. We
size_t available_temps = reserved_temps_for_backend_ + GetNumAvailableVRTemps();
size_t needed_temps = wide ? 2u : 1u;
if (available_temps < needed_temps) {
if (verbose) {
LOG(INFO) << "CompilerTemps: Not enough temp(s) of type " << ct_type_str
<< " are available.";
}
return nullptr;
}
// Update the remaining reserved temps since we have now used them.
// Note that the code below is actually subtracting to remove them from reserve
// once they have been claimed. It is careful to not go below zero.
reserved_temps_for_backend_ =
std::max(reserved_temps_for_backend_, needed_temps) - needed_temps;
// The new non-special compiler temp must receive a unique v_reg.
compiler_temp->v_reg = GetFirstNonSpecialTempVR() + num_non_special_compiler_temps_;
num_non_special_compiler_temps_++;
} else if (ct_type == kCompilerTempVR) {
// Once we start giving out BE temps, we don't allow anymore ME temps to be requested.
// This is done in order to prevent problems with ssa since these structures are allocated
// and managed by the ME.
DCHECK_EQ(requested_backend_temp_, false);
// There is a limit to the number of non-special temps so check to make sure it wasn't exceeded.
size_t available_temps = GetNumAvailableVRTemps();
if (available_temps <= 0 || (available_temps <= 1 && wide)) {
if (verbose) {
LOG(INFO) << "CompilerTemps: Not enough temp(s) of type " << ct_type_str
<< " are available.";
}
return nullptr;
}
// The new non-special compiler temp must receive a unique v_reg.
compiler_temp->v_reg = GetFirstNonSpecialTempVR() + num_non_special_compiler_temps_;
num_non_special_compiler_temps_++;
} else {
UNIMPLEMENTED(FATAL) << "No handling for compiler temp type " << ct_type_str << ".";
}
// We allocate an sreg as well to make developer life easier.
// However, if this is requested from an ME pass that will recalculate ssa afterwards,
// this sreg is no longer valid. The caller should be aware of this.
compiler_temp->s_reg_low = AddNewSReg(compiler_temp->v_reg);
if (verbose) {
LOG(INFO) << "CompilerTemps: New temp of type " << ct_type_str << " with v"
<< compiler_temp->v_reg << " and s" << compiler_temp->s_reg_low << " has been created.";
}
if (wide) {
// Only non-special temps are handled as wide for now.
// Note that the number of non special temps is incremented below.
DCHECK(ct_type == kCompilerTempBackend || ct_type == kCompilerTempVR);
// Ensure that the two registers are consecutive.
int ssa_reg_low = compiler_temp->s_reg_low;
int ssa_reg_high = AddNewSReg(compiler_temp->v_reg + 1);
num_non_special_compiler_temps_++;
if (verbose) {
LOG(INFO) << "CompilerTemps: The wide part of temp of type " << ct_type_str << " is v"
<< compiler_temp->v_reg + 1 << " and s" << ssa_reg_high << ".";
}
if (reg_location_ != nullptr) {
reg_location_[ssa_reg_high] = temp_loc;
reg_location_[ssa_reg_high].high_word = true;
reg_location_[ssa_reg_high].s_reg_low = ssa_reg_low;
reg_location_[ssa_reg_high].wide = true;
}
}
// If the register locations have already been allocated, add the information
// about the temp. We will not overflow because they have been initialized
// to support the maximum number of temps. For ME temps that have multiple
// ssa versions, the structures below will be expanded on the post pass cleanup.
if (reg_location_ != nullptr) {
int ssa_reg_low = compiler_temp->s_reg_low;
reg_location_[ssa_reg_low] = temp_loc;
reg_location_[ssa_reg_low].s_reg_low = ssa_reg_low;
reg_location_[ssa_reg_low].wide = wide;
}
return compiler_temp;
}
void MIRGraph::RemoveLastCompilerTemp(CompilerTempType ct_type, bool wide, CompilerTemp* temp) {
// Once the compiler temps have been committed, it's too late for any modifications.
DCHECK_EQ(compiler_temps_committed_, false);
size_t used_temps = wide ? 2u : 1u;
if (ct_type == kCompilerTempBackend) {
DCHECK(requested_backend_temp_);
// Make the temps available to backend again.
reserved_temps_for_backend_ += used_temps;
} else if (ct_type == kCompilerTempVR) {
DCHECK(!requested_backend_temp_);
} else {
UNIMPLEMENTED(FATAL) << "No handling for compiler temp type " << static_cast<int>(ct_type);
}
// Reduce the number of non-special compiler temps.
DCHECK_LE(used_temps, num_non_special_compiler_temps_);
num_non_special_compiler_temps_ -= used_temps;
// Check that this was really the last temp.
DCHECK_EQ(static_cast<size_t>(temp->v_reg),
GetFirstNonSpecialTempVR() + num_non_special_compiler_temps_);
if (cu_->verbose) {
LOG(INFO) << "Last temporary has been removed.";
}
}
static bool EvaluateBranch(Instruction::Code opcode, int32_t src1, int32_t src2) {
bool is_taken;
switch (opcode) {
case Instruction::IF_EQ: is_taken = (src1 == src2); break;
case Instruction::IF_NE: is_taken = (src1 != src2); break;
case Instruction::IF_LT: is_taken = (src1 < src2); break;
case Instruction::IF_GE: is_taken = (src1 >= src2); break;
case Instruction::IF_GT: is_taken = (src1 > src2); break;
case Instruction::IF_LE: is_taken = (src1 <= src2); break;
case Instruction::IF_EQZ: is_taken = (src1 == 0); break;
case Instruction::IF_NEZ: is_taken = (src1 != 0); break;
case Instruction::IF_LTZ: is_taken = (src1 < 0); break;
case Instruction::IF_GEZ: is_taken = (src1 >= 0); break;
case Instruction::IF_GTZ: is_taken = (src1 > 0); break;
case Instruction::IF_LEZ: is_taken = (src1 <= 0); break;
default:
LOG(FATAL) << "Unexpected opcode " << opcode;
UNREACHABLE();
}
return is_taken;
}
/* Do some MIR-level extended basic block optimizations */
bool MIRGraph::BasicBlockOpt(BasicBlock* bb) {
if (bb->block_type == kDead) {
return true;
}
// Currently multiply-accumulate backend supports are only available on arm32 and arm64.
if (cu_->instruction_set == kArm64 || cu_->instruction_set == kThumb2) {
MultiplyAddOpt(bb);
}
bool use_lvn = bb->use_lvn && (cu_->disable_opt & (1u << kLocalValueNumbering)) == 0u;
std::unique_ptr<ScopedArenaAllocator> allocator;
std::unique_ptr<GlobalValueNumbering> global_valnum;
std::unique_ptr<LocalValueNumbering> local_valnum;
if (use_lvn) {
allocator.reset(ScopedArenaAllocator::Create(&cu_->arena_stack));
global_valnum.reset(new (allocator.get()) GlobalValueNumbering(cu_, allocator.get(),
GlobalValueNumbering::kModeLvn));
local_valnum.reset(new (allocator.get()) LocalValueNumbering(global_valnum.get(), bb->id,
allocator.get()));
}
while (bb != nullptr) {
for (MIR* mir = bb->first_mir_insn; mir != nullptr; mir = mir->next) {
// TUNING: use the returned value number for CSE.
if (use_lvn) {
local_valnum->GetValueNumber(mir);
}
// Look for interesting opcodes, skip otherwise
Instruction::Code opcode = mir->dalvikInsn.opcode;
switch (opcode) {
case Instruction::IF_EQ:
case Instruction::IF_NE:
case Instruction::IF_LT:
case Instruction::IF_GE:
case Instruction::IF_GT:
case Instruction::IF_LE:
if (!IsConst(mir->ssa_rep->uses[1])) {
break;
}
FALLTHROUGH_INTENDED;
case Instruction::IF_EQZ:
case Instruction::IF_NEZ:
case Instruction::IF_LTZ:
case Instruction::IF_GEZ:
case Instruction::IF_GTZ:
case Instruction::IF_LEZ:
// Result known at compile time?
if (IsConst(mir->ssa_rep->uses[0])) {
int32_t rhs = (mir->ssa_rep->num_uses == 2) ? ConstantValue(mir->ssa_rep->uses[1]) : 0;
bool is_taken = EvaluateBranch(opcode, ConstantValue(mir->ssa_rep->uses[0]), rhs);
BasicBlockId edge_to_kill = is_taken ? bb->fall_through : bb->taken;
if (is_taken) {
// Replace with GOTO.
bb->fall_through = NullBasicBlockId;
mir->dalvikInsn.opcode = Instruction::GOTO;
mir->dalvikInsn.vA =
IsInstructionIfCc(opcode) ? mir->dalvikInsn.vC : mir->dalvikInsn.vB;
} else {
// Make NOP.
bb->taken = NullBasicBlockId;
mir->dalvikInsn.opcode = static_cast<Instruction::Code>(kMirOpNop);
}
mir->ssa_rep->num_uses = 0;
BasicBlock* successor_to_unlink = GetBasicBlock(edge_to_kill);
successor_to_unlink->ErasePredecessor(bb->id);
// We have changed the graph structure.
dfs_orders_up_to_date_ = false;
domination_up_to_date_ = false;
topological_order_up_to_date_ = false;
// Keep MIR SSA rep, the worst that can happen is a Phi with just 1 input.
}
break;
case Instruction::CMPL_FLOAT:
case Instruction::CMPL_DOUBLE:
case Instruction::CMPG_FLOAT:
case Instruction::CMPG_DOUBLE:
case Instruction::CMP_LONG:
if ((cu_->disable_opt & (1 << kBranchFusing)) != 0) {
// Bitcode doesn't allow this optimization.
break;
}
if (mir->next != nullptr) {
MIR* mir_next = mir->next;
// Make sure result of cmp is used by next insn and nowhere else
if (IsInstructionIfCcZ(mir_next->dalvikInsn.opcode) &&
(mir->ssa_rep->defs[0] == mir_next->ssa_rep->uses[0]) &&
(GetSSAUseCount(mir->ssa_rep->defs[0]) == 1)) {
mir_next->meta.ccode = ConditionCodeForIfCcZ(mir_next->dalvikInsn.opcode);
switch (opcode) {
case Instruction::CMPL_FLOAT:
mir_next->dalvikInsn.opcode =
static_cast<Instruction::Code>(kMirOpFusedCmplFloat);
break;
case Instruction::CMPL_DOUBLE:
mir_next->dalvikInsn.opcode =
static_cast<Instruction::Code>(kMirOpFusedCmplDouble);
break;
case Instruction::CMPG_FLOAT:
mir_next->dalvikInsn.opcode =
static_cast<Instruction::Code>(kMirOpFusedCmpgFloat);
break;
case Instruction::CMPG_DOUBLE:
mir_next->dalvikInsn.opcode =
static_cast<Instruction::Code>(kMirOpFusedCmpgDouble);
break;
case Instruction::CMP_LONG:
mir_next->dalvikInsn.opcode =
static_cast<Instruction::Code>(kMirOpFusedCmpLong);
break;
default: LOG(ERROR) << "Unexpected opcode: " << opcode;
}
mir->dalvikInsn.opcode = static_cast<Instruction::Code>(kMirOpNop);
// Clear use count of temp VR.
use_counts_[mir->ssa_rep->defs[0]] = 0;
raw_use_counts_[mir->ssa_rep->defs[0]] = 0;
// Copy the SSA information that is relevant.
mir_next->ssa_rep->num_uses = mir->ssa_rep->num_uses;
mir_next->ssa_rep->uses = mir->ssa_rep->uses;
mir_next->ssa_rep->fp_use = mir->ssa_rep->fp_use;
mir_next->ssa_rep->num_defs = 0;
mir->ssa_rep->num_uses = 0;
mir->ssa_rep->num_defs = 0;
// Copy in the decoded instruction information for potential SSA re-creation.
mir_next->dalvikInsn.vA = mir->dalvikInsn.vB;
mir_next->dalvikInsn.vB = mir->dalvikInsn.vC;
}
}
break;
default:
break;
}
// Is this the select pattern?
// TODO: flesh out support for Mips. NOTE: llvm's select op doesn't quite work here.
// TUNING: expand to support IF_xx compare & branches
if ((cu_->instruction_set == kArm64 || cu_->instruction_set == kThumb2 ||
cu_->instruction_set == kX86 || cu_->instruction_set == kX86_64) &&
IsInstructionIfCcZ(mir->dalvikInsn.opcode)) {
BasicBlock* ft = GetBasicBlock(bb->fall_through);
DCHECK(ft != nullptr);
BasicBlock* ft_ft = GetBasicBlock(ft->fall_through);
BasicBlock* ft_tk = GetBasicBlock(ft->taken);
BasicBlock* tk = GetBasicBlock(bb->taken);
DCHECK(tk != nullptr);
BasicBlock* tk_ft = GetBasicBlock(tk->fall_through);
BasicBlock* tk_tk = GetBasicBlock(tk->taken);
/*
* In the select pattern, the taken edge goes to a block that unconditionally
* transfers to the rejoin block and the fall_though edge goes to a block that
* unconditionally falls through to the rejoin block.
*/
if ((tk_ft == nullptr) && (ft_tk == nullptr) && (tk_tk == ft_ft) &&
(Predecessors(tk) == 1) && (Predecessors(ft) == 1)) {
/*
* Okay - we have the basic diamond shape.
*/
// TODO: Add logic for LONG.
// Are the block bodies something we can handle?
if ((ft->first_mir_insn == ft->last_mir_insn) &&
(tk->first_mir_insn != tk->last_mir_insn) &&
(tk->first_mir_insn->next == tk->last_mir_insn) &&
((SelectKind(ft->first_mir_insn) == kSelectMove) ||
(SelectKind(ft->first_mir_insn) == kSelectConst)) &&
(SelectKind(ft->first_mir_insn) == SelectKind(tk->first_mir_insn)) &&
(SelectKind(tk->last_mir_insn) == kSelectGoto)) {
// Almost there. Are the instructions targeting the same vreg?
MIR* if_true = tk->first_mir_insn;
MIR* if_false = ft->first_mir_insn;
// It's possible that the target of the select isn't used - skip those (rare) cases.
MIR* phi = FindPhi(tk_tk, if_true->ssa_rep->defs[0]);
if ((phi != nullptr) && (if_true->dalvikInsn.vA == if_false->dalvikInsn.vA)) {
/*
* We'll convert the IF_EQZ/IF_NEZ to a SELECT. We need to find the
* Phi node in the merge block and delete it (while using the SSA name
* of the merge as the target of the SELECT. Delete both taken and
* fallthrough blocks, and set fallthrough to merge block.
* NOTE: not updating other dataflow info (no longer used at this point).
* If this changes, need to update i_dom, etc. here (and in CombineBlocks).
*/
mir->meta.ccode = ConditionCodeForIfCcZ(mir->dalvikInsn.opcode);
mir->dalvikInsn.opcode = static_cast<Instruction::Code>(kMirOpSelect);
bool const_form = (SelectKind(if_true) == kSelectConst);
if ((SelectKind(if_true) == kSelectMove)) {
if (IsConst(if_true->ssa_rep->uses[0]) &&
IsConst(if_false->ssa_rep->uses[0])) {
const_form = true;
if_true->dalvikInsn.vB = ConstantValue(if_true->ssa_rep->uses[0]);
if_false->dalvikInsn.vB = ConstantValue(if_false->ssa_rep->uses[0]);
}
}
if (const_form) {
/*
* TODO: If both constants are the same value, then instead of generating
* a select, we should simply generate a const bytecode. This should be
* considered after inlining which can lead to CFG of this form.
*/
// "true" set val in vB
mir->dalvikInsn.vB = if_true->dalvikInsn.vB;
// "false" set val in vC
mir->dalvikInsn.vC = if_false->dalvikInsn.vB;
} else {
DCHECK_EQ(SelectKind(if_true), kSelectMove);
DCHECK_EQ(SelectKind(if_false), kSelectMove);
int32_t* src_ssa = arena_->AllocArray<int32_t>(3, kArenaAllocDFInfo);
src_ssa[0] = mir->ssa_rep->uses[0];
src_ssa[1] = if_true->ssa_rep->uses[0];
src_ssa[2] = if_false->ssa_rep->uses[0];
mir->ssa_rep->uses = src_ssa;
mir->ssa_rep->num_uses = 3;
}
mir->ssa_rep->num_defs = 1;
mir->ssa_rep->defs = arena_->AllocArray<int32_t>(1, kArenaAllocDFInfo);
mir->ssa_rep->fp_def = arena_->AllocArray<bool>(1, kArenaAllocDFInfo);
mir->ssa_rep->fp_def[0] = if_true->ssa_rep->fp_def[0];
// Match type of uses to def.
mir->ssa_rep->fp_use = arena_->AllocArray<bool>(mir->ssa_rep->num_uses,
kArenaAllocDFInfo);
for (int i = 0; i < mir->ssa_rep->num_uses; i++) {
mir->ssa_rep->fp_use[i] = mir->ssa_rep->fp_def[0];
}
/*
* There is usually a Phi node in the join block for our two cases. If the
* Phi node only contains our two cases as input, we will use the result
* SSA name of the Phi node as our select result and delete the Phi. If
* the Phi node has more than two operands, we will arbitrarily use the SSA
* name of the "false" path, delete the SSA name of the "true" path from the
* Phi node (and fix up the incoming arc list).
*/
if (phi->ssa_rep->num_uses == 2) {
mir->ssa_rep->defs[0] = phi->ssa_rep->defs[0];
// Rather than changing the Phi to kMirOpNop, remove it completely.
// This avoids leaving other Phis after kMirOpNop (i.e. a non-Phi) insn.
tk_tk->RemoveMIR(phi);
int dead_false_def = if_false->ssa_rep->defs[0];
raw_use_counts_[dead_false_def] = use_counts_[dead_false_def] = 0;
} else {
int live_def = if_false->ssa_rep->defs[0];
mir->ssa_rep->defs[0] = live_def;
}
int dead_true_def = if_true->ssa_rep->defs[0];
raw_use_counts_[dead_true_def] = use_counts_[dead_true_def] = 0;
// Update ending vreg->sreg map for GC maps generation.
int def_vreg = SRegToVReg(mir->ssa_rep->defs[0]);
bb->data_flow_info->vreg_to_ssa_map_exit[def_vreg] = mir->ssa_rep->defs[0];
// We want to remove ft and tk and link bb directly to ft_ft. First, we need
// to update all Phi inputs correctly with UpdatePredecessor(ft->id, bb->id)
// since the live_def above comes from ft->first_mir_insn (if_false).
DCHECK(if_false == ft->first_mir_insn);
ft_ft->UpdatePredecessor(ft->id, bb->id);
// Correct the rest of the links between bb, ft and ft_ft.
ft->ErasePredecessor(bb->id);
ft->fall_through = NullBasicBlockId;
bb->fall_through = ft_ft->id;
// Now we can kill tk and ft.
tk->Kill(this);
ft->Kill(this);
// NOTE: DFS order, domination info and topological order are still usable
// despite the newly dead blocks.
}
}
}
}
}
bb = ((cu_->disable_opt & (1 << kSuppressExceptionEdges)) != 0) ? NextDominatedBlock(bb) :
nullptr;
}
if (use_lvn && UNLIKELY(!global_valnum->Good())) {
LOG(WARNING) << "LVN overflow in " << PrettyMethod(cu_->method_idx, *cu_->dex_file);
}
return true;
}
/* Collect stats on number of checks removed */
void MIRGraph::CountChecks(class BasicBlock* bb) {
if (bb->data_flow_info != nullptr) {
for (MIR* mir = bb->first_mir_insn; mir != nullptr; mir = mir->next) {
if (mir->ssa_rep == nullptr) {
continue;
}
uint64_t df_attributes = GetDataFlowAttributes(mir);
if (df_attributes & DF_HAS_NULL_CHKS) {
checkstats_->null_checks++;
if (mir->optimization_flags & MIR_IGNORE_NULL_CHECK) {
checkstats_->null_checks_eliminated++;
}
}
if (df_attributes & DF_HAS_RANGE_CHKS) {
checkstats_->range_checks++;
if (mir->optimization_flags & MIR_IGNORE_RANGE_CHECK) {
checkstats_->range_checks_eliminated++;
}
}
}
}
}
/* Try to make common case the fallthrough path. */
bool MIRGraph::LayoutBlocks(BasicBlock* bb) {
// TODO: For now, just looking for direct throws. Consider generalizing for profile feedback.
if (!bb->explicit_throw) {
return false;
}
// If we visited it, we are done.
if (bb->visited) {
return false;
}
bb->visited = true;
BasicBlock* walker = bb;
while (true) {
// Check termination conditions.
if ((walker->block_type == kEntryBlock) || (Predecessors(walker) != 1)) {
break;
}
DCHECK(!walker->predecessors.empty());
BasicBlock* prev = GetBasicBlock(walker->predecessors[0]);
// If we visited the predecessor, we are done.
if (prev->visited) {
return false;
}
prev->visited = true;
if (prev->conditional_branch) {
if (GetBasicBlock(prev->fall_through) == walker) {
// Already done - return.
break;
}
DCHECK_EQ(walker, GetBasicBlock(prev->taken));
// Got one. Flip it and exit.
Instruction::Code opcode = prev->last_mir_insn->dalvikInsn.opcode;
switch (opcode) {
case Instruction::IF_EQ: opcode = Instruction::IF_NE; break;
case Instruction::IF_NE: opcode = Instruction::IF_EQ; break;
case Instruction::IF_LT: opcode = Instruction::IF_GE; break;
case Instruction::IF_GE: opcode = Instruction::IF_LT; break;
case Instruction::IF_GT: opcode = Instruction::IF_LE; break;
case Instruction::IF_LE: opcode = Instruction::IF_GT; break;
case Instruction::IF_EQZ: opcode = Instruction::IF_NEZ; break;
case Instruction::IF_NEZ: opcode = Instruction::IF_EQZ; break;
case Instruction::IF_LTZ: opcode = Instruction::IF_GEZ; break;
case Instruction::IF_GEZ: opcode = Instruction::IF_LTZ; break;
case Instruction::IF_GTZ: opcode = Instruction::IF_LEZ; break;
case Instruction::IF_LEZ: opcode = Instruction::IF_GTZ; break;
default: LOG(FATAL) << "Unexpected opcode " << opcode;
}
prev->last_mir_insn->dalvikInsn.opcode = opcode;
BasicBlockId t_bb = prev->taken;
prev->taken = prev->fall_through;
prev->fall_through = t_bb;
break;
}
walker = prev;
}
return false;
}
/* Combine any basic blocks terminated by instructions that we now know can't throw */
void MIRGraph::CombineBlocks(class BasicBlock* bb) {
// Loop here to allow combining a sequence of blocks
while ((bb->block_type == kDalvikByteCode) &&
(bb->last_mir_insn != nullptr) &&
(static_cast<int>(bb->last_mir_insn->dalvikInsn.opcode) == kMirOpCheck)) {
MIR* mir = bb->last_mir_insn;
DCHECK(bb->first_mir_insn != nullptr);
// Get the paired insn and check if it can still throw.
MIR* throw_insn = mir->meta.throw_insn;
if (CanThrow(throw_insn)) {
break;
}
// OK - got one. Combine
BasicBlock* bb_next = GetBasicBlock(bb->fall_through);
DCHECK(!bb_next->catch_entry);
DCHECK_EQ(bb_next->predecessors.size(), 1u);
// Now move instructions from bb_next to bb. Start off with doing a sanity check
// that kMirOpCheck's throw instruction is first one in the bb_next.
DCHECK_EQ(bb_next->first_mir_insn, throw_insn);
// Now move all instructions (throw instruction to last one) from bb_next to bb.
MIR* last_to_move = bb_next->last_mir_insn;
bb_next->RemoveMIRList(throw_insn, last_to_move);
bb->InsertMIRListAfter(bb->last_mir_insn, throw_insn, last_to_move);
// The kMirOpCheck instruction is not needed anymore.
mir->dalvikInsn.opcode = static_cast<Instruction::Code>(kMirOpNop);
bb->RemoveMIR(mir);
// Before we overwrite successors, remove their predecessor links to bb.
bb_next->ErasePredecessor(bb->id);
if (bb->taken != NullBasicBlockId) {
DCHECK_EQ(bb->successor_block_list_type, kNotUsed);
BasicBlock* bb_taken = GetBasicBlock(bb->taken);
// bb->taken will be overwritten below.
DCHECK_EQ(bb_taken->block_type, kExceptionHandling);
DCHECK_EQ(bb_taken->predecessors.size(), 1u);
DCHECK_EQ(bb_taken->predecessors[0], bb->id);
bb_taken->predecessors.clear();
bb_taken->block_type = kDead;
DCHECK(bb_taken->data_flow_info == nullptr);
} else {
DCHECK_EQ(bb->successor_block_list_type, kCatch);
for (SuccessorBlockInfo* succ_info : bb->successor_blocks) {
if (succ_info->block != NullBasicBlockId) {
BasicBlock* succ_bb = GetBasicBlock(succ_info->block);
DCHECK(succ_bb->catch_entry);
succ_bb->ErasePredecessor(bb->id);
}
}
}
// Use the successor info from the next block
bb->successor_block_list_type = bb_next->successor_block_list_type;
bb->successor_blocks.swap(bb_next->successor_blocks); // Swap instead of copying.
bb_next->successor_block_list_type = kNotUsed;
// Use the ending block linkage from the next block
bb->fall_through = bb_next->fall_through;
bb_next->fall_through = NullBasicBlockId;
bb->taken = bb_next->taken;
bb_next->taken = NullBasicBlockId;
/*
* If lower-half of pair of blocks to combine contained
* a return or a conditional branch or an explicit throw,
* move the flag to the newly combined block.
*/
bb->terminated_by_return = bb_next->terminated_by_return;
bb->conditional_branch = bb_next->conditional_branch;
bb->explicit_throw = bb_next->explicit_throw;
// Merge the use_lvn flag.
bb->use_lvn |= bb_next->use_lvn;
// Kill the unused block.
bb_next->data_flow_info = nullptr;
/*
* NOTE: we aren't updating all dataflow info here. Should either make sure this pass
* happens after uses of i_dominated, dom_frontier or update the dataflow info here.
* NOTE: GVN uses bb->data_flow_info->live_in_v which is unaffected by the block merge.
*/
// Kill bb_next and remap now-dead id to parent.
bb_next->block_type = kDead;
bb_next->data_flow_info = nullptr; // Must be null for dead blocks. (Relied on by the GVN.)
block_id_map_.Overwrite(bb_next->id, bb->id);
// Update predecessors in children.
ChildBlockIterator iter(bb, this);
for (BasicBlock* child = iter.Next(); child != nullptr; child = iter.Next()) {
child->UpdatePredecessor(bb_next->id, bb->id);
}
// DFS orders, domination and topological order are not up to date anymore.
dfs_orders_up_to_date_ = false;
domination_up_to_date_ = false;
topological_order_up_to_date_ = false;
// Now, loop back and see if we can keep going
}
}
bool MIRGraph::EliminateNullChecksGate() {
if ((cu_->disable_opt & (1 << kNullCheckElimination)) != 0 ||
(merged_df_flags_ & DF_HAS_NULL_CHKS) == 0) {
return false;
}
DCHECK(temp_scoped_alloc_.get() == nullptr);
temp_scoped_alloc_.reset(ScopedArenaAllocator::Create(&cu_->arena_stack));
temp_.nce.num_vregs = GetNumOfCodeAndTempVRs();
temp_.nce.work_vregs_to_check = new (temp_scoped_alloc_.get()) ArenaBitVector(
temp_scoped_alloc_.get(), temp_.nce.num_vregs, false, kBitMapNullCheck);
temp_.nce.ending_vregs_to_check_matrix =
temp_scoped_alloc_->AllocArray<ArenaBitVector*>(GetNumBlocks(), kArenaAllocMisc);
std::fill_n(temp_.nce.ending_vregs_to_check_matrix, GetNumBlocks(), nullptr);
// reset MIR_MARK
AllNodesIterator iter(this);
for (BasicBlock* bb = iter.Next(); bb != nullptr; bb = iter.Next()) {
for (MIR* mir = bb->first_mir_insn; mir != nullptr; mir = mir->next) {
mir->optimization_flags &= ~MIR_MARK;
}
}
return true;
}
/*
* Eliminate unnecessary null checks for a basic block.
*/
bool MIRGraph::EliminateNullChecks(BasicBlock* bb) {
if (bb->block_type != kDalvikByteCode && bb->block_type != kEntryBlock) {
// Ignore the kExitBlock as well.
DCHECK(bb->first_mir_insn == nullptr);
return false;
}
ArenaBitVector* vregs_to_check = temp_.nce.work_vregs_to_check;
/*
* Set initial state. Catch blocks don't need any special treatment.
*/
if (bb->block_type == kEntryBlock) {
vregs_to_check->ClearAllBits();
// Assume all ins are objects.
for (uint16_t in_reg = GetFirstInVR();
in_reg < GetNumOfCodeVRs(); in_reg++) {
vregs_to_check->SetBit(in_reg);
}
if ((cu_->access_flags & kAccStatic) == 0) {
// If non-static method, mark "this" as non-null.
int this_reg = GetFirstInVR();
vregs_to_check->ClearBit(this_reg);
}
} else {
DCHECK_EQ(bb->block_type, kDalvikByteCode);
// Starting state is union of all incoming arcs.
bool copied_first = false;
for (BasicBlockId pred_id : bb->predecessors) {
if (temp_.nce.ending_vregs_to_check_matrix[pred_id] == nullptr) {
continue;
}
BasicBlock* pred_bb = GetBasicBlock(pred_id);
DCHECK(pred_bb != nullptr);
MIR* null_check_insn = nullptr;
if (pred_bb->block_type == kDalvikByteCode) {
// Check to see if predecessor had an explicit null-check.
MIR* last_insn = pred_bb->last_mir_insn;
if (last_insn != nullptr) {
Instruction::Code last_opcode = last_insn->dalvikInsn.opcode;
if ((last_opcode == Instruction::IF_EQZ && pred_bb->fall_through == bb->id) ||
(last_opcode == Instruction::IF_NEZ && pred_bb->taken == bb->id)) {
// Remember the null check insn if there's no other predecessor requiring null check.
if (!copied_first || !vregs_to_check->IsBitSet(last_insn->dalvikInsn.vA)) {
null_check_insn = last_insn;
}
}
}
}
if (!copied_first) {
copied_first = true;
vregs_to_check->Copy(temp_.nce.ending_vregs_to_check_matrix[pred_id]);
} else {
vregs_to_check->Union(temp_.nce.ending_vregs_to_check_matrix[pred_id]);
}
if (null_check_insn != nullptr) {
vregs_to_check->ClearBit(null_check_insn->dalvikInsn.vA);
}
}
DCHECK(copied_first); // At least one predecessor must have been processed before this bb.
}
// At this point, vregs_to_check shows which sregs have an object definition with
// no intervening uses.
// Walk through the instruction in the block, updating as necessary
for (MIR* mir = bb->first_mir_insn; mir != nullptr; mir = mir->next) {
uint64_t df_attributes = GetDataFlowAttributes(mir);
if ((df_attributes & DF_NULL_TRANSFER_N) != 0u) {
// The algorithm was written in a phi agnostic way.
continue;
}
// Might need a null check?
if (df_attributes & DF_HAS_NULL_CHKS) {
int src_vreg;
if (df_attributes & DF_NULL_CHK_OUT0) {
DCHECK_NE(df_attributes & DF_IS_INVOKE, 0u);
src_vreg = mir->dalvikInsn.vC;
} else if (df_attributes & DF_NULL_CHK_B) {
DCHECK_NE(df_attributes & DF_REF_B, 0u);
src_vreg = mir->dalvikInsn.vB;
} else {
DCHECK_NE(df_attributes & DF_NULL_CHK_A, 0u);
DCHECK_NE(df_attributes & DF_REF_A, 0u);
src_vreg = mir->dalvikInsn.vA;
}
if (!vregs_to_check->IsBitSet(src_vreg)) {
// Eliminate the null check.
mir->optimization_flags |= MIR_MARK;
} else {
// Do the null check.
mir->optimization_flags &= ~MIR_MARK;
// Mark src_vreg as null-checked.
vregs_to_check->ClearBit(src_vreg);
}
}
if ((df_attributes & DF_A_WIDE) ||
(df_attributes & (DF_REF_A | DF_SETS_CONST | DF_NULL_TRANSFER)) == 0) {
continue;
}
/*
* First, mark all object definitions as requiring null check.
* Note: we can't tell if a CONST definition might be used as an object, so treat
* them all as object definitions.
*/
if ((df_attributes & (DF_DA | DF_REF_A)) == (DF_DA | DF_REF_A) ||
(df_attributes & DF_SETS_CONST)) {
vregs_to_check->SetBit(mir->dalvikInsn.vA);
}
// Then, remove mark from all object definitions we know are non-null.
if (df_attributes & DF_NON_NULL_DST) {
// Mark target of NEW* as non-null
DCHECK_NE(df_attributes & DF_REF_A, 0u);
vregs_to_check->ClearBit(mir->dalvikInsn.vA);
}
// Mark non-null returns from invoke-style NEW*
if (df_attributes & DF_NON_NULL_RET) {
MIR* next_mir = mir->next;
// Next should be an MOVE_RESULT_OBJECT
if (UNLIKELY(next_mir == nullptr)) {
// The MethodVerifier makes sure there's no MOVE_RESULT at the catch entry or branch
// target, so the MOVE_RESULT cannot be broken away into another block.
LOG(WARNING) << "Unexpected end of block following new";
} else if (UNLIKELY(next_mir->dalvikInsn.opcode != Instruction::MOVE_RESULT_OBJECT)) {
LOG(WARNING) << "Unexpected opcode following new: " << next_mir->dalvikInsn.opcode;
} else {
// Mark as null checked.
vregs_to_check->ClearBit(next_mir->dalvikInsn.vA);
}
}
// Propagate null check state on register copies.
if (df_attributes & DF_NULL_TRANSFER_0) {
DCHECK_EQ(df_attributes | ~(DF_DA | DF_REF_A | DF_UB | DF_REF_B), static_cast<uint64_t>(-1));
if (vregs_to_check->IsBitSet(mir->dalvikInsn.vB)) {
vregs_to_check->SetBit(mir->dalvikInsn.vA);
} else {
vregs_to_check->ClearBit(mir->dalvikInsn.vA);
}
}
}
// Did anything change?
bool nce_changed = false;
ArenaBitVector* old_ending_ssa_regs_to_check = temp_.nce.ending_vregs_to_check_matrix[bb->id];
if (old_ending_ssa_regs_to_check == nullptr) {
DCHECK(temp_scoped_alloc_.get() != nullptr);
nce_changed = vregs_to_check->GetHighestBitSet() != -1;
temp_.nce.ending_vregs_to_check_matrix[bb->id] = vregs_to_check;
// Create a new vregs_to_check for next BB.
temp_.nce.work_vregs_to_check = new (temp_scoped_alloc_.get()) ArenaBitVector(
temp_scoped_alloc_.get(), temp_.nce.num_vregs, false, kBitMapNullCheck);
} else if (!vregs_to_check->SameBitsSet(old_ending_ssa_regs_to_check)) {
nce_changed = true;
temp_.nce.ending_vregs_to_check_matrix[bb->id] = vregs_to_check;
temp_.nce.work_vregs_to_check = old_ending_ssa_regs_to_check; // Reuse for next BB.
}
return nce_changed;
}
void MIRGraph::EliminateNullChecksEnd() {
// Clean up temporaries.
temp_.nce.num_vregs = 0u;
temp_.nce.work_vregs_to_check = nullptr;
temp_.nce.ending_vregs_to_check_matrix = nullptr;
DCHECK(temp_scoped_alloc_.get() != nullptr);
temp_scoped_alloc_.reset();
// converge MIR_MARK with MIR_IGNORE_NULL_CHECK
AllNodesIterator iter(this);
for (BasicBlock* bb = iter.Next(); bb != nullptr; bb = iter.Next()) {
for (MIR* mir = bb->first_mir_insn; mir != nullptr; mir = mir->next) {
constexpr int kMarkToIgnoreNullCheckShift = kMIRMark - kMIRIgnoreNullCheck;
static_assert(kMarkToIgnoreNullCheckShift > 0, "Not a valid right-shift");
uint16_t mirMarkAdjustedToIgnoreNullCheck =
(mir->optimization_flags & MIR_MARK) >> kMarkToIgnoreNullCheckShift;
mir->optimization_flags |= mirMarkAdjustedToIgnoreNullCheck;
}
}
}
/*
* Perform type and size inference for a basic block.
*/
bool MIRGraph::InferTypes(BasicBlock* bb) {
if (bb->data_flow_info == nullptr) return false;
bool infer_changed = false;
for (MIR* mir = bb->first_mir_insn; mir != NULL; mir = mir->next) {
if (mir->ssa_rep == NULL) {
continue;
}
// Propagate type info.
infer_changed = InferTypeAndSize(bb, mir, infer_changed);
}
return infer_changed;
}
bool MIRGraph::EliminateClassInitChecksGate() {
if ((cu_->disable_opt & (1 << kClassInitCheckElimination)) != 0 ||
(merged_df_flags_ & DF_CLINIT) == 0) {
return false;
}
DCHECK(temp_scoped_alloc_.get() == nullptr);
temp_scoped_alloc_.reset(ScopedArenaAllocator::Create(&cu_->arena_stack));
// Each insn we use here has at least 2 code units, offset/2 will be a unique index.
const size_t end = (GetNumDalvikInsns() + 1u) / 2u;
temp_.cice.indexes = temp_scoped_alloc_->AllocArray<uint16_t>(end, kArenaAllocGrowableArray);
std::fill_n(temp_.cice.indexes, end, 0xffffu);
uint32_t unique_class_count = 0u;
{
// Get unique_class_count and store indexes in temp_insn_data_ using a map on a nested
// ScopedArenaAllocator.
// Embed the map value in the entry to save space.
struct MapEntry {
// Map key: the class identified by the declaring dex file and type index.
const DexFile* declaring_dex_file;
uint16_t declaring_class_idx;
// Map value: index into bit vectors of classes requiring initialization checks.
uint16_t index;
};
struct MapEntryComparator {
bool operator()(const MapEntry& lhs, const MapEntry& rhs) const {
if (lhs.declaring_class_idx != rhs.declaring_class_idx) {
return lhs.declaring_class_idx < rhs.declaring_class_idx;
}
return lhs.declaring_dex_file < rhs.declaring_dex_file;
}
};
ScopedArenaAllocator allocator(&cu_->arena_stack);
ScopedArenaSet<MapEntry, MapEntryComparator> class_to_index_map(MapEntryComparator(),
allocator.Adapter());
// First, find all SGET/SPUTs that may need class initialization checks, record INVOKE_STATICs.
AllNodesIterator iter(this);
for (BasicBlock* bb = iter.Next(); bb != nullptr; bb = iter.Next()) {
if (bb->block_type == kDalvikByteCode) {
for (MIR* mir = bb->first_mir_insn; mir != nullptr; mir = mir->next) {
if (IsInstructionSGetOrSPut(mir->dalvikInsn.opcode)) {
const MirSFieldLoweringInfo& field_info = GetSFieldLoweringInfo(mir);
if (!field_info.IsReferrersClass()) {
DCHECK_LT(class_to_index_map.size(), 0xffffu);
MapEntry entry = {
// Treat unresolved fields as if each had its own class.
field_info.IsResolved() ? field_info.DeclaringDexFile()
: nullptr,
field_info.IsResolved() ? field_info.DeclaringClassIndex()
: field_info.FieldIndex(),
static_cast<uint16_t>(class_to_index_map.size())
};
uint16_t index = class_to_index_map.insert(entry).first->index;
// Using offset/2 for index into temp_.cice.indexes.
temp_.cice.indexes[mir->offset / 2u] = index;
}
} else if (IsInstructionInvokeStatic(mir->dalvikInsn.opcode)) {
const MirMethodLoweringInfo& method_info = GetMethodLoweringInfo(mir);
DCHECK(method_info.IsStatic());
if (method_info.FastPath() && !method_info.IsReferrersClass()) {
MapEntry entry = {
method_info.DeclaringDexFile(),
method_info.DeclaringClassIndex(),
static_cast<uint16_t>(class_to_index_map.size())
};
uint16_t index = class_to_index_map.insert(entry).first->index;
// Using offset/2 for index into temp_.cice.indexes.
temp_.cice.indexes[mir->offset / 2u] = index;
}
}
}
}
}
unique_class_count = static_cast<uint32_t>(class_to_index_map.size());
}
if (unique_class_count == 0u) {
// All SGET/SPUTs refer to initialized classes. Nothing to do.
temp_.cice.indexes = nullptr;
temp_scoped_alloc_.reset();
return false;
}
// 2 bits for each class: is class initialized, is class in dex cache.
temp_.cice.num_class_bits = 2u * unique_class_count;
temp_.cice.work_classes_to_check = new (temp_scoped_alloc_.get()) ArenaBitVector(
temp_scoped_alloc_.get(), temp_.cice.num_class_bits, false, kBitMapClInitCheck);
temp_.cice.ending_classes_to_check_matrix =
temp_scoped_alloc_->AllocArray<ArenaBitVector*>(GetNumBlocks(), kArenaAllocMisc);
std::fill_n(temp_.cice.ending_classes_to_check_matrix, GetNumBlocks(), nullptr);
DCHECK_GT(temp_.cice.num_class_bits, 0u);
return true;
}
/*
* Eliminate unnecessary class initialization checks for a basic block.
*/
bool MIRGraph::EliminateClassInitChecks(BasicBlock* bb) {
DCHECK_EQ((cu_->disable_opt & (1 << kClassInitCheckElimination)), 0u);
if (bb->block_type != kDalvikByteCode && bb->block_type != kEntryBlock) {
// Ignore the kExitBlock as well.
DCHECK(bb->first_mir_insn == nullptr);
return false;
}
/*
* Set initial state. Catch blocks don't need any special treatment.
*/
ArenaBitVector* classes_to_check = temp_.cice.work_classes_to_check;
DCHECK(classes_to_check != nullptr);
if (bb->block_type == kEntryBlock) {
classes_to_check->SetInitialBits(temp_.cice.num_class_bits);
} else {
// Starting state is union of all incoming arcs.
bool copied_first = false;
for (BasicBlockId pred_id : bb->predecessors) {
if (temp_.cice.ending_classes_to_check_matrix[pred_id] == nullptr) {
continue;
}
if (!copied_first) {
copied_first = true;
classes_to_check->Copy(temp_.cice.ending_classes_to_check_matrix[pred_id]);
} else {
classes_to_check->Union(temp_.cice.ending_classes_to_check_matrix[pred_id]);
}
}
DCHECK(copied_first); // At least one predecessor must have been processed before this bb.
}
// At this point, classes_to_check shows which classes need clinit checks.
// Walk through the instruction in the block, updating as necessary
for (MIR* mir = bb->first_mir_insn; mir != nullptr; mir = mir->next) {
uint16_t index = temp_.cice.indexes[mir->offset / 2u];
if (index != 0xffffu) {
bool check_initialization = false;
bool check_dex_cache = false;
// NOTE: index != 0xffff does not guarantee that this is an SGET/SPUT/INVOKE_STATIC.
// Dex instructions with width 1 can have the same offset/2.
if (IsInstructionSGetOrSPut(mir->dalvikInsn.opcode)) {
check_initialization = true;
check_dex_cache = true;
} else if (IsInstructionInvokeStatic(mir->dalvikInsn.opcode)) {
check_initialization = true;
// NOTE: INVOKE_STATIC doesn't guarantee that the type will be in the dex cache.
}
if (check_dex_cache) {
uint32_t check_dex_cache_index = 2u * index + 1u;
if (!classes_to_check->IsBitSet(check_dex_cache_index)) {
// Eliminate the class init check.
mir->optimization_flags |= MIR_CLASS_IS_IN_DEX_CACHE;
} else {
// Do the class init check.
mir->optimization_flags &= ~MIR_CLASS_IS_IN_DEX_CACHE;
}
classes_to_check->ClearBit(check_dex_cache_index);
}
if (check_initialization) {
uint32_t check_clinit_index = 2u * index;
if (!classes_to_check->IsBitSet(check_clinit_index)) {
// Eliminate the class init check.
mir->optimization_flags |= MIR_CLASS_IS_INITIALIZED;
} else {
// Do the class init check.
mir->optimization_flags &= ~MIR_CLASS_IS_INITIALIZED;
}
// Mark the class as initialized.
classes_to_check->ClearBit(check_clinit_index);
}
}
}
// Did anything change?
bool changed = false;
ArenaBitVector* old_ending_classes_to_check = temp_.cice.ending_classes_to_check_matrix[bb->id];
if (old_ending_classes_to_check == nullptr) {
DCHECK(temp_scoped_alloc_.get() != nullptr);
changed = classes_to_check->GetHighestBitSet() != -1;
temp_.cice.ending_classes_to_check_matrix[bb->id] = classes_to_check;
// Create a new classes_to_check for next BB.
temp_.cice.work_classes_to_check = new (temp_scoped_alloc_.get()) ArenaBitVector(
temp_scoped_alloc_.get(), temp_.cice.num_class_bits, false, kBitMapClInitCheck);
} else if (!classes_to_check->Equal(old_ending_classes_to_check)) {
changed = true;
temp_.cice.ending_classes_to_check_matrix[bb->id] = classes_to_check;
temp_.cice.work_classes_to_check = old_ending_classes_to_check; // Reuse for next BB.
}
return changed;
}
void MIRGraph::EliminateClassInitChecksEnd() {
// Clean up temporaries.
temp_.cice.num_class_bits = 0u;
temp_.cice.work_classes_to_check = nullptr;
temp_.cice.ending_classes_to_check_matrix = nullptr;
DCHECK(temp_.cice.indexes != nullptr);
temp_.cice.indexes = nullptr;
DCHECK(temp_scoped_alloc_.get() != nullptr);
temp_scoped_alloc_.reset();
}
bool MIRGraph::ApplyGlobalValueNumberingGate() {
if (GlobalValueNumbering::Skip(cu_)) {
return false;
}
DCHECK(temp_scoped_alloc_ == nullptr);
temp_scoped_alloc_.reset(ScopedArenaAllocator::Create(&cu_->arena_stack));
temp_.gvn.ifield_ids =
GlobalValueNumbering::PrepareGvnFieldIds(temp_scoped_alloc_.get(), ifield_lowering_infos_);
temp_.gvn.sfield_ids =
GlobalValueNumbering::PrepareGvnFieldIds(temp_scoped_alloc_.get(), sfield_lowering_infos_);
DCHECK(temp_.gvn.gvn == nullptr);
temp_.gvn.gvn = new (temp_scoped_alloc_.get()) GlobalValueNumbering(
cu_, temp_scoped_alloc_.get(), GlobalValueNumbering::kModeGvn);
return true;
}
bool MIRGraph::ApplyGlobalValueNumbering(BasicBlock* bb) {
DCHECK(temp_.gvn.gvn != nullptr);
LocalValueNumbering* lvn = temp_.gvn.gvn->PrepareBasicBlock(bb);
if (lvn != nullptr) {
for (MIR* mir = bb->first_mir_insn; mir != nullptr; mir = mir->next) {
lvn->GetValueNumber(mir);
}
}
bool change = (lvn != nullptr) && temp_.gvn.gvn->FinishBasicBlock(bb);
return change;
}
void MIRGraph::ApplyGlobalValueNumberingEnd() {
// Perform modifications.
DCHECK(temp_.gvn.gvn != nullptr);
if (temp_.gvn.gvn->Good()) {
temp_.gvn.gvn->StartPostProcessing();
if (max_nested_loops_ != 0u) {
TopologicalSortIterator iter(this);
for (BasicBlock* bb = iter.Next(); bb != nullptr; bb = iter.Next()) {
ScopedArenaAllocator allocator(&cu_->arena_stack); // Reclaim memory after each LVN.
LocalValueNumbering* lvn = temp_.gvn.gvn->PrepareBasicBlock(bb, &allocator);
if (lvn != nullptr) {
for (MIR* mir = bb->first_mir_insn; mir != nullptr; mir = mir->next) {
lvn->GetValueNumber(mir);
}
bool change = temp_.gvn.gvn->FinishBasicBlock(bb);
DCHECK(!change) << PrettyMethod(cu_->method_idx, *cu_->dex_file);
}
}
}
// GVN was successful, running the LVN would be useless.
cu_->disable_opt |= (1u << kLocalValueNumbering);
} else {
LOG(WARNING) << "GVN failed for " << PrettyMethod(cu_->method_idx, *cu_->dex_file);
cu_->disable_opt |= (1u << kGvnDeadCodeElimination);
}
if ((cu_->disable_opt & (1 << kGvnDeadCodeElimination)) != 0) {
EliminateDeadCodeEnd();
} // else preserve GVN data for CSE.
}
bool MIRGraph::EliminateDeadCodeGate() {
if ((cu_->disable_opt & (1 << kGvnDeadCodeElimination)) != 0) {
return false;
}
DCHECK(temp_scoped_alloc_ != nullptr);
temp_.gvn.dce = new (temp_scoped_alloc_.get()) GvnDeadCodeElimination(temp_.gvn.gvn,
temp_scoped_alloc_.get());
return true;
}
bool MIRGraph::EliminateDeadCode(BasicBlock* bb) {
DCHECK(temp_scoped_alloc_ != nullptr);
DCHECK(temp_.gvn.gvn != nullptr);
if (bb->block_type != kDalvikByteCode) {
return false;
}
DCHECK(temp_.gvn.dce != nullptr);
temp_.gvn.dce->Apply(bb);
return false; // No need to repeat.
}
void MIRGraph::EliminateDeadCodeEnd() {
DCHECK_EQ(temp_.gvn.dce != nullptr, (cu_->disable_opt & (1 << kGvnDeadCodeElimination)) == 0);
if (temp_.gvn.dce != nullptr) {
delete temp_.gvn.dce;
temp_.gvn.dce = nullptr;
}
delete temp_.gvn.gvn;
temp_.gvn.gvn = nullptr;
temp_.gvn.ifield_ids = nullptr;
temp_.gvn.sfield_ids = nullptr;
DCHECK(temp_scoped_alloc_ != nullptr);
temp_scoped_alloc_.reset();
}
void MIRGraph::ComputeInlineIFieldLoweringInfo(uint16_t field_idx, MIR* invoke, MIR* iget_or_iput) {
uint32_t method_index = invoke->meta.method_lowering_info;
if (temp_.smi.processed_indexes->IsBitSet(method_index)) {
iget_or_iput->meta.ifield_lowering_info = temp_.smi.lowering_infos[method_index];
DCHECK_EQ(field_idx, GetIFieldLoweringInfo(iget_or_iput).FieldIndex());
return;
}
const MirMethodLoweringInfo& method_info = GetMethodLoweringInfo(invoke);
MethodReference target = method_info.GetTargetMethod();
DexCompilationUnit inlined_unit(
cu_, cu_->class_loader, cu_->class_linker, *target.dex_file,
nullptr /* code_item not used */, 0u /* class_def_idx not used */, target.dex_method_index,
0u /* access_flags not used */, nullptr /* verified_method not used */);
DexMemAccessType type = IGetOrIPutMemAccessType(iget_or_iput->dalvikInsn.opcode);
MirIFieldLoweringInfo inlined_field_info(field_idx, type, false);
MirIFieldLoweringInfo::Resolve(cu_->compiler_driver, &inlined_unit, &inlined_field_info, 1u);
DCHECK(inlined_field_info.IsResolved());
uint32_t field_info_index = ifield_lowering_infos_.size();
ifield_lowering_infos_.push_back(inlined_field_info);
temp_.smi.processed_indexes->SetBit(method_index);
temp_.smi.lowering_infos[method_index] = field_info_index;
iget_or_iput->meta.ifield_lowering_info = field_info_index;
}
bool MIRGraph::InlineSpecialMethodsGate() {
if ((cu_->disable_opt & (1 << kSuppressMethodInlining)) != 0 ||
method_lowering_infos_.size() == 0u) {
return false;
}
if (cu_->compiler_driver->GetMethodInlinerMap() == nullptr) {
// This isn't the Quick compiler.
return false;
}
return true;
}
void MIRGraph::InlineSpecialMethodsStart() {
// Prepare for inlining getters/setters. Since we're inlining at most 1 IGET/IPUT from
// each INVOKE, we can index the data by the MIR::meta::method_lowering_info index.
DCHECK(temp_scoped_alloc_.get() == nullptr);
temp_scoped_alloc_.reset(ScopedArenaAllocator::Create(&cu_->arena_stack));
temp_.smi.num_indexes = method_lowering_infos_.size();
temp_.smi.processed_indexes = new (temp_scoped_alloc_.get()) ArenaBitVector(
temp_scoped_alloc_.get(), temp_.smi.num_indexes, false, kBitMapMisc);
temp_.smi.processed_indexes->ClearAllBits();
temp_.smi.lowering_infos =
temp_scoped_alloc_->AllocArray<uint16_t>(temp_.smi.num_indexes, kArenaAllocGrowableArray);
}
void MIRGraph::InlineSpecialMethods(BasicBlock* bb) {
if (bb->block_type != kDalvikByteCode) {
return;
}
for (MIR* mir = bb->first_mir_insn; mir != nullptr; mir = mir->next) {
if (MIR::DecodedInstruction::IsPseudoMirOp(mir->dalvikInsn.opcode)) {
continue;
}
if (!(mir->dalvikInsn.FlagsOf() & Instruction::kInvoke)) {
continue;
}
const MirMethodLoweringInfo& method_info = GetMethodLoweringInfo(mir);
if (!method_info.FastPath() || !method_info.IsSpecial()) {
continue;
}
InvokeType sharp_type = method_info.GetSharpType();
if ((sharp_type != kDirect) && (sharp_type != kStatic)) {
continue;
}
if (sharp_type == kStatic) {
bool needs_clinit = !method_info.IsClassInitialized() &&
((mir->optimization_flags & MIR_CLASS_IS_INITIALIZED) == 0);
if (needs_clinit) {
continue;
}
}
DCHECK(cu_->compiler_driver->GetMethodInlinerMap() != nullptr);
MethodReference target = method_info.GetTargetMethod();
if (cu_->compiler_driver->GetMethodInlinerMap()->GetMethodInliner(target.dex_file)
->GenInline(this, bb, mir, target.dex_method_index)) {
if (cu_->verbose || cu_->print_pass) {
LOG(INFO) << "SpecialMethodInliner: Inlined " << method_info.GetInvokeType() << " ("
<< sharp_type << ") call to \"" << PrettyMethod(target.dex_method_index,
*target.dex_file)
<< "\" from \"" << PrettyMethod(cu_->method_idx, *cu_->dex_file)
<< "\" @0x" << std::hex << mir->offset;
}
}
}
}
void MIRGraph::InlineSpecialMethodsEnd() {
// Clean up temporaries.
DCHECK(temp_.smi.lowering_infos != nullptr);
temp_.smi.lowering_infos = nullptr;
temp_.smi.num_indexes = 0u;
DCHECK(temp_.smi.processed_indexes != nullptr);
temp_.smi.processed_indexes = nullptr;
DCHECK(temp_scoped_alloc_.get() != nullptr);
temp_scoped_alloc_.reset();
}
void MIRGraph::DumpCheckStats() {
Checkstats* stats =
static_cast<Checkstats*>(arena_->Alloc(sizeof(Checkstats), kArenaAllocDFInfo));
checkstats_ = stats;
AllNodesIterator iter(this);
for (BasicBlock* bb = iter.Next(); bb != nullptr; bb = iter.Next()) {
CountChecks(bb);
}
if (stats->null_checks > 0) {
float eliminated = static_cast<float>(stats->null_checks_eliminated);
float checks = static_cast<float>(stats->null_checks);
LOG(INFO) << "Null Checks: " << PrettyMethod(cu_->method_idx, *cu_->dex_file) << " "
<< stats->null_checks_eliminated << " of " << stats->null_checks << " -> "
<< (eliminated/checks) * 100.0 << "%";
}
if (stats->range_checks > 0) {
float eliminated = static_cast<float>(stats->range_checks_eliminated);
float checks = static_cast<float>(stats->range_checks);
LOG(INFO) << "Range Checks: " << PrettyMethod(cu_->method_idx, *cu_->dex_file) << " "
<< stats->range_checks_eliminated << " of " << stats->range_checks << " -> "
<< (eliminated/checks) * 100.0 << "%";
}
}
bool MIRGraph::BuildExtendedBBList(class BasicBlock* bb) {
if (bb->visited) return false;
if (!((bb->block_type == kEntryBlock) || (bb->block_type == kDalvikByteCode)
|| (bb->block_type == kExitBlock))) {
// Ignore special blocks
bb->visited = true;
return false;
}
// Must be head of extended basic block.
BasicBlock* start_bb = bb;
extended_basic_blocks_.push_back(bb->id);
bool terminated_by_return = false;
bool do_local_value_numbering = false;
// Visit blocks strictly dominated by this head.
while (bb != nullptr) {
bb->visited = true;
terminated_by_return |= bb->terminated_by_return;
do_local_value_numbering |= bb->use_lvn;
bb = NextDominatedBlock(bb);
}
if (terminated_by_return || do_local_value_numbering) {
// Do lvn for all blocks in this extended set.
bb = start_bb;
while (bb != nullptr) {
bb->use_lvn = do_local_value_numbering;
bb->dominates_return = terminated_by_return;
bb = NextDominatedBlock(bb);
}
}
return false; // Not iterative - return value will be ignored
}
void MIRGraph::BasicBlockOptimizationStart() {
if ((cu_->disable_opt & (1 << kLocalValueNumbering)) == 0) {
temp_scoped_alloc_.reset(ScopedArenaAllocator::Create(&cu_->arena_stack));
temp_.gvn.ifield_ids =
GlobalValueNumbering::PrepareGvnFieldIds(temp_scoped_alloc_.get(), ifield_lowering_infos_);
temp_.gvn.sfield_ids =
GlobalValueNumbering::PrepareGvnFieldIds(temp_scoped_alloc_.get(), sfield_lowering_infos_);
}
}
void MIRGraph::BasicBlockOptimization() {
if ((cu_->disable_opt & (1 << kSuppressExceptionEdges)) != 0) {
ClearAllVisitedFlags();
PreOrderDfsIterator iter2(this);
for (BasicBlock* bb = iter2.Next(); bb != nullptr; bb = iter2.Next()) {
BuildExtendedBBList(bb);
}
// Perform extended basic block optimizations.
for (unsigned int i = 0; i < extended_basic_blocks_.size(); i++) {
BasicBlockOpt(GetBasicBlock(extended_basic_blocks_[i]));
}
} else {
PreOrderDfsIterator iter(this);
for (BasicBlock* bb = iter.Next(); bb != nullptr; bb = iter.Next()) {
BasicBlockOpt(bb);
}
}
}
void MIRGraph::BasicBlockOptimizationEnd() {
// Clean up after LVN.
temp_.gvn.ifield_ids = nullptr;
temp_.gvn.sfield_ids = nullptr;
temp_scoped_alloc_.reset();
}
bool MIRGraph::EliminateSuspendChecksGate() {
if ((cu_->disable_opt & (1 << kSuspendCheckElimination)) != 0 || // Disabled.
GetMaxNestedLoops() == 0u || // Nothing to do.
GetMaxNestedLoops() >= 32u || // Only 32 bits in suspend_checks_in_loops_[.].
// Exclude 32 as well to keep bit shifts well-defined.
!HasInvokes()) { // No invokes to actually eliminate any suspend checks.
return false;
}
suspend_checks_in_loops_ = arena_->AllocArray<uint32_t>(GetNumBlocks(), kArenaAllocMisc);
return true;
}
bool MIRGraph::EliminateSuspendChecks(BasicBlock* bb) {
if (bb->block_type != kDalvikByteCode) {
return false;
}
DCHECK_EQ(GetTopologicalSortOrderLoopHeadStack()->size(), bb->nesting_depth);
if (bb->nesting_depth == 0u) {
// Out of loops.
DCHECK_EQ(suspend_checks_in_loops_[bb->id], 0u); // The array was zero-initialized.
return false;
}
uint32_t suspend_checks_in_loops = (1u << bb->nesting_depth) - 1u; // Start with all loop heads.
bool found_invoke = false;
for (MIR* mir = bb->first_mir_insn; mir != nullptr; mir = mir->next) {
if ((IsInstructionInvoke(mir->dalvikInsn.opcode) ||
IsInstructionQuickInvoke(mir->dalvikInsn.opcode)) &&
!GetMethodLoweringInfo(mir).IsIntrinsic()) {
// Non-intrinsic invoke, rely on a suspend point in the invoked method.
found_invoke = true;
break;
}
}
if (!found_invoke) {
// Intersect suspend checks from predecessors.
uint16_t bb_topo_idx = topological_order_indexes_[bb->id];
uint32_t pred_mask_union = 0u;
for (BasicBlockId pred_id : bb->predecessors) {
uint16_t pred_topo_idx = topological_order_indexes_[pred_id];
if (pred_topo_idx < bb_topo_idx) {
// Determine the loop depth of the predecessors relative to this block.
size_t pred_loop_depth = topological_order_loop_head_stack_.size();
while (pred_loop_depth != 0u &&
pred_topo_idx < topological_order_loop_head_stack_[pred_loop_depth - 1].first) {
--pred_loop_depth;
}
DCHECK_LE(pred_loop_depth, GetBasicBlock(pred_id)->nesting_depth);
uint32_t pred_mask = (1u << pred_loop_depth) - 1u;
// Intersect pred_mask bits in suspend_checks_in_loops with
// suspend_checks_in_loops_[pred_id].
uint32_t pred_loops_without_checks = pred_mask & ~suspend_checks_in_loops_[pred_id];
suspend_checks_in_loops = suspend_checks_in_loops & ~pred_loops_without_checks;
pred_mask_union |= pred_mask;
}
}
DCHECK_EQ(((1u << (IsLoopHead(bb->id) ? bb->nesting_depth - 1u: bb->nesting_depth)) - 1u),
pred_mask_union);
suspend_checks_in_loops &= pred_mask_union;
}
suspend_checks_in_loops_[bb->id] = suspend_checks_in_loops;
if (suspend_checks_in_loops == 0u) {
return false;
}
// Apply MIR_IGNORE_SUSPEND_CHECK if appropriate.
if (bb->taken != NullBasicBlockId) {
DCHECK(bb->last_mir_insn != nullptr);
DCHECK(IsInstructionIfCc(bb->last_mir_insn->dalvikInsn.opcode) ||
IsInstructionIfCcZ(bb->last_mir_insn->dalvikInsn.opcode) ||
IsInstructionGoto(bb->last_mir_insn->dalvikInsn.opcode) ||
(static_cast<int>(bb->last_mir_insn->dalvikInsn.opcode) >= kMirOpFusedCmplFloat &&
static_cast<int>(bb->last_mir_insn->dalvikInsn.opcode) <= kMirOpFusedCmpLong));
if (!IsSuspendCheckEdge(bb, bb->taken) &&
(bb->fall_through == NullBasicBlockId || !IsSuspendCheckEdge(bb, bb->fall_through))) {
bb->last_mir_insn->optimization_flags |= MIR_IGNORE_SUSPEND_CHECK;
}
} else if (bb->fall_through != NullBasicBlockId && IsSuspendCheckEdge(bb, bb->fall_through)) {
// We've got a fall-through suspend edge. Add an artificial GOTO to force suspend check.
MIR* mir = NewMIR();
mir->dalvikInsn.opcode = Instruction::GOTO;
mir->dalvikInsn.vA = 0; // Branch offset.
mir->offset = GetBasicBlock(bb->fall_through)->start_offset;
mir->m_unit_index = current_method_;
mir->ssa_rep = reinterpret_cast<SSARepresentation*>(
arena_->Alloc(sizeof(SSARepresentation), kArenaAllocDFInfo)); // Zero-initialized.
bb->AppendMIR(mir);
std::swap(bb->fall_through, bb->taken); // The fall-through has become taken.
}
return true;
}
bool MIRGraph::CanThrow(MIR* mir) const {
if ((mir->dalvikInsn.FlagsOf() & Instruction::kThrow) == 0) {
return false;
}
const int opt_flags = mir->optimization_flags;
uint64_t df_attributes = GetDataFlowAttributes(mir);
// First, check if the insn can still throw NPE.
if (((df_attributes & DF_HAS_NULL_CHKS) != 0) && ((opt_flags & MIR_IGNORE_NULL_CHECK) == 0)) {
return true;
}
// Now process specific instructions.
if ((df_attributes & DF_IFIELD) != 0) {
// The IGET/IPUT family. We have processed the IGET/IPUT null check above.
DCHECK_NE(opt_flags & MIR_IGNORE_NULL_CHECK, 0);
// If not fast, weird things can happen and the insn can throw.
const MirIFieldLoweringInfo& field_info = GetIFieldLoweringInfo(mir);
bool fast = (df_attributes & DF_DA) != 0 ? field_info.FastGet() : field_info.FastPut();
return !fast;
} else if ((df_attributes & DF_SFIELD) != 0) {
// The SGET/SPUT family. Check for potentially throwing class initialization.
// Also, if not fast, weird things can happen and the insn can throw.
const MirSFieldLoweringInfo& field_info = GetSFieldLoweringInfo(mir);
bool fast = (df_attributes & DF_DA) != 0 ? field_info.FastGet() : field_info.FastPut();
bool is_class_initialized = field_info.IsClassInitialized() ||
((mir->optimization_flags & MIR_CLASS_IS_INITIALIZED) != 0);
return !(fast && is_class_initialized);
} else if ((df_attributes & DF_HAS_RANGE_CHKS) != 0) {
// Only AGET/APUT have range checks. We have processed the AGET/APUT null check above.
DCHECK_NE(opt_flags & MIR_IGNORE_NULL_CHECK, 0);
// Non-throwing only if range check has been eliminated.
return ((opt_flags & MIR_IGNORE_RANGE_CHECK) == 0);
} else if (mir->dalvikInsn.opcode == Instruction::CHECK_CAST &&
(opt_flags & MIR_IGNORE_CHECK_CAST) != 0) {
return false;
} else if (mir->dalvikInsn.opcode == Instruction::ARRAY_LENGTH ||
static_cast<int>(mir->dalvikInsn.opcode) == kMirOpNullCheck) {
// No more checks for these (null check was processed above).
return false;
}
return true;
}
bool MIRGraph::HasAntiDependency(MIR* first, MIR* second) {
DCHECK(first->ssa_rep != nullptr);
DCHECK(second->ssa_rep != nullptr);
if ((second->ssa_rep->num_defs > 0) && (first->ssa_rep->num_uses > 0)) {
int vreg0 = SRegToVReg(second->ssa_rep->defs[0]);
int vreg1 = (second->ssa_rep->num_defs == 2) ?
SRegToVReg(second->ssa_rep->defs[1]) : INVALID_VREG;
for (int i = 0; i < first->ssa_rep->num_uses; i++) {
int32_t use = SRegToVReg(first->ssa_rep->uses[i]);
if (use == vreg0 || use == vreg1) {
return true;
}
}
}
return false;
}
void MIRGraph::CombineMultiplyAdd(MIR* mul_mir, MIR* add_mir, bool mul_is_first_addend,
bool is_wide, bool is_sub) {
if (is_wide) {
if (is_sub) {
add_mir->dalvikInsn.opcode = static_cast<Instruction::Code>(kMirOpMsubLong);
} else {
add_mir->dalvikInsn.opcode = static_cast<Instruction::Code>(kMirOpMaddLong);
}
} else {
if (is_sub) {
add_mir->dalvikInsn.opcode = static_cast<Instruction::Code>(kMirOpMsubInt);
} else {
add_mir->dalvikInsn.opcode = static_cast<Instruction::Code>(kMirOpMaddInt);
}
}
add_mir->ssa_rep->num_uses = is_wide ? 6 : 3;
int32_t addend0 = INVALID_SREG;
int32_t addend1 = INVALID_SREG;
if (is_wide) {
addend0 = mul_is_first_addend ? add_mir->ssa_rep->uses[2] : add_mir->ssa_rep->uses[0];
addend1 = mul_is_first_addend ? add_mir->ssa_rep->uses[3] : add_mir->ssa_rep->uses[1];
} else {
addend0 = mul_is_first_addend ? add_mir->ssa_rep->uses[1] : add_mir->ssa_rep->uses[0];
}
AllocateSSAUseData(add_mir, add_mir->ssa_rep->num_uses);
add_mir->ssa_rep->uses[0] = mul_mir->ssa_rep->uses[0];
add_mir->ssa_rep->uses[1] = mul_mir->ssa_rep->uses[1];
// Clear the original multiply product ssa use count, as it is not used anymore.
raw_use_counts_[mul_mir->ssa_rep->defs[0]] = 0;
use_counts_[mul_mir->ssa_rep->defs[0]] = 0;
if (is_wide) {
DCHECK_EQ(add_mir->ssa_rep->num_uses, 6);
add_mir->ssa_rep->uses[2] = mul_mir->ssa_rep->uses[2];
add_mir->ssa_rep->uses[3] = mul_mir->ssa_rep->uses[3];
add_mir->ssa_rep->uses[4] = addend0;
add_mir->ssa_rep->uses[5] = addend1;
raw_use_counts_[mul_mir->ssa_rep->defs[1]] = 0;
use_counts_[mul_mir->ssa_rep->defs[1]] = 0;
} else {
DCHECK_EQ(add_mir->ssa_rep->num_uses, 3);
add_mir->ssa_rep->uses[2] = addend0;
}
// Copy in the decoded instruction information.
add_mir->dalvikInsn.vB = SRegToVReg(add_mir->ssa_rep->uses[0]);
if (is_wide) {
add_mir->dalvikInsn.vC = SRegToVReg(add_mir->ssa_rep->uses[2]);
add_mir->dalvikInsn.arg[0] = SRegToVReg(add_mir->ssa_rep->uses[4]);
} else {
add_mir->dalvikInsn.vC = SRegToVReg(add_mir->ssa_rep->uses[1]);
add_mir->dalvikInsn.arg[0] = SRegToVReg(add_mir->ssa_rep->uses[2]);
}
// Original multiply MIR is set to Nop.
mul_mir->dalvikInsn.opcode = static_cast<Instruction::Code>(kMirOpNop);
}
void MIRGraph::MultiplyAddOpt(BasicBlock* bb) {
if (bb->block_type == kDead) {
return;
}
ScopedArenaAllocator allocator(&cu_->arena_stack);
ScopedArenaSafeMap<uint32_t, MIR*> ssa_mul_map(std::less<uint32_t>(), allocator.Adapter());
ScopedArenaSafeMap<uint32_t, MIR*>::iterator map_it;
for (MIR* mir = bb->first_mir_insn; mir != nullptr; mir = mir->next) {
Instruction::Code opcode = mir->dalvikInsn.opcode;
bool is_sub = true;
bool is_candidate_multiply = false;
switch (opcode) {
case Instruction::MUL_INT:
case Instruction::MUL_INT_2ADDR:
is_candidate_multiply = true;
break;
case Instruction::MUL_LONG:
case Instruction::MUL_LONG_2ADDR:
if (cu_->target64) {
is_candidate_multiply = true;
}
break;
case Instruction::ADD_INT:
case Instruction::ADD_INT_2ADDR:
is_sub = false;
FALLTHROUGH_INTENDED;
case Instruction::SUB_INT:
case Instruction::SUB_INT_2ADDR:
if (((map_it = ssa_mul_map.find(mir->ssa_rep->uses[0])) != ssa_mul_map.end()) && !is_sub) {
// a*b+c
CombineMultiplyAdd(map_it->second, mir, true /* product is the first addend */,
false /* is_wide */, false /* is_sub */);
ssa_mul_map.erase(mir->ssa_rep->uses[0]);
} else if ((map_it = ssa_mul_map.find(mir->ssa_rep->uses[1])) != ssa_mul_map.end()) {
// c+a*b or c-a*b
CombineMultiplyAdd(map_it->second, mir, false /* product is the second addend */,
false /* is_wide */, is_sub);
ssa_mul_map.erase(map_it);
}
break;
case Instruction::ADD_LONG:
case Instruction::ADD_LONG_2ADDR:
is_sub = false;
FALLTHROUGH_INTENDED;
case Instruction::SUB_LONG:
case Instruction::SUB_LONG_2ADDR:
if (!cu_->target64) {
break;
}
if ((map_it = ssa_mul_map.find(mir->ssa_rep->uses[0])) != ssa_mul_map.end() && !is_sub) {
// a*b+c
CombineMultiplyAdd(map_it->second, mir, true /* product is the first addend */,
true /* is_wide */, false /* is_sub */);
ssa_mul_map.erase(map_it);
} else if ((map_it = ssa_mul_map.find(mir->ssa_rep->uses[2])) != ssa_mul_map.end()) {
// c+a*b or c-a*b
CombineMultiplyAdd(map_it->second, mir, false /* product is the second addend */,
true /* is_wide */, is_sub);
ssa_mul_map.erase(map_it);
}
break;
default:
if (!ssa_mul_map.empty() && CanThrow(mir)) {
// Should not combine multiply and add MIRs across potential exception.
ssa_mul_map.clear();
}
break;
}
// Exclude the case when an MIR writes a vreg which is previous candidate multiply MIR's uses.
// It is because that current RA may allocate the same physical register to them. For this
// kind of cases, the multiplier has been updated, we should not use updated value to the
// multiply-add insn.
if (ssa_mul_map.size() > 0) {
for (auto it = ssa_mul_map.begin(); it != ssa_mul_map.end();) {
MIR* mul = it->second;
if (HasAntiDependency(mul, mir)) {
it = ssa_mul_map.erase(it);
} else {
++it;
}
}
}
if (is_candidate_multiply &&
(GetRawUseCount(mir->ssa_rep->defs[0]) == 1) && (mir->next != nullptr)) {
ssa_mul_map.Put(mir->ssa_rep->defs[0], mir);
}
}
}
} // namespace art
|