summaryrefslogtreecommitdiffstats
path: root/compiler/dex/mir_optimization.cc
blob: fdabc3e3cbf90bb91abb5605ba05014423c39930 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
/*
 * Copyright (C) 2011 The Android Open Source Project
 *
 * Licensed under the Apache License, Version 2.0 (the "License");
 * you may not use this file except in compliance with the License.
 * You may obtain a copy of the License at
 *
 *      http://www.apache.org/licenses/LICENSE-2.0
 *
 * Unless required by applicable law or agreed to in writing, software
 * distributed under the License is distributed on an "AS IS" BASIS,
 * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
 * See the License for the specific language governing permissions and
 * limitations under the License.
 */

#include "base/bit_vector-inl.h"
#include "compiler_internals.h"
#include "global_value_numbering.h"
#include "local_value_numbering.h"
#include "dataflow_iterator-inl.h"
#include "dex/global_value_numbering.h"
#include "dex/quick/dex_file_method_inliner.h"
#include "dex/quick/dex_file_to_method_inliner_map.h"
#include "stack.h"
#include "utils/scoped_arena_containers.h"

namespace art {

static unsigned int Predecessors(BasicBlock* bb) {
  return bb->predecessors->Size();
}

/* Setup a constant value for opcodes thare have the DF_SETS_CONST attribute */
void MIRGraph::SetConstant(int32_t ssa_reg, int32_t value) {
  is_constant_v_->SetBit(ssa_reg);
  constant_values_[ssa_reg] = value;
}

void MIRGraph::SetConstantWide(int32_t ssa_reg, int64_t value) {
  is_constant_v_->SetBit(ssa_reg);
  is_constant_v_->SetBit(ssa_reg + 1);
  constant_values_[ssa_reg] = Low32Bits(value);
  constant_values_[ssa_reg + 1] = High32Bits(value);
}

void MIRGraph::DoConstantPropagation(BasicBlock* bb) {
  MIR* mir;

  for (mir = bb->first_mir_insn; mir != NULL; mir = mir->next) {
    // Skip pass if BB has MIR without SSA representation.
    if (mir->ssa_rep == nullptr) {
       return;
    }

    uint64_t df_attributes = GetDataFlowAttributes(mir);

    MIR::DecodedInstruction* d_insn = &mir->dalvikInsn;

    if (!(df_attributes & DF_HAS_DEFS)) continue;

    /* Handle instructions that set up constants directly */
    if (df_attributes & DF_SETS_CONST) {
      if (df_attributes & DF_DA) {
        int32_t vB = static_cast<int32_t>(d_insn->vB);
        switch (d_insn->opcode) {
          case Instruction::CONST_4:
          case Instruction::CONST_16:
          case Instruction::CONST:
            SetConstant(mir->ssa_rep->defs[0], vB);
            break;
          case Instruction::CONST_HIGH16:
            SetConstant(mir->ssa_rep->defs[0], vB << 16);
            break;
          case Instruction::CONST_WIDE_16:
          case Instruction::CONST_WIDE_32:
            SetConstantWide(mir->ssa_rep->defs[0], static_cast<int64_t>(vB));
            break;
          case Instruction::CONST_WIDE:
            SetConstantWide(mir->ssa_rep->defs[0], d_insn->vB_wide);
            break;
          case Instruction::CONST_WIDE_HIGH16:
            SetConstantWide(mir->ssa_rep->defs[0], static_cast<int64_t>(vB) << 48);
            break;
          default:
            break;
        }
      }
      /* Handle instructions that set up constants directly */
    } else if (df_attributes & DF_IS_MOVE) {
      int i;

      for (i = 0; i < mir->ssa_rep->num_uses; i++) {
        if (!is_constant_v_->IsBitSet(mir->ssa_rep->uses[i])) break;
      }
      /* Move a register holding a constant to another register */
      if (i == mir->ssa_rep->num_uses) {
        SetConstant(mir->ssa_rep->defs[0], constant_values_[mir->ssa_rep->uses[0]]);
        if (df_attributes & DF_A_WIDE) {
          SetConstant(mir->ssa_rep->defs[1], constant_values_[mir->ssa_rep->uses[1]]);
        }
      }
    }
  }
  /* TODO: implement code to handle arithmetic operations */
}

/* Advance to next strictly dominated MIR node in an extended basic block */
MIR* MIRGraph::AdvanceMIR(BasicBlock** p_bb, MIR* mir) {
  BasicBlock* bb = *p_bb;
  if (mir != NULL) {
    mir = mir->next;
    if (mir == NULL) {
      bb = GetBasicBlock(bb->fall_through);
      if ((bb == NULL) || Predecessors(bb) != 1) {
        mir = NULL;
      } else {
      *p_bb = bb;
      mir = bb->first_mir_insn;
      }
    }
  }
  return mir;
}

/*
 * To be used at an invoke mir.  If the logically next mir node represents
 * a move-result, return it.  Else, return NULL.  If a move-result exists,
 * it is required to immediately follow the invoke with no intervening
 * opcodes or incoming arcs.  However, if the result of the invoke is not
 * used, a move-result may not be present.
 */
MIR* MIRGraph::FindMoveResult(BasicBlock* bb, MIR* mir) {
  BasicBlock* tbb = bb;
  mir = AdvanceMIR(&tbb, mir);
  while (mir != NULL) {
    if ((mir->dalvikInsn.opcode == Instruction::MOVE_RESULT) ||
        (mir->dalvikInsn.opcode == Instruction::MOVE_RESULT_OBJECT) ||
        (mir->dalvikInsn.opcode == Instruction::MOVE_RESULT_WIDE)) {
      break;
    }
    // Keep going if pseudo op, otherwise terminate
    if (MIR::DecodedInstruction::IsPseudoMirOp(mir->dalvikInsn.opcode)) {
      mir = AdvanceMIR(&tbb, mir);
    } else {
      mir = NULL;
    }
  }
  return mir;
}

BasicBlock* MIRGraph::NextDominatedBlock(BasicBlock* bb) {
  if (bb->block_type == kDead) {
    return NULL;
  }
  DCHECK((bb->block_type == kEntryBlock) || (bb->block_type == kDalvikByteCode)
      || (bb->block_type == kExitBlock));
  BasicBlock* bb_taken = GetBasicBlock(bb->taken);
  BasicBlock* bb_fall_through = GetBasicBlock(bb->fall_through);
  if (((bb_fall_through == NULL) && (bb_taken != NULL)) &&
      ((bb_taken->block_type == kDalvikByteCode) || (bb_taken->block_type == kExitBlock))) {
    // Follow simple unconditional branches.
    bb = bb_taken;
  } else {
    // Follow simple fallthrough
    bb = (bb_taken != NULL) ? NULL : bb_fall_through;
  }
  if (bb == NULL || (Predecessors(bb) != 1)) {
    return NULL;
  }
  DCHECK((bb->block_type == kDalvikByteCode) || (bb->block_type == kExitBlock));
  return bb;
}

static MIR* FindPhi(BasicBlock* bb, int ssa_name) {
  for (MIR* mir = bb->first_mir_insn; mir != NULL; mir = mir->next) {
    if (static_cast<int>(mir->dalvikInsn.opcode) == kMirOpPhi) {
      for (int i = 0; i < mir->ssa_rep->num_uses; i++) {
        if (mir->ssa_rep->uses[i] == ssa_name) {
          return mir;
        }
      }
    }
  }
  return NULL;
}

static SelectInstructionKind SelectKind(MIR* mir) {
  switch (mir->dalvikInsn.opcode) {
    case Instruction::MOVE:
    case Instruction::MOVE_OBJECT:
    case Instruction::MOVE_16:
    case Instruction::MOVE_OBJECT_16:
    case Instruction::MOVE_FROM16:
    case Instruction::MOVE_OBJECT_FROM16:
      return kSelectMove;
    case Instruction::CONST:
    case Instruction::CONST_4:
    case Instruction::CONST_16:
      return kSelectConst;
    case Instruction::GOTO:
    case Instruction::GOTO_16:
    case Instruction::GOTO_32:
      return kSelectGoto;
    default:
      return kSelectNone;
  }
}

static constexpr ConditionCode kIfCcZConditionCodes[] = {
    kCondEq, kCondNe, kCondLt, kCondGe, kCondGt, kCondLe
};

COMPILE_ASSERT(arraysize(kIfCcZConditionCodes) == Instruction::IF_LEZ - Instruction::IF_EQZ + 1,
               if_ccz_ccodes_size1);

static constexpr bool IsInstructionIfCcZ(Instruction::Code opcode) {
  return Instruction::IF_EQZ <= opcode && opcode <= Instruction::IF_LEZ;
}

static constexpr ConditionCode ConditionCodeForIfCcZ(Instruction::Code opcode) {
  return kIfCcZConditionCodes[opcode - Instruction::IF_EQZ];
}

COMPILE_ASSERT(ConditionCodeForIfCcZ(Instruction::IF_EQZ) == kCondEq, check_if_eqz_ccode);
COMPILE_ASSERT(ConditionCodeForIfCcZ(Instruction::IF_NEZ) == kCondNe, check_if_nez_ccode);
COMPILE_ASSERT(ConditionCodeForIfCcZ(Instruction::IF_LTZ) == kCondLt, check_if_ltz_ccode);
COMPILE_ASSERT(ConditionCodeForIfCcZ(Instruction::IF_GEZ) == kCondGe, check_if_gez_ccode);
COMPILE_ASSERT(ConditionCodeForIfCcZ(Instruction::IF_GTZ) == kCondGt, check_if_gtz_ccode);
COMPILE_ASSERT(ConditionCodeForIfCcZ(Instruction::IF_LEZ) == kCondLe, check_if_lez_ccode);

int MIRGraph::GetSSAUseCount(int s_reg) {
  return raw_use_counts_.Get(s_reg);
}

size_t MIRGraph::GetNumBytesForSpecialTemps() const {
  // This logic is written with assumption that Method* is only special temp.
  DCHECK_EQ(max_available_special_compiler_temps_, 1u);
  return sizeof(StackReference<mirror::ArtMethod>);
}

size_t MIRGraph::GetNumAvailableVRTemps() {
  // First take into account all temps reserved for backend.
  if (max_available_non_special_compiler_temps_ < reserved_temps_for_backend_) {
    return 0;
  }

  // Calculate remaining ME temps available.
  size_t remaining_me_temps = max_available_non_special_compiler_temps_ - reserved_temps_for_backend_;

  if (num_non_special_compiler_temps_ >= remaining_me_temps) {
    return 0;
  } else {
    return remaining_me_temps - num_non_special_compiler_temps_;
  }
}

// FIXME - will probably need to revisit all uses of this, as type not defined.
static const RegLocation temp_loc = {kLocCompilerTemp,
                                     0, 1 /*defined*/, 0, 0, 0, 0, 0, 1 /*home*/,
                                     RegStorage(), INVALID_SREG, INVALID_SREG};

CompilerTemp* MIRGraph::GetNewCompilerTemp(CompilerTempType ct_type, bool wide) {
  // Once the compiler temps have been committed, new ones cannot be requested anymore.
  DCHECK_EQ(compiler_temps_committed_, false);
  // Make sure that reserved for BE set is sane.
  DCHECK_LE(reserved_temps_for_backend_, max_available_non_special_compiler_temps_);

  bool verbose = cu_->verbose;
  const char* ct_type_str = nullptr;

  if (verbose) {
    switch (ct_type) {
      case kCompilerTempBackend:
        ct_type_str = "backend";
        break;
      case kCompilerTempSpecialMethodPtr:
        ct_type_str = "method*";
        break;
      case kCompilerTempVR:
        ct_type_str = "VR";
        break;
      default:
        ct_type_str = "unknown";
        break;
    }
    LOG(INFO) << "CompilerTemps: A compiler temp of type " << ct_type_str << " that is "
        << (wide ? "wide is being requested." : "not wide is being requested.");
  }

  CompilerTemp *compiler_temp = static_cast<CompilerTemp *>(arena_->Alloc(sizeof(CompilerTemp),
                                                            kArenaAllocRegAlloc));

  // Create the type of temp requested. Special temps need special handling because
  // they have a specific virtual register assignment.
  if (ct_type == kCompilerTempSpecialMethodPtr) {
    // This has a special location on stack which is 32-bit or 64-bit depending
    // on mode. However, we don't want to overlap with non-special section
    // and thus even for 64-bit, we allow only a non-wide temp to be requested.
    DCHECK_EQ(wide, false);

    // The vreg is always the first special temp for method ptr.
    compiler_temp->v_reg = GetFirstSpecialTempVR();

  } else if (ct_type == kCompilerTempBackend) {
    requested_backend_temp_ = true;

    // Make sure that we are not exceeding temps reserved for BE.
    // Since VR temps cannot be requested once the BE temps are requested, we
    // allow reservation of VR temps as well for BE. We
    size_t available_temps = reserved_temps_for_backend_ + GetNumAvailableVRTemps();
    if (available_temps <= 0 || (available_temps <= 1 && wide)) {
      if (verbose) {
        LOG(INFO) << "CompilerTemps: Not enough temp(s) of type " << ct_type_str << " are available.";
      }
      return nullptr;
    }

    // Update the remaining reserved temps since we have now used them.
    // Note that the code below is actually subtracting to remove them from reserve
    // once they have been claimed. It is careful to not go below zero.
    if (reserved_temps_for_backend_ >= 1) {
      reserved_temps_for_backend_--;
    }
    if (wide && reserved_temps_for_backend_ >= 1) {
      reserved_temps_for_backend_--;
    }

    // The new non-special compiler temp must receive a unique v_reg.
    compiler_temp->v_reg = GetFirstNonSpecialTempVR() + num_non_special_compiler_temps_;
    num_non_special_compiler_temps_++;
  } else if (ct_type == kCompilerTempVR) {
    // Once we start giving out BE temps, we don't allow anymore ME temps to be requested.
    // This is done in order to prevent problems with ssa since these structures are allocated
    // and managed by the ME.
    DCHECK_EQ(requested_backend_temp_, false);

    // There is a limit to the number of non-special temps so check to make sure it wasn't exceeded.
    size_t available_temps = GetNumAvailableVRTemps();
    if (available_temps <= 0 || (available_temps <= 1 && wide)) {
      if (verbose) {
        LOG(INFO) << "CompilerTemps: Not enough temp(s) of type " << ct_type_str << " are available.";
      }
      return nullptr;
    }

    // The new non-special compiler temp must receive a unique v_reg.
    compiler_temp->v_reg = GetFirstNonSpecialTempVR() + num_non_special_compiler_temps_;
    num_non_special_compiler_temps_++;
  } else {
    UNIMPLEMENTED(FATAL) << "No handling for compiler temp type " << ct_type_str << ".";
  }

  // We allocate an sreg as well to make developer life easier.
  // However, if this is requested from an ME pass that will recalculate ssa afterwards,
  // this sreg is no longer valid. The caller should be aware of this.
  compiler_temp->s_reg_low = AddNewSReg(compiler_temp->v_reg);

  if (verbose) {
    LOG(INFO) << "CompilerTemps: New temp of type " << ct_type_str << " with v" << compiler_temp->v_reg
        << " and s" << compiler_temp->s_reg_low << " has been created.";
  }

  if (wide) {
    // Only non-special temps are handled as wide for now.
    // Note that the number of non special temps is incremented below.
    DCHECK(ct_type == kCompilerTempBackend || ct_type == kCompilerTempVR);

    // Ensure that the two registers are consecutive.
    int ssa_reg_low = compiler_temp->s_reg_low;
    int ssa_reg_high = AddNewSReg(compiler_temp->v_reg + 1);
    num_non_special_compiler_temps_++;

    if (verbose) {
      LOG(INFO) << "CompilerTemps: The wide part of temp of type " << ct_type_str << " is v"
          << compiler_temp->v_reg + 1 << " and s" << ssa_reg_high << ".";
    }

    if (reg_location_ != nullptr) {
      reg_location_[ssa_reg_high] = temp_loc;
      reg_location_[ssa_reg_high].high_word = true;
      reg_location_[ssa_reg_high].s_reg_low = ssa_reg_low;
      reg_location_[ssa_reg_high].wide = true;
    }
  }

  // If the register locations have already been allocated, add the information
  // about the temp. We will not overflow because they have been initialized
  // to support the maximum number of temps. For ME temps that have multiple
  // ssa versions, the structures below will be expanded on the post pass cleanup.
  if (reg_location_ != nullptr) {
    int ssa_reg_low = compiler_temp->s_reg_low;
    reg_location_[ssa_reg_low] = temp_loc;
    reg_location_[ssa_reg_low].s_reg_low = ssa_reg_low;
    reg_location_[ssa_reg_low].wide = wide;
  }

  return compiler_temp;
}

/* Do some MIR-level extended basic block optimizations */
bool MIRGraph::BasicBlockOpt(BasicBlock* bb) {
  if (bb->block_type == kDead) {
    return true;
  }
  // Don't do a separate LVN if we did the GVN.
  bool use_lvn = bb->use_lvn && (cu_->disable_opt & (1u << kGlobalValueNumbering)) != 0u;
  std::unique_ptr<ScopedArenaAllocator> allocator;
  std::unique_ptr<GlobalValueNumbering> global_valnum;
  std::unique_ptr<LocalValueNumbering> local_valnum;
  if (use_lvn) {
    allocator.reset(ScopedArenaAllocator::Create(&cu_->arena_stack));
    global_valnum.reset(new (allocator.get()) GlobalValueNumbering(cu_, allocator.get()));
    local_valnum.reset(new (allocator.get()) LocalValueNumbering(global_valnum.get(), bb->id,
                                                                 allocator.get()));
  }
  while (bb != NULL) {
    for (MIR* mir = bb->first_mir_insn; mir != NULL; mir = mir->next) {
      // TUNING: use the returned value number for CSE.
      if (use_lvn) {
        local_valnum->GetValueNumber(mir);
      }
      // Look for interesting opcodes, skip otherwise
      Instruction::Code opcode = mir->dalvikInsn.opcode;
      switch (opcode) {
        case Instruction::CMPL_FLOAT:
        case Instruction::CMPL_DOUBLE:
        case Instruction::CMPG_FLOAT:
        case Instruction::CMPG_DOUBLE:
        case Instruction::CMP_LONG:
          if ((cu_->disable_opt & (1 << kBranchFusing)) != 0) {
            // Bitcode doesn't allow this optimization.
            break;
          }
          if (mir->next != NULL) {
            MIR* mir_next = mir->next;
            // Make sure result of cmp is used by next insn and nowhere else
            if (IsInstructionIfCcZ(mir_next->dalvikInsn.opcode) &&
                (mir->ssa_rep->defs[0] == mir_next->ssa_rep->uses[0]) &&
                (GetSSAUseCount(mir->ssa_rep->defs[0]) == 1)) {
              mir_next->meta.ccode = ConditionCodeForIfCcZ(mir_next->dalvikInsn.opcode);
              switch (opcode) {
                case Instruction::CMPL_FLOAT:
                  mir_next->dalvikInsn.opcode =
                      static_cast<Instruction::Code>(kMirOpFusedCmplFloat);
                  break;
                case Instruction::CMPL_DOUBLE:
                  mir_next->dalvikInsn.opcode =
                      static_cast<Instruction::Code>(kMirOpFusedCmplDouble);
                  break;
                case Instruction::CMPG_FLOAT:
                  mir_next->dalvikInsn.opcode =
                      static_cast<Instruction::Code>(kMirOpFusedCmpgFloat);
                  break;
                case Instruction::CMPG_DOUBLE:
                  mir_next->dalvikInsn.opcode =
                      static_cast<Instruction::Code>(kMirOpFusedCmpgDouble);
                  break;
                case Instruction::CMP_LONG:
                  mir_next->dalvikInsn.opcode =
                      static_cast<Instruction::Code>(kMirOpFusedCmpLong);
                  break;
                default: LOG(ERROR) << "Unexpected opcode: " << opcode;
              }
              mir->dalvikInsn.opcode = static_cast<Instruction::Code>(kMirOpNop);
              // Copy the SSA information that is relevant.
              mir_next->ssa_rep->num_uses = mir->ssa_rep->num_uses;
              mir_next->ssa_rep->uses = mir->ssa_rep->uses;
              mir_next->ssa_rep->fp_use = mir->ssa_rep->fp_use;
              mir_next->ssa_rep->num_defs = 0;
              mir->ssa_rep->num_uses = 0;
              mir->ssa_rep->num_defs = 0;
              // Copy in the decoded instruction information for potential SSA re-creation.
              mir_next->dalvikInsn.vA = mir->dalvikInsn.vB;
              mir_next->dalvikInsn.vB = mir->dalvikInsn.vC;
            }
          }
          break;
        case Instruction::GOTO:
        case Instruction::GOTO_16:
        case Instruction::GOTO_32:
        case Instruction::IF_EQ:
        case Instruction::IF_NE:
        case Instruction::IF_LT:
        case Instruction::IF_GE:
        case Instruction::IF_GT:
        case Instruction::IF_LE:
        case Instruction::IF_EQZ:
        case Instruction::IF_NEZ:
        case Instruction::IF_LTZ:
        case Instruction::IF_GEZ:
        case Instruction::IF_GTZ:
        case Instruction::IF_LEZ:
          // If we've got a backwards branch to return, no need to suspend check.
          if ((IsBackedge(bb, bb->taken) && GetBasicBlock(bb->taken)->dominates_return) ||
              (IsBackedge(bb, bb->fall_through) &&
                          GetBasicBlock(bb->fall_through)->dominates_return)) {
            mir->optimization_flags |= MIR_IGNORE_SUSPEND_CHECK;
            if (cu_->verbose) {
              LOG(INFO) << "Suppressed suspend check on branch to return at 0x" << std::hex
                        << mir->offset;
            }
          }
          break;
        default:
          break;
      }
      // Is this the select pattern?
      // TODO: flesh out support for Mips.  NOTE: llvm's select op doesn't quite work here.
      // TUNING: expand to support IF_xx compare & branches
      if (!cu_->compiler->IsPortable() &&
          (cu_->instruction_set == kArm64 || cu_->instruction_set == kThumb2 ||
           cu_->instruction_set == kX86 || cu_->instruction_set == kX86_64) &&
          IsInstructionIfCcZ(mir->dalvikInsn.opcode)) {
        BasicBlock* ft = GetBasicBlock(bb->fall_through);
        DCHECK(ft != NULL);
        BasicBlock* ft_ft = GetBasicBlock(ft->fall_through);
        BasicBlock* ft_tk = GetBasicBlock(ft->taken);

        BasicBlock* tk = GetBasicBlock(bb->taken);
        DCHECK(tk != NULL);
        BasicBlock* tk_ft = GetBasicBlock(tk->fall_through);
        BasicBlock* tk_tk = GetBasicBlock(tk->taken);

        /*
         * In the select pattern, the taken edge goes to a block that unconditionally
         * transfers to the rejoin block and the fall_though edge goes to a block that
         * unconditionally falls through to the rejoin block.
         */
        if ((tk_ft == NULL) && (ft_tk == NULL) && (tk_tk == ft_ft) &&
            (Predecessors(tk) == 1) && (Predecessors(ft) == 1)) {
          /*
           * Okay - we have the basic diamond shape.  At the very least, we can eliminate the
           * suspend check on the taken-taken branch back to the join point.
           */
          if (SelectKind(tk->last_mir_insn) == kSelectGoto) {
              tk->last_mir_insn->optimization_flags |= (MIR_IGNORE_SUSPEND_CHECK);
          }

          // TODO: Add logic for LONG.
          // Are the block bodies something we can handle?
          if ((ft->first_mir_insn == ft->last_mir_insn) &&
              (tk->first_mir_insn != tk->last_mir_insn) &&
              (tk->first_mir_insn->next == tk->last_mir_insn) &&
              ((SelectKind(ft->first_mir_insn) == kSelectMove) ||
              (SelectKind(ft->first_mir_insn) == kSelectConst)) &&
              (SelectKind(ft->first_mir_insn) == SelectKind(tk->first_mir_insn)) &&
              (SelectKind(tk->last_mir_insn) == kSelectGoto)) {
            // Almost there.  Are the instructions targeting the same vreg?
            MIR* if_true = tk->first_mir_insn;
            MIR* if_false = ft->first_mir_insn;
            // It's possible that the target of the select isn't used - skip those (rare) cases.
            MIR* phi = FindPhi(tk_tk, if_true->ssa_rep->defs[0]);
            if ((phi != NULL) && (if_true->dalvikInsn.vA == if_false->dalvikInsn.vA)) {
              /*
               * We'll convert the IF_EQZ/IF_NEZ to a SELECT.  We need to find the
               * Phi node in the merge block and delete it (while using the SSA name
               * of the merge as the target of the SELECT.  Delete both taken and
               * fallthrough blocks, and set fallthrough to merge block.
               * NOTE: not updating other dataflow info (no longer used at this point).
               * If this changes, need to update i_dom, etc. here (and in CombineBlocks).
               */
              mir->meta.ccode = ConditionCodeForIfCcZ(mir->dalvikInsn.opcode);
              mir->dalvikInsn.opcode = static_cast<Instruction::Code>(kMirOpSelect);
              bool const_form = (SelectKind(if_true) == kSelectConst);
              if ((SelectKind(if_true) == kSelectMove)) {
                if (IsConst(if_true->ssa_rep->uses[0]) &&
                    IsConst(if_false->ssa_rep->uses[0])) {
                    const_form = true;
                    if_true->dalvikInsn.vB = ConstantValue(if_true->ssa_rep->uses[0]);
                    if_false->dalvikInsn.vB = ConstantValue(if_false->ssa_rep->uses[0]);
                }
              }
              if (const_form) {
                /*
                 * TODO: If both constants are the same value, then instead of generating
                 * a select, we should simply generate a const bytecode. This should be
                 * considered after inlining which can lead to CFG of this form.
                 */
                // "true" set val in vB
                mir->dalvikInsn.vB = if_true->dalvikInsn.vB;
                // "false" set val in vC
                mir->dalvikInsn.vC = if_false->dalvikInsn.vB;
              } else {
                DCHECK_EQ(SelectKind(if_true), kSelectMove);
                DCHECK_EQ(SelectKind(if_false), kSelectMove);
                int* src_ssa =
                    static_cast<int*>(arena_->Alloc(sizeof(int) * 3, kArenaAllocDFInfo));
                src_ssa[0] = mir->ssa_rep->uses[0];
                src_ssa[1] = if_true->ssa_rep->uses[0];
                src_ssa[2] = if_false->ssa_rep->uses[0];
                mir->ssa_rep->uses = src_ssa;
                mir->ssa_rep->num_uses = 3;
              }
              mir->ssa_rep->num_defs = 1;
              mir->ssa_rep->defs =
                  static_cast<int*>(arena_->Alloc(sizeof(int) * 1, kArenaAllocDFInfo));
              mir->ssa_rep->fp_def =
                  static_cast<bool*>(arena_->Alloc(sizeof(bool) * 1, kArenaAllocDFInfo));
              mir->ssa_rep->fp_def[0] = if_true->ssa_rep->fp_def[0];
              // Match type of uses to def.
              mir->ssa_rep->fp_use =
                  static_cast<bool*>(arena_->Alloc(sizeof(bool) * mir->ssa_rep->num_uses,
                                                   kArenaAllocDFInfo));
              for (int i = 0; i < mir->ssa_rep->num_uses; i++) {
                mir->ssa_rep->fp_use[i] = mir->ssa_rep->fp_def[0];
              }
              /*
               * There is usually a Phi node in the join block for our two cases.  If the
               * Phi node only contains our two cases as input, we will use the result
               * SSA name of the Phi node as our select result and delete the Phi.  If
               * the Phi node has more than two operands, we will arbitrarily use the SSA
               * name of the "true" path, delete the SSA name of the "false" path from the
               * Phi node (and fix up the incoming arc list).
               */
              if (phi->ssa_rep->num_uses == 2) {
                mir->ssa_rep->defs[0] = phi->ssa_rep->defs[0];
                phi->dalvikInsn.opcode = static_cast<Instruction::Code>(kMirOpNop);
              } else {
                int dead_def = if_false->ssa_rep->defs[0];
                int live_def = if_true->ssa_rep->defs[0];
                mir->ssa_rep->defs[0] = live_def;
                BasicBlockId* incoming = phi->meta.phi_incoming;
                for (int i = 0; i < phi->ssa_rep->num_uses; i++) {
                  if (phi->ssa_rep->uses[i] == live_def) {
                    incoming[i] = bb->id;
                  }
                }
                for (int i = 0; i < phi->ssa_rep->num_uses; i++) {
                  if (phi->ssa_rep->uses[i] == dead_def) {
                    int last_slot = phi->ssa_rep->num_uses - 1;
                    phi->ssa_rep->uses[i] = phi->ssa_rep->uses[last_slot];
                    incoming[i] = incoming[last_slot];
                  }
                }
              }
              phi->ssa_rep->num_uses--;
              bb->taken = NullBasicBlockId;
              tk->block_type = kDead;
              for (MIR* tmir = ft->first_mir_insn; tmir != NULL; tmir = tmir->next) {
                tmir->dalvikInsn.opcode = static_cast<Instruction::Code>(kMirOpNop);
              }
            }
          }
        }
      }
    }
    bb = ((cu_->disable_opt & (1 << kSuppressExceptionEdges)) != 0) ? NextDominatedBlock(bb) : NULL;
  }
  if (use_lvn && UNLIKELY(!global_valnum->Good())) {
    LOG(WARNING) << "LVN overflow in " << PrettyMethod(cu_->method_idx, *cu_->dex_file);
  }

  return true;
}

/* Collect stats on number of checks removed */
void MIRGraph::CountChecks(struct BasicBlock* bb) {
  if (bb->data_flow_info != NULL) {
    for (MIR* mir = bb->first_mir_insn; mir != NULL; mir = mir->next) {
      if (mir->ssa_rep == NULL) {
        continue;
      }
      uint64_t df_attributes = GetDataFlowAttributes(mir);
      if (df_attributes & DF_HAS_NULL_CHKS) {
        checkstats_->null_checks++;
        if (mir->optimization_flags & MIR_IGNORE_NULL_CHECK) {
          checkstats_->null_checks_eliminated++;
        }
      }
      if (df_attributes & DF_HAS_RANGE_CHKS) {
        checkstats_->range_checks++;
        if (mir->optimization_flags & MIR_IGNORE_RANGE_CHECK) {
          checkstats_->range_checks_eliminated++;
        }
      }
    }
  }
}

/* Try to make common case the fallthrough path. */
bool MIRGraph::LayoutBlocks(BasicBlock* bb) {
  // TODO: For now, just looking for direct throws.  Consider generalizing for profile feedback.
  if (!bb->explicit_throw) {
    return false;
  }

  // If we visited it, we are done.
  if (bb->visited) {
    return false;
  }
  bb->visited = true;

  BasicBlock* walker = bb;
  while (true) {
    // Check termination conditions.
    if ((walker->block_type == kEntryBlock) || (Predecessors(walker) != 1)) {
      break;
    }
    BasicBlock* prev = GetBasicBlock(walker->predecessors->Get(0));

    // If we visited the predecessor, we are done.
    if (prev->visited) {
      return false;
    }
    prev->visited = true;

    if (prev->conditional_branch) {
      if (GetBasicBlock(prev->fall_through) == walker) {
        // Already done - return.
        break;
      }
      DCHECK_EQ(walker, GetBasicBlock(prev->taken));
      // Got one.  Flip it and exit.
      Instruction::Code opcode = prev->last_mir_insn->dalvikInsn.opcode;
      switch (opcode) {
        case Instruction::IF_EQ: opcode = Instruction::IF_NE; break;
        case Instruction::IF_NE: opcode = Instruction::IF_EQ; break;
        case Instruction::IF_LT: opcode = Instruction::IF_GE; break;
        case Instruction::IF_GE: opcode = Instruction::IF_LT; break;
        case Instruction::IF_GT: opcode = Instruction::IF_LE; break;
        case Instruction::IF_LE: opcode = Instruction::IF_GT; break;
        case Instruction::IF_EQZ: opcode = Instruction::IF_NEZ; break;
        case Instruction::IF_NEZ: opcode = Instruction::IF_EQZ; break;
        case Instruction::IF_LTZ: opcode = Instruction::IF_GEZ; break;
        case Instruction::IF_GEZ: opcode = Instruction::IF_LTZ; break;
        case Instruction::IF_GTZ: opcode = Instruction::IF_LEZ; break;
        case Instruction::IF_LEZ: opcode = Instruction::IF_GTZ; break;
        default: LOG(FATAL) << "Unexpected opcode " << opcode;
      }
      prev->last_mir_insn->dalvikInsn.opcode = opcode;
      BasicBlockId t_bb = prev->taken;
      prev->taken = prev->fall_through;
      prev->fall_through = t_bb;
      break;
    }
    walker = prev;

    if (walker->visited) {
      break;
    }
  }
  return false;
}

/* Combine any basic blocks terminated by instructions that we now know can't throw */
void MIRGraph::CombineBlocks(struct BasicBlock* bb) {
  // Loop here to allow combining a sequence of blocks
  while (true) {
    // Check termination conditions
    if ((bb->first_mir_insn == NULL)
        || (bb->data_flow_info == NULL)
        || (bb->block_type == kExceptionHandling)
        || (bb->block_type == kExitBlock)
        || (bb->block_type == kDead)
        || (bb->taken == NullBasicBlockId)
        || (GetBasicBlock(bb->taken)->block_type != kExceptionHandling)
        || (bb->successor_block_list_type != kNotUsed)
        || (static_cast<int>(bb->last_mir_insn->dalvikInsn.opcode) != kMirOpCheck)) {
      break;
    }

    // Test the kMirOpCheck instruction
    MIR* mir = bb->last_mir_insn;
    // Grab the attributes from the paired opcode
    MIR* throw_insn = mir->meta.throw_insn;
    uint64_t df_attributes = GetDataFlowAttributes(throw_insn);
    bool can_combine = true;
    if (df_attributes & DF_HAS_NULL_CHKS) {
      can_combine &= ((throw_insn->optimization_flags & MIR_IGNORE_NULL_CHECK) != 0);
    }
    if (df_attributes & DF_HAS_RANGE_CHKS) {
      can_combine &= ((throw_insn->optimization_flags & MIR_IGNORE_RANGE_CHECK) != 0);
    }
    if (!can_combine) {
      break;
    }
    // OK - got one.  Combine
    BasicBlock* bb_next = GetBasicBlock(bb->fall_through);
    DCHECK(!bb_next->catch_entry);
    DCHECK_EQ(Predecessors(bb_next), 1U);
    // Overwrite the kOpCheck insn with the paired opcode
    DCHECK_EQ(bb_next->first_mir_insn, throw_insn);
    *bb->last_mir_insn = *throw_insn;
    // Use the successor info from the next block
    bb->successor_block_list_type = bb_next->successor_block_list_type;
    bb->successor_blocks = bb_next->successor_blocks;
    // Use the ending block linkage from the next block
    bb->fall_through = bb_next->fall_through;
    GetBasicBlock(bb->taken)->block_type = kDead;  // Kill the unused exception block
    bb->taken = bb_next->taken;
    // Include the rest of the instructions
    bb->last_mir_insn = bb_next->last_mir_insn;
    /*
     * If lower-half of pair of blocks to combine contained
     * a return or a conditional branch or an explicit throw,
     * move the flag to the newly combined block.
     */
    bb->terminated_by_return = bb_next->terminated_by_return;
    bb->conditional_branch = bb_next->conditional_branch;
    bb->explicit_throw = bb_next->explicit_throw;

    /*
     * NOTE: we aren't updating all dataflow info here.  Should either make sure this pass
     * happens after uses of i_dominated, dom_frontier or update the dataflow info here.
     */

    // Kill bb_next and remap now-dead id to parent
    bb_next->block_type = kDead;
    block_id_map_.Overwrite(bb_next->id, bb->id);

    // Now, loop back and see if we can keep going
  }
}

void MIRGraph::EliminateNullChecksAndInferTypesStart() {
  if ((cu_->disable_opt & (1 << kNullCheckElimination)) == 0) {
    if (kIsDebugBuild) {
      AllNodesIterator iter(this);
      for (BasicBlock* bb = iter.Next(); bb != nullptr; bb = iter.Next()) {
        CHECK(bb->data_flow_info == nullptr || bb->data_flow_info->ending_check_v == nullptr);
      }
    }

    DCHECK(temp_scoped_alloc_.get() == nullptr);
    temp_scoped_alloc_.reset(ScopedArenaAllocator::Create(&cu_->arena_stack));
    temp_bit_vector_size_ = GetNumSSARegs();
    temp_bit_vector_ = new (temp_scoped_alloc_.get()) ArenaBitVector(
        temp_scoped_alloc_.get(), temp_bit_vector_size_, false, kBitMapTempSSARegisterV);
  }
}

/*
 * Eliminate unnecessary null checks for a basic block.   Also, while we're doing
 * an iterative walk go ahead and perform type and size inference.
 */
bool MIRGraph::EliminateNullChecksAndInferTypes(BasicBlock* bb) {
  if (bb->data_flow_info == NULL) return false;
  bool infer_changed = false;
  bool do_nce = ((cu_->disable_opt & (1 << kNullCheckElimination)) == 0);

  ArenaBitVector* ssa_regs_to_check = temp_bit_vector_;
  if (do_nce) {
    /*
     * Set initial state. Catch blocks don't need any special treatment.
     */
    if (bb->block_type == kEntryBlock) {
      ssa_regs_to_check->ClearAllBits();
      // Assume all ins are objects.
      for (uint16_t in_reg = GetFirstInVR();
           in_reg < GetNumOfCodeVRs(); in_reg++) {
        ssa_regs_to_check->SetBit(in_reg);
      }
      if ((cu_->access_flags & kAccStatic) == 0) {
        // If non-static method, mark "this" as non-null
        int this_reg = GetFirstInVR();
        ssa_regs_to_check->ClearBit(this_reg);
      }
    } else if (bb->predecessors->Size() == 1) {
      BasicBlock* pred_bb = GetBasicBlock(bb->predecessors->Get(0));
      // pred_bb must have already been processed at least once.
      DCHECK(pred_bb->data_flow_info->ending_check_v != nullptr);
      ssa_regs_to_check->Copy(pred_bb->data_flow_info->ending_check_v);
      if (pred_bb->block_type == kDalvikByteCode) {
        // Check to see if predecessor had an explicit null-check.
        MIR* last_insn = pred_bb->last_mir_insn;
        if (last_insn != nullptr) {
          Instruction::Code last_opcode = last_insn->dalvikInsn.opcode;
          if (last_opcode == Instruction::IF_EQZ) {
            if (pred_bb->fall_through == bb->id) {
              // The fall-through of a block following a IF_EQZ, set the vA of the IF_EQZ to show that
              // it can't be null.
              ssa_regs_to_check->ClearBit(last_insn->ssa_rep->uses[0]);
            }
          } else if (last_opcode == Instruction::IF_NEZ) {
            if (pred_bb->taken == bb->id) {
              // The taken block following a IF_NEZ, set the vA of the IF_NEZ to show that it can't be
              // null.
              ssa_regs_to_check->ClearBit(last_insn->ssa_rep->uses[0]);
            }
          }
        }
      }
    } else {
      // Starting state is union of all incoming arcs
      GrowableArray<BasicBlockId>::Iterator iter(bb->predecessors);
      BasicBlock* pred_bb = GetBasicBlock(iter.Next());
      CHECK(pred_bb != NULL);
      while (pred_bb->data_flow_info->ending_check_v == nullptr) {
        pred_bb = GetBasicBlock(iter.Next());
        // At least one predecessor must have been processed before this bb.
        DCHECK(pred_bb != nullptr);
        DCHECK(pred_bb->data_flow_info != nullptr);
      }
      ssa_regs_to_check->Copy(pred_bb->data_flow_info->ending_check_v);
      while (true) {
        pred_bb = GetBasicBlock(iter.Next());
        if (!pred_bb) break;
        DCHECK(pred_bb->data_flow_info != nullptr);
        if (pred_bb->data_flow_info->ending_check_v == nullptr) {
          continue;
        }
        ssa_regs_to_check->Union(pred_bb->data_flow_info->ending_check_v);
      }
    }
    // At this point, ssa_regs_to_check shows which sregs have an object definition with
    // no intervening uses.
  }

  // Walk through the instruction in the block, updating as necessary
  for (MIR* mir = bb->first_mir_insn; mir != NULL; mir = mir->next) {
    if (mir->ssa_rep == NULL) {
        continue;
    }

    // Propagate type info.
    infer_changed = InferTypeAndSize(bb, mir, infer_changed);
    if (!do_nce) {
      continue;
    }

    uint64_t df_attributes = GetDataFlowAttributes(mir);

    // Might need a null check?
    if (df_attributes & DF_HAS_NULL_CHKS) {
      int src_idx;
      if (df_attributes & DF_NULL_CHK_1) {
        src_idx = 1;
      } else if (df_attributes & DF_NULL_CHK_2) {
        src_idx = 2;
      } else {
        src_idx = 0;
      }
      int src_sreg = mir->ssa_rep->uses[src_idx];
      if (!ssa_regs_to_check->IsBitSet(src_sreg)) {
        // Eliminate the null check.
        mir->optimization_flags |= MIR_IGNORE_NULL_CHECK;
      } else {
        // Do the null check.
        mir->optimization_flags &= ~MIR_IGNORE_NULL_CHECK;
        // Mark s_reg as null-checked
        ssa_regs_to_check->ClearBit(src_sreg);
      }
    }

    if ((df_attributes & DF_A_WIDE) ||
        (df_attributes & (DF_REF_A | DF_SETS_CONST | DF_NULL_TRANSFER)) == 0) {
      continue;
    }

    /*
     * First, mark all object definitions as requiring null check.
     * Note: we can't tell if a CONST definition might be used as an object, so treat
     * them all as object definitions.
     */
    if (((df_attributes & (DF_DA | DF_REF_A)) == (DF_DA | DF_REF_A)) ||
        (df_attributes & DF_SETS_CONST))  {
      ssa_regs_to_check->SetBit(mir->ssa_rep->defs[0]);
    }

    // Now, remove mark from all object definitions we know are non-null.
    if (df_attributes & DF_NON_NULL_DST) {
      // Mark target of NEW* as non-null
      ssa_regs_to_check->ClearBit(mir->ssa_rep->defs[0]);
    }

    // Mark non-null returns from invoke-style NEW*
    if (df_attributes & DF_NON_NULL_RET) {
      MIR* next_mir = mir->next;
      // Next should be an MOVE_RESULT_OBJECT
      if (next_mir &&
          next_mir->dalvikInsn.opcode == Instruction::MOVE_RESULT_OBJECT) {
        // Mark as null checked
        ssa_regs_to_check->ClearBit(next_mir->ssa_rep->defs[0]);
      } else {
        if (next_mir) {
          LOG(WARNING) << "Unexpected opcode following new: " << next_mir->dalvikInsn.opcode;
        } else if (bb->fall_through != NullBasicBlockId) {
          // Look in next basic block
          struct BasicBlock* next_bb = GetBasicBlock(bb->fall_through);
          for (MIR* tmir = next_bb->first_mir_insn; tmir != NULL;
            tmir =tmir->next) {
            if (MIR::DecodedInstruction::IsPseudoMirOp(tmir->dalvikInsn.opcode)) {
              continue;
            }
            // First non-pseudo should be MOVE_RESULT_OBJECT
            if (tmir->dalvikInsn.opcode == Instruction::MOVE_RESULT_OBJECT) {
              // Mark as null checked
              ssa_regs_to_check->ClearBit(tmir->ssa_rep->defs[0]);
            } else {
              LOG(WARNING) << "Unexpected op after new: " << tmir->dalvikInsn.opcode;
            }
            break;
          }
        }
      }
    }

    /*
     * Propagate nullcheck state on register copies (including
     * Phi pseudo copies.  For the latter, nullcheck state is
     * the "or" of all the Phi's operands.
     */
    if (df_attributes & (DF_NULL_TRANSFER_0 | DF_NULL_TRANSFER_N)) {
      int tgt_sreg = mir->ssa_rep->defs[0];
      int operands = (df_attributes & DF_NULL_TRANSFER_0) ? 1 :
          mir->ssa_rep->num_uses;
      bool needs_null_check = false;
      for (int i = 0; i < operands; i++) {
        needs_null_check |= ssa_regs_to_check->IsBitSet(mir->ssa_rep->uses[i]);
      }
      if (needs_null_check) {
        ssa_regs_to_check->SetBit(tgt_sreg);
      } else {
        ssa_regs_to_check->ClearBit(tgt_sreg);
      }
    }
  }

  // Did anything change?
  bool nce_changed = false;
  if (do_nce) {
    if (bb->data_flow_info->ending_check_v == nullptr) {
      DCHECK(temp_scoped_alloc_.get() != nullptr);
      bb->data_flow_info->ending_check_v = new (temp_scoped_alloc_.get()) ArenaBitVector(
          temp_scoped_alloc_.get(), temp_bit_vector_size_, false, kBitMapNullCheck);
      nce_changed = ssa_regs_to_check->GetHighestBitSet() != -1;
      bb->data_flow_info->ending_check_v->Copy(ssa_regs_to_check);
    } else if (!ssa_regs_to_check->SameBitsSet(bb->data_flow_info->ending_check_v)) {
      nce_changed = true;
      bb->data_flow_info->ending_check_v->Copy(ssa_regs_to_check);
    }
  }
  return infer_changed | nce_changed;
}

void MIRGraph::EliminateNullChecksAndInferTypesEnd() {
  if ((cu_->disable_opt & (1 << kNullCheckElimination)) == 0) {
    // Clean up temporaries.
    temp_bit_vector_size_ = 0u;
    temp_bit_vector_ = nullptr;
    AllNodesIterator iter(this);
    for (BasicBlock* bb = iter.Next(); bb != nullptr; bb = iter.Next()) {
      if (bb->data_flow_info != nullptr) {
        bb->data_flow_info->ending_check_v = nullptr;
      }
    }
    DCHECK(temp_scoped_alloc_.get() != nullptr);
    temp_scoped_alloc_.reset();
  }
}

bool MIRGraph::EliminateClassInitChecksGate() {
  if ((cu_->disable_opt & (1 << kClassInitCheckElimination)) != 0 ||
      !cu_->mir_graph->HasStaticFieldAccess()) {
    return false;
  }

  if (kIsDebugBuild) {
    AllNodesIterator iter(this);
    for (BasicBlock* bb = iter.Next(); bb != nullptr; bb = iter.Next()) {
      CHECK(bb->data_flow_info == nullptr || bb->data_flow_info->ending_check_v == nullptr);
    }
  }

  DCHECK(temp_scoped_alloc_.get() == nullptr);
  temp_scoped_alloc_.reset(ScopedArenaAllocator::Create(&cu_->arena_stack));

  // Each insn we use here has at least 2 code units, offset/2 will be a unique index.
  const size_t end = (cu_->code_item->insns_size_in_code_units_ + 1u) / 2u;
  temp_insn_data_ = static_cast<uint16_t*>(
      temp_scoped_alloc_->Alloc(end * sizeof(*temp_insn_data_), kArenaAllocGrowableArray));

  uint32_t unique_class_count = 0u;
  {
    // Get unique_class_count and store indexes in temp_insn_data_ using a map on a nested
    // ScopedArenaAllocator.

    // Embed the map value in the entry to save space.
    struct MapEntry {
      // Map key: the class identified by the declaring dex file and type index.
      const DexFile* declaring_dex_file;
      uint16_t declaring_class_idx;
      // Map value: index into bit vectors of classes requiring initialization checks.
      uint16_t index;
    };
    struct MapEntryComparator {
      bool operator()(const MapEntry& lhs, const MapEntry& rhs) const {
        if (lhs.declaring_class_idx != rhs.declaring_class_idx) {
          return lhs.declaring_class_idx < rhs.declaring_class_idx;
        }
        return lhs.declaring_dex_file < rhs.declaring_dex_file;
      }
    };

    ScopedArenaAllocator allocator(&cu_->arena_stack);
    ScopedArenaSet<MapEntry, MapEntryComparator> class_to_index_map(MapEntryComparator(),
                                                                    allocator.Adapter());

    // First, find all SGET/SPUTs that may need class initialization checks, record INVOKE_STATICs.
    AllNodesIterator iter(this);
    for (BasicBlock* bb = iter.Next(); bb != nullptr; bb = iter.Next()) {
      for (MIR* mir = bb->first_mir_insn; mir != nullptr; mir = mir->next) {
        DCHECK(bb->data_flow_info != nullptr);
        if (mir->dalvikInsn.opcode >= Instruction::SGET &&
            mir->dalvikInsn.opcode <= Instruction::SPUT_SHORT) {
          const MirSFieldLoweringInfo& field_info = GetSFieldLoweringInfo(mir);
          uint16_t index = 0xffffu;
          if (!field_info.IsInitialized()) {
            DCHECK_LT(class_to_index_map.size(), 0xffffu);
            MapEntry entry = {
                // Treat unresolved fields as if each had its own class.
                field_info.IsResolved() ? field_info.DeclaringDexFile()
                                        : nullptr,
                field_info.IsResolved() ? field_info.DeclaringClassIndex()
                                        : field_info.FieldIndex(),
                static_cast<uint16_t>(class_to_index_map.size())
            };
            index = class_to_index_map.insert(entry).first->index;
          }
          // Using offset/2 for index into temp_insn_data_.
          temp_insn_data_[mir->offset / 2u] = index;
        }
      }
    }
    unique_class_count = static_cast<uint32_t>(class_to_index_map.size());
  }

  if (unique_class_count == 0u) {
    // All SGET/SPUTs refer to initialized classes. Nothing to do.
    temp_insn_data_ = nullptr;
    temp_scoped_alloc_.reset();
    return false;
  }

  temp_bit_vector_size_ = unique_class_count;
  temp_bit_vector_ = new (temp_scoped_alloc_.get()) ArenaBitVector(
      temp_scoped_alloc_.get(), temp_bit_vector_size_, false, kBitMapClInitCheck);
  DCHECK_GT(temp_bit_vector_size_, 0u);
  return true;
}

/*
 * Eliminate unnecessary class initialization checks for a basic block.
 */
bool MIRGraph::EliminateClassInitChecks(BasicBlock* bb) {
  DCHECK_EQ((cu_->disable_opt & (1 << kClassInitCheckElimination)), 0u);
  if (bb->data_flow_info == NULL) {
    return false;
  }

  /*
   * Set initial state.  Catch blocks don't need any special treatment.
   */
  ArenaBitVector* classes_to_check = temp_bit_vector_;
  DCHECK(classes_to_check != nullptr);
  if (bb->block_type == kEntryBlock) {
    classes_to_check->SetInitialBits(temp_bit_vector_size_);
  } else if (bb->predecessors->Size() == 1) {
    BasicBlock* pred_bb = GetBasicBlock(bb->predecessors->Get(0));
    // pred_bb must have already been processed at least once.
    DCHECK(pred_bb != nullptr);
    DCHECK(pred_bb->data_flow_info != nullptr);
    DCHECK(pred_bb->data_flow_info->ending_check_v != nullptr);
    classes_to_check->Copy(pred_bb->data_flow_info->ending_check_v);
  } else {
    // Starting state is union of all incoming arcs
    GrowableArray<BasicBlockId>::Iterator iter(bb->predecessors);
    BasicBlock* pred_bb = GetBasicBlock(iter.Next());
    DCHECK(pred_bb != NULL);
    DCHECK(pred_bb->data_flow_info != NULL);
    while (pred_bb->data_flow_info->ending_check_v == nullptr) {
      pred_bb = GetBasicBlock(iter.Next());
      // At least one predecessor must have been processed before this bb.
      DCHECK(pred_bb != nullptr);
      DCHECK(pred_bb->data_flow_info != nullptr);
    }
    classes_to_check->Copy(pred_bb->data_flow_info->ending_check_v);
    while (true) {
      pred_bb = GetBasicBlock(iter.Next());
      if (!pred_bb) break;
      DCHECK(pred_bb->data_flow_info != nullptr);
      if (pred_bb->data_flow_info->ending_check_v == nullptr) {
        continue;
      }
      classes_to_check->Union(pred_bb->data_flow_info->ending_check_v);
    }
  }
  // At this point, classes_to_check shows which classes need clinit checks.

  // Walk through the instruction in the block, updating as necessary
  for (MIR* mir = bb->first_mir_insn; mir != nullptr; mir = mir->next) {
    if (mir->dalvikInsn.opcode >= Instruction::SGET &&
        mir->dalvikInsn.opcode <= Instruction::SPUT_SHORT) {
      uint16_t index = temp_insn_data_[mir->offset / 2u];
      if (index != 0xffffu) {
        if (mir->dalvikInsn.opcode >= Instruction::SGET &&
            mir->dalvikInsn.opcode <= Instruction::SPUT_SHORT) {
          if (!classes_to_check->IsBitSet(index)) {
            // Eliminate the class init check.
            mir->optimization_flags |= MIR_IGNORE_CLINIT_CHECK;
          } else {
            // Do the class init check.
            mir->optimization_flags &= ~MIR_IGNORE_CLINIT_CHECK;
          }
        }
        // Mark the class as initialized.
        classes_to_check->ClearBit(index);
      }
    }
  }

  // Did anything change?
  bool changed = false;
  if (bb->data_flow_info->ending_check_v == nullptr) {
    DCHECK(temp_scoped_alloc_.get() != nullptr);
    DCHECK(bb->data_flow_info != nullptr);
    bb->data_flow_info->ending_check_v = new (temp_scoped_alloc_.get()) ArenaBitVector(
        temp_scoped_alloc_.get(), temp_bit_vector_size_, false, kBitMapClInitCheck);
    changed = classes_to_check->GetHighestBitSet() != -1;
    bb->data_flow_info->ending_check_v->Copy(classes_to_check);
  } else if (!classes_to_check->Equal(bb->data_flow_info->ending_check_v)) {
    changed = true;
    bb->data_flow_info->ending_check_v->Copy(classes_to_check);
  }
  return changed;
}

void MIRGraph::EliminateClassInitChecksEnd() {
  // Clean up temporaries.
  temp_bit_vector_size_ = 0u;
  temp_bit_vector_ = nullptr;
  AllNodesIterator iter(this);
  for (BasicBlock* bb = iter.Next(); bb != nullptr; bb = iter.Next()) {
    if (bb->data_flow_info != nullptr) {
      bb->data_flow_info->ending_check_v = nullptr;
    }
  }

  DCHECK(temp_insn_data_ != nullptr);
  temp_insn_data_ = nullptr;
  DCHECK(temp_scoped_alloc_.get() != nullptr);
  temp_scoped_alloc_.reset();
}

bool MIRGraph::ApplyGlobalValueNumberingGate() {
  if ((cu_->disable_opt & (1u << kGlobalValueNumbering)) != 0u) {
    return false;
  }

  DCHECK(temp_scoped_alloc_ == nullptr);
  temp_scoped_alloc_.reset(ScopedArenaAllocator::Create(&cu_->arena_stack));
  DCHECK(temp_gvn_ == nullptr);
  temp_gvn_.reset(
      new (temp_scoped_alloc_.get()) GlobalValueNumbering(cu_, temp_scoped_alloc_.get()));
  return true;
}

bool MIRGraph::ApplyGlobalValueNumbering(BasicBlock* bb) {
  DCHECK(temp_gvn_ != nullptr);
  LocalValueNumbering* lvn = temp_gvn_->PrepareBasicBlock(bb);
  if (lvn != nullptr) {
    for (MIR* mir = bb->first_mir_insn; mir != nullptr; mir = mir->next) {
      lvn->GetValueNumber(mir);
    }
  }
  bool change = (lvn != nullptr) && temp_gvn_->FinishBasicBlock(bb);
  return change;
}

void MIRGraph::ApplyGlobalValueNumberingEnd() {
  // Perform modifications.
  if (temp_gvn_->Good()) {
    temp_gvn_->AllowModifications();
    PreOrderDfsIterator iter(this);
    for (BasicBlock* bb = iter.Next(); bb != nullptr; bb = iter.Next()) {
      ScopedArenaAllocator allocator(&cu_->arena_stack);  // Reclaim memory after each LVN.
      LocalValueNumbering* lvn = temp_gvn_->PrepareBasicBlock(bb, &allocator);
      if (lvn != nullptr) {
        for (MIR* mir = bb->first_mir_insn; mir != nullptr; mir = mir->next) {
          lvn->GetValueNumber(mir);
        }
        bool change = temp_gvn_->FinishBasicBlock(bb);
        DCHECK(!change) << PrettyMethod(cu_->method_idx, *cu_->dex_file);
      }
    }
  } else {
    LOG(WARNING) << "GVN failed for " << PrettyMethod(cu_->method_idx, *cu_->dex_file);
  }

  DCHECK(temp_gvn_ != nullptr);
  temp_gvn_.reset();
  DCHECK(temp_scoped_alloc_ != nullptr);
  temp_scoped_alloc_.reset();
}

void MIRGraph::ComputeInlineIFieldLoweringInfo(uint16_t field_idx, MIR* invoke, MIR* iget_or_iput) {
  uint32_t method_index = invoke->meta.method_lowering_info;
  if (temp_bit_vector_->IsBitSet(method_index)) {
    iget_or_iput->meta.ifield_lowering_info = temp_insn_data_[method_index];
    DCHECK_EQ(field_idx, GetIFieldLoweringInfo(iget_or_iput).FieldIndex());
    return;
  }

  const MirMethodLoweringInfo& method_info = GetMethodLoweringInfo(invoke);
  MethodReference target = method_info.GetTargetMethod();
  DexCompilationUnit inlined_unit(
      cu_, cu_->class_loader, cu_->class_linker, *target.dex_file,
      nullptr /* code_item not used */, 0u /* class_def_idx not used */, target.dex_method_index,
      0u /* access_flags not used */, nullptr /* verified_method not used */);
  MirIFieldLoweringInfo inlined_field_info(field_idx);
  MirIFieldLoweringInfo::Resolve(cu_->compiler_driver, &inlined_unit, &inlined_field_info, 1u);
  DCHECK(inlined_field_info.IsResolved());

  uint32_t field_info_index = ifield_lowering_infos_.Size();
  ifield_lowering_infos_.Insert(inlined_field_info);
  temp_bit_vector_->SetBit(method_index);
  temp_insn_data_[method_index] = field_info_index;
  iget_or_iput->meta.ifield_lowering_info = field_info_index;
}

bool MIRGraph::InlineSpecialMethodsGate() {
  if ((cu_->disable_opt & (1 << kSuppressMethodInlining)) != 0 ||
      method_lowering_infos_.Size() == 0u) {
    return false;
  }
  if (cu_->compiler_driver->GetMethodInlinerMap() == nullptr) {
    // This isn't the Quick compiler.
    return false;
  }
  return true;
}

void MIRGraph::InlineSpecialMethodsStart() {
  // Prepare for inlining getters/setters. Since we're inlining at most 1 IGET/IPUT from
  // each INVOKE, we can index the data by the MIR::meta::method_lowering_info index.

  DCHECK(temp_scoped_alloc_.get() == nullptr);
  temp_scoped_alloc_.reset(ScopedArenaAllocator::Create(&cu_->arena_stack));
  temp_bit_vector_size_ = method_lowering_infos_.Size();
  temp_bit_vector_ = new (temp_scoped_alloc_.get()) ArenaBitVector(
      temp_scoped_alloc_.get(), temp_bit_vector_size_, false, kBitMapMisc);
  temp_bit_vector_->ClearAllBits();
  temp_insn_data_ = static_cast<uint16_t*>(temp_scoped_alloc_->Alloc(
      temp_bit_vector_size_ * sizeof(*temp_insn_data_), kArenaAllocGrowableArray));
}

void MIRGraph::InlineSpecialMethods(BasicBlock* bb) {
  if (bb->block_type != kDalvikByteCode) {
    return;
  }
  for (MIR* mir = bb->first_mir_insn; mir != NULL; mir = mir->next) {
    if (MIR::DecodedInstruction::IsPseudoMirOp(mir->dalvikInsn.opcode)) {
      continue;
    }
    if (!(mir->dalvikInsn.FlagsOf() & Instruction::kInvoke)) {
      continue;
    }
    const MirMethodLoweringInfo& method_info = GetMethodLoweringInfo(mir);
    if (!method_info.FastPath()) {
      continue;
    }

    InvokeType sharp_type = method_info.GetSharpType();
    if ((sharp_type != kDirect) && (sharp_type != kStatic)) {
      continue;
    }

    if (sharp_type == kStatic) {
      bool needs_clinit = method_info.NeedsClassInitialization() &&
          ((mir->optimization_flags & MIR_IGNORE_CLINIT_CHECK) == 0);
      if (needs_clinit) {
        continue;
      }
    }

    DCHECK(cu_->compiler_driver->GetMethodInlinerMap() != nullptr);
    MethodReference target = method_info.GetTargetMethod();
    if (cu_->compiler_driver->GetMethodInlinerMap()->GetMethodInliner(target.dex_file)
            ->GenInline(this, bb, mir, target.dex_method_index)) {
      if (cu_->verbose || cu_->print_pass) {
        LOG(INFO) << "SpecialMethodInliner: Inlined " << method_info.GetInvokeType() << " ("
            << sharp_type << ") call to \"" << PrettyMethod(target.dex_method_index, *target.dex_file)
            << "\" from \"" << PrettyMethod(cu_->method_idx, *cu_->dex_file)
            << "\" @0x" << std::hex << mir->offset;
      }
    }
  }
}

void MIRGraph::InlineSpecialMethodsEnd() {
  DCHECK(temp_insn_data_ != nullptr);
  temp_insn_data_ = nullptr;
  DCHECK(temp_bit_vector_ != nullptr);
  temp_bit_vector_ = nullptr;
  DCHECK(temp_scoped_alloc_.get() != nullptr);
  temp_scoped_alloc_.reset();
}

void MIRGraph::DumpCheckStats() {
  Checkstats* stats =
      static_cast<Checkstats*>(arena_->Alloc(sizeof(Checkstats), kArenaAllocDFInfo));
  checkstats_ = stats;
  AllNodesIterator iter(this);
  for (BasicBlock* bb = iter.Next(); bb != NULL; bb = iter.Next()) {
    CountChecks(bb);
  }
  if (stats->null_checks > 0) {
    float eliminated = static_cast<float>(stats->null_checks_eliminated);
    float checks = static_cast<float>(stats->null_checks);
    LOG(INFO) << "Null Checks: " << PrettyMethod(cu_->method_idx, *cu_->dex_file) << " "
              << stats->null_checks_eliminated << " of " << stats->null_checks << " -> "
              << (eliminated/checks) * 100.0 << "%";
    }
  if (stats->range_checks > 0) {
    float eliminated = static_cast<float>(stats->range_checks_eliminated);
    float checks = static_cast<float>(stats->range_checks);
    LOG(INFO) << "Range Checks: " << PrettyMethod(cu_->method_idx, *cu_->dex_file) << " "
              << stats->range_checks_eliminated << " of " << stats->range_checks << " -> "
              << (eliminated/checks) * 100.0 << "%";
  }
}

bool MIRGraph::BuildExtendedBBList(struct BasicBlock* bb) {
  if (bb->visited) return false;
  if (!((bb->block_type == kEntryBlock) || (bb->block_type == kDalvikByteCode)
      || (bb->block_type == kExitBlock))) {
    // Ignore special blocks
    bb->visited = true;
    return false;
  }
  // Must be head of extended basic block.
  BasicBlock* start_bb = bb;
  extended_basic_blocks_.push_back(bb->id);
  bool terminated_by_return = false;
  bool do_local_value_numbering = false;
  // Visit blocks strictly dominated by this head.
  while (bb != NULL) {
    bb->visited = true;
    terminated_by_return |= bb->terminated_by_return;
    do_local_value_numbering |= bb->use_lvn;
    bb = NextDominatedBlock(bb);
  }
  if (terminated_by_return || do_local_value_numbering) {
    // Do lvn for all blocks in this extended set.
    bb = start_bb;
    while (bb != NULL) {
      bb->use_lvn = do_local_value_numbering;
      bb->dominates_return = terminated_by_return;
      bb = NextDominatedBlock(bb);
    }
  }
  return false;  // Not iterative - return value will be ignored
}

void MIRGraph::BasicBlockOptimization() {
  if ((cu_->disable_opt & (1 << kSuppressExceptionEdges)) != 0) {
    ClearAllVisitedFlags();
    PreOrderDfsIterator iter2(this);
    for (BasicBlock* bb = iter2.Next(); bb != NULL; bb = iter2.Next()) {
      BuildExtendedBBList(bb);
    }
    // Perform extended basic block optimizations.
    for (unsigned int i = 0; i < extended_basic_blocks_.size(); i++) {
      BasicBlockOpt(GetBasicBlock(extended_basic_blocks_[i]));
    }
  } else {
    PreOrderDfsIterator iter(this);
    for (BasicBlock* bb = iter.Next(); bb != NULL; bb = iter.Next()) {
      BasicBlockOpt(bb);
    }
  }
}

}  // namespace art