1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
|
/*
* Copyright (C) 2011 The Android Open Source Project
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
#include "arm64_lir.h"
#include "codegen_arm64.h"
#include "dex/quick/mir_to_lir-inl.h"
#include "utils.h"
namespace art {
void Arm64Mir2Lir::GenArithOpFloat(Instruction::Code opcode, RegLocation rl_dest,
RegLocation rl_src1, RegLocation rl_src2) {
int op = kA64Brk1d;
RegLocation rl_result;
switch (opcode) {
case Instruction::ADD_FLOAT_2ADDR:
case Instruction::ADD_FLOAT:
op = kA64Fadd3fff;
break;
case Instruction::SUB_FLOAT_2ADDR:
case Instruction::SUB_FLOAT:
op = kA64Fsub3fff;
break;
case Instruction::DIV_FLOAT_2ADDR:
case Instruction::DIV_FLOAT:
op = kA64Fdiv3fff;
break;
case Instruction::MUL_FLOAT_2ADDR:
case Instruction::MUL_FLOAT:
op = kA64Fmul3fff;
break;
case Instruction::REM_FLOAT_2ADDR:
case Instruction::REM_FLOAT:
FlushAllRegs(); // Send everything to home location
CallRuntimeHelperRegLocationRegLocation(kQuickFmodf, rl_src1, rl_src2, false);
rl_result = GetReturn(kFPReg);
StoreValue(rl_dest, rl_result);
return;
case Instruction::NEG_FLOAT:
GenNegFloat(rl_dest, rl_src1);
return;
default:
LOG(FATAL) << "Unexpected opcode: " << opcode;
}
rl_src1 = LoadValue(rl_src1, kFPReg);
rl_src2 = LoadValue(rl_src2, kFPReg);
rl_result = EvalLoc(rl_dest, kFPReg, true);
NewLIR3(op, rl_result.reg.GetReg(), rl_src1.reg.GetReg(), rl_src2.reg.GetReg());
StoreValue(rl_dest, rl_result);
}
void Arm64Mir2Lir::GenArithOpDouble(Instruction::Code opcode,
RegLocation rl_dest, RegLocation rl_src1, RegLocation rl_src2) {
int op = kA64Brk1d;
RegLocation rl_result;
switch (opcode) {
case Instruction::ADD_DOUBLE_2ADDR:
case Instruction::ADD_DOUBLE:
op = kA64Fadd3fff;
break;
case Instruction::SUB_DOUBLE_2ADDR:
case Instruction::SUB_DOUBLE:
op = kA64Fsub3fff;
break;
case Instruction::DIV_DOUBLE_2ADDR:
case Instruction::DIV_DOUBLE:
op = kA64Fdiv3fff;
break;
case Instruction::MUL_DOUBLE_2ADDR:
case Instruction::MUL_DOUBLE:
op = kA64Fmul3fff;
break;
case Instruction::REM_DOUBLE_2ADDR:
case Instruction::REM_DOUBLE:
FlushAllRegs(); // Send everything to home location
{
RegStorage r_tgt = CallHelperSetup(kQuickFmod);
LoadValueDirectWideFixed(rl_src1, rs_d0);
LoadValueDirectWideFixed(rl_src2, rs_d1);
ClobberCallerSave();
CallHelper(r_tgt, kQuickFmod, false);
}
rl_result = GetReturnWide(kFPReg);
StoreValueWide(rl_dest, rl_result);
return;
case Instruction::NEG_DOUBLE:
GenNegDouble(rl_dest, rl_src1);
return;
default:
LOG(FATAL) << "Unexpected opcode: " << opcode;
}
rl_src1 = LoadValueWide(rl_src1, kFPReg);
DCHECK(rl_src1.wide);
rl_src2 = LoadValueWide(rl_src2, kFPReg);
DCHECK(rl_src2.wide);
rl_result = EvalLoc(rl_dest, kFPReg, true);
DCHECK(rl_dest.wide);
DCHECK(rl_result.wide);
NewLIR3(FWIDE(op), rl_result.reg.GetReg(), rl_src1.reg.GetReg(), rl_src2.reg.GetReg());
StoreValueWide(rl_dest, rl_result);
}
void Arm64Mir2Lir::GenConversion(Instruction::Code opcode,
RegLocation rl_dest, RegLocation rl_src) {
int op = kA64Brk1d;
RegLocation rl_result;
RegisterClass src_reg_class = kInvalidRegClass;
RegisterClass dst_reg_class = kInvalidRegClass;
switch (opcode) {
case Instruction::INT_TO_FLOAT:
op = kA64Scvtf2fw;
src_reg_class = kCoreReg;
dst_reg_class = kFPReg;
break;
case Instruction::FLOAT_TO_INT:
op = kA64Fcvtzs2wf;
src_reg_class = kFPReg;
dst_reg_class = kCoreReg;
break;
case Instruction::DOUBLE_TO_FLOAT:
op = kA64Fcvt2sS;
src_reg_class = kFPReg;
dst_reg_class = kFPReg;
break;
case Instruction::FLOAT_TO_DOUBLE:
op = kA64Fcvt2Ss;
src_reg_class = kFPReg;
dst_reg_class = kFPReg;
break;
case Instruction::INT_TO_DOUBLE:
op = FWIDE(kA64Scvtf2fw);
src_reg_class = kCoreReg;
dst_reg_class = kFPReg;
break;
case Instruction::DOUBLE_TO_INT:
op = FWIDE(kA64Fcvtzs2wf);
src_reg_class = kFPReg;
dst_reg_class = kCoreReg;
break;
case Instruction::LONG_TO_DOUBLE:
op = FWIDE(kA64Scvtf2fx);
src_reg_class = kCoreReg;
dst_reg_class = kFPReg;
break;
case Instruction::FLOAT_TO_LONG:
op = kA64Fcvtzs2xf;
src_reg_class = kFPReg;
dst_reg_class = kCoreReg;
break;
case Instruction::LONG_TO_FLOAT:
op = kA64Scvtf2fx;
src_reg_class = kCoreReg;
dst_reg_class = kFPReg;
break;
case Instruction::DOUBLE_TO_LONG:
op = FWIDE(kA64Fcvtzs2xf);
src_reg_class = kFPReg;
dst_reg_class = kCoreReg;
break;
default:
LOG(FATAL) << "Unexpected opcode: " << opcode;
}
DCHECK_NE(src_reg_class, kInvalidRegClass);
DCHECK_NE(dst_reg_class, kInvalidRegClass);
DCHECK_NE(op, kA64Brk1d);
if (rl_src.wide) {
rl_src = LoadValueWide(rl_src, src_reg_class);
} else {
rl_src = LoadValue(rl_src, src_reg_class);
}
rl_result = EvalLoc(rl_dest, dst_reg_class, true);
NewLIR2(op, rl_result.reg.GetReg(), rl_src.reg.GetReg());
if (rl_dest.wide) {
StoreValueWide(rl_dest, rl_result);
} else {
StoreValue(rl_dest, rl_result);
}
}
void Arm64Mir2Lir::GenFusedFPCmpBranch(BasicBlock* bb, MIR* mir, bool gt_bias,
bool is_double) {
LIR* target = &block_label_list_[bb->taken];
RegLocation rl_src1;
RegLocation rl_src2;
if (is_double) {
rl_src1 = mir_graph_->GetSrcWide(mir, 0);
rl_src2 = mir_graph_->GetSrcWide(mir, 2);
rl_src1 = LoadValueWide(rl_src1, kFPReg);
rl_src2 = LoadValueWide(rl_src2, kFPReg);
NewLIR2(FWIDE(kA64Fcmp2ff), rl_src1.reg.GetReg(), rl_src2.reg.GetReg());
} else {
rl_src1 = mir_graph_->GetSrc(mir, 0);
rl_src2 = mir_graph_->GetSrc(mir, 1);
rl_src1 = LoadValue(rl_src1, kFPReg);
rl_src2 = LoadValue(rl_src2, kFPReg);
NewLIR2(kA64Fcmp2ff, rl_src1.reg.GetReg(), rl_src2.reg.GetReg());
}
ConditionCode ccode = mir->meta.ccode;
switch (ccode) {
case kCondEq:
case kCondNe:
break;
case kCondLt:
if (gt_bias) {
ccode = kCondMi;
}
break;
case kCondLe:
if (gt_bias) {
ccode = kCondLs;
}
break;
case kCondGt:
if (gt_bias) {
ccode = kCondHi;
}
break;
case kCondGe:
if (gt_bias) {
ccode = kCondUge;
}
break;
default:
LOG(FATAL) << "Unexpected ccode: " << ccode;
}
OpCondBranch(ccode, target);
}
void Arm64Mir2Lir::GenCmpFP(Instruction::Code opcode, RegLocation rl_dest,
RegLocation rl_src1, RegLocation rl_src2) {
bool is_double = false;
int default_result = -1;
RegLocation rl_result;
switch (opcode) {
case Instruction::CMPL_FLOAT:
is_double = false;
default_result = -1;
break;
case Instruction::CMPG_FLOAT:
is_double = false;
default_result = 1;
break;
case Instruction::CMPL_DOUBLE:
is_double = true;
default_result = -1;
break;
case Instruction::CMPG_DOUBLE:
is_double = true;
default_result = 1;
break;
default:
LOG(FATAL) << "Unexpected opcode: " << opcode;
}
if (is_double) {
rl_src1 = LoadValueWide(rl_src1, kFPReg);
rl_src2 = LoadValueWide(rl_src2, kFPReg);
// In case result vreg is also a src vreg, break association to avoid useless copy by EvalLoc()
ClobberSReg(rl_dest.s_reg_low);
rl_result = EvalLoc(rl_dest, kCoreReg, true);
LoadConstant(rl_result.reg, default_result);
NewLIR2(FWIDE(kA64Fcmp2ff), rl_src1.reg.GetReg(), rl_src2.reg.GetReg());
} else {
rl_src1 = LoadValue(rl_src1, kFPReg);
rl_src2 = LoadValue(rl_src2, kFPReg);
// In case result vreg is also a srcvreg, break association to avoid useless copy by EvalLoc()
ClobberSReg(rl_dest.s_reg_low);
rl_result = EvalLoc(rl_dest, kCoreReg, true);
LoadConstant(rl_result.reg, default_result);
NewLIR2(kA64Fcmp2ff, rl_src1.reg.GetReg(), rl_src2.reg.GetReg());
}
DCHECK(!rl_result.reg.IsFloat());
// TODO(Arm64): should we rather do this?
// csinc wD, wzr, wzr, eq
// csneg wD, wD, wD, le
// (which requires 2 instructions rather than 3)
// Rd = if cond then Rd else -Rd.
NewLIR4(kA64Csneg4rrrc, rl_result.reg.GetReg(), rl_result.reg.GetReg(),
rl_result.reg.GetReg(), (default_result == 1) ? kArmCondPl : kArmCondLe);
NewLIR4(kA64Csel4rrrc, rl_result.reg.GetReg(), rwzr, rl_result.reg.GetReg(),
kArmCondEq);
StoreValue(rl_dest, rl_result);
}
void Arm64Mir2Lir::GenNegFloat(RegLocation rl_dest, RegLocation rl_src) {
RegLocation rl_result;
rl_src = LoadValue(rl_src, kFPReg);
rl_result = EvalLoc(rl_dest, kFPReg, true);
NewLIR2(kA64Fneg2ff, rl_result.reg.GetReg(), rl_src.reg.GetReg());
StoreValue(rl_dest, rl_result);
}
void Arm64Mir2Lir::GenNegDouble(RegLocation rl_dest, RegLocation rl_src) {
RegLocation rl_result;
rl_src = LoadValueWide(rl_src, kFPReg);
rl_result = EvalLoc(rl_dest, kFPReg, true);
NewLIR2(FWIDE(kA64Fneg2ff), rl_result.reg.GetReg(), rl_src.reg.GetReg());
StoreValueWide(rl_dest, rl_result);
}
static RegisterClass RegClassForAbsFP(RegLocation rl_src, RegLocation rl_dest) {
// If src is in a core reg or, unlikely, dest has been promoted to a core reg, use core reg.
if ((rl_src.location == kLocPhysReg && !rl_src.reg.IsFloat()) ||
(rl_dest.location == kLocPhysReg && !rl_dest.reg.IsFloat())) {
return kCoreReg;
}
// If src is in an fp reg or dest has been promoted to an fp reg, use fp reg.
if (rl_src.location == kLocPhysReg || rl_dest.location == kLocPhysReg) {
return kFPReg;
}
// With both src and dest in the stack frame we have to perform load+abs+store. Whether this
// is faster using a core reg or fp reg depends on the particular CPU. For example, on A53
// it's faster using core reg while on A57 it's faster with fp reg, the difference being
// bigger on the A53. Without further investigation and testing we prefer core register.
// (If the result is subsequently used in another fp operation, the dalvik reg will probably
// get promoted and that should be handled by the cases above.)
return kCoreReg;
}
bool Arm64Mir2Lir::GenInlinedAbsFloat(CallInfo* info) {
if (info->result.location == kLocInvalid) {
return true; // Result is unused: inlining successful, no code generated.
}
RegLocation rl_dest = info->result;
RegLocation rl_src = UpdateLoc(info->args[0]);
RegisterClass reg_class = RegClassForAbsFP(rl_src, rl_dest);
rl_src = LoadValue(rl_src, reg_class);
RegLocation rl_result = EvalLoc(rl_dest, reg_class, true);
if (reg_class == kFPReg) {
NewLIR2(kA64Fabs2ff, rl_result.reg.GetReg(), rl_src.reg.GetReg());
} else {
// Clear the sign bit in an integer register.
OpRegRegImm(kOpAnd, rl_result.reg, rl_src.reg, 0x7fffffff);
}
StoreValue(rl_dest, rl_result);
return true;
}
bool Arm64Mir2Lir::GenInlinedAbsDouble(CallInfo* info) {
if (info->result.location == kLocInvalid) {
return true; // Result is unused: inlining successful, no code generated.
}
RegLocation rl_dest = info->result;
RegLocation rl_src = UpdateLocWide(info->args[0]);
RegisterClass reg_class = RegClassForAbsFP(rl_src, rl_dest);
rl_src = LoadValueWide(rl_src, reg_class);
RegLocation rl_result = EvalLoc(rl_dest, reg_class, true);
if (reg_class == kFPReg) {
NewLIR2(FWIDE(kA64Fabs2ff), rl_result.reg.GetReg(), rl_src.reg.GetReg());
} else {
// Clear the sign bit in an integer register.
OpRegRegImm64(kOpAnd, rl_result.reg, rl_src.reg, 0x7fffffffffffffff);
}
StoreValueWide(rl_dest, rl_result);
return true;
}
bool Arm64Mir2Lir::GenInlinedSqrt(CallInfo* info) {
RegLocation rl_src = info->args[0];
RegLocation rl_dest = InlineTargetWide(info); // double place for result
rl_src = LoadValueWide(rl_src, kFPReg);
RegLocation rl_result = EvalLoc(rl_dest, kFPReg, true);
NewLIR2(FWIDE(kA64Fsqrt2ff), rl_result.reg.GetReg(), rl_src.reg.GetReg());
StoreValueWide(rl_dest, rl_result);
return true;
}
bool Arm64Mir2Lir::GenInlinedCeil(CallInfo* info) {
RegLocation rl_src = info->args[0];
RegLocation rl_dest = InlineTargetWide(info);
rl_src = LoadValueWide(rl_src, kFPReg);
RegLocation rl_result = EvalLoc(rl_dest, kFPReg, true);
NewLIR2(FWIDE(kA64Frintp2ff), rl_result.reg.GetReg(), rl_src.reg.GetReg());
StoreValueWide(rl_dest, rl_result);
return true;
}
bool Arm64Mir2Lir::GenInlinedFloor(CallInfo* info) {
RegLocation rl_src = info->args[0];
RegLocation rl_dest = InlineTargetWide(info);
rl_src = LoadValueWide(rl_src, kFPReg);
RegLocation rl_result = EvalLoc(rl_dest, kFPReg, true);
NewLIR2(FWIDE(kA64Frintm2ff), rl_result.reg.GetReg(), rl_src.reg.GetReg());
StoreValueWide(rl_dest, rl_result);
return true;
}
bool Arm64Mir2Lir::GenInlinedRint(CallInfo* info) {
RegLocation rl_src = info->args[0];
RegLocation rl_dest = InlineTargetWide(info);
rl_src = LoadValueWide(rl_src, kFPReg);
RegLocation rl_result = EvalLoc(rl_dest, kFPReg, true);
NewLIR2(FWIDE(kA64Frintn2ff), rl_result.reg.GetReg(), rl_src.reg.GetReg());
StoreValueWide(rl_dest, rl_result);
return true;
}
bool Arm64Mir2Lir::GenInlinedRound(CallInfo* info, bool is_double) {
int32_t encoded_imm = EncodeImmSingle(bit_cast<float, uint32_t>(0.5f));
ArmOpcode wide = (is_double) ? FWIDE(0) : FUNWIDE(0);
RegLocation rl_src = info->args[0];
RegLocation rl_dest = (is_double) ? InlineTargetWide(info) : InlineTarget(info);
rl_src = (is_double) ? LoadValueWide(rl_src, kFPReg) : LoadValue(rl_src, kFPReg);
RegLocation rl_result = EvalLoc(rl_dest, kCoreReg, true);
RegStorage r_imm_point5 = (is_double) ? AllocTempDouble() : AllocTempSingle();
RegStorage r_tmp = (is_double) ? AllocTempDouble() : AllocTempSingle();
// 0.5f and 0.5d are encoded in the same way.
NewLIR2(kA64Fmov2fI | wide, r_imm_point5.GetReg(), encoded_imm);
NewLIR3(kA64Fadd3fff | wide, r_tmp.GetReg(), rl_src.reg.GetReg(), r_imm_point5.GetReg());
NewLIR2((is_double) ? kA64Fcvtms2xS : kA64Fcvtms2ws, rl_result.reg.GetReg(), r_tmp.GetReg());
(is_double) ? StoreValueWide(rl_dest, rl_result) : StoreValue(rl_dest, rl_result);
return true;
}
bool Arm64Mir2Lir::GenInlinedMinMaxFP(CallInfo* info, bool is_min, bool is_double) {
DCHECK_EQ(cu_->instruction_set, kArm64);
int op = (is_min) ? kA64Fmin3fff : kA64Fmax3fff;
ArmOpcode wide = (is_double) ? FWIDE(0) : FUNWIDE(0);
RegLocation rl_src1 = info->args[0];
RegLocation rl_src2 = (is_double) ? info->args[2] : info->args[1];
rl_src1 = (is_double) ? LoadValueWide(rl_src1, kFPReg) : LoadValue(rl_src1, kFPReg);
rl_src2 = (is_double) ? LoadValueWide(rl_src2, kFPReg) : LoadValue(rl_src2, kFPReg);
RegLocation rl_dest = (is_double) ? InlineTargetWide(info) : InlineTarget(info);
RegLocation rl_result = EvalLoc(rl_dest, kFPReg, true);
NewLIR3(op | wide, rl_result.reg.GetReg(), rl_src1.reg.GetReg(), rl_src2.reg.GetReg());
(is_double) ? StoreValueWide(rl_dest, rl_result) : StoreValue(rl_dest, rl_result);
return true;
}
} // namespace art
|