summaryrefslogtreecommitdiffstats
path: root/compiler/dex/quick/codegen_util.cc
blob: 52b2e15342cae50a568b30f2dc2cc48f40f02515 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
/*
 * Copyright (C) 2011 The Android Open Source Project
 *
 * Licensed under the Apache License, Version 2.0 (the "License");
 * you may not use this file except in compliance with the License.
 * You may obtain a copy of the License at
 *
 *      http://www.apache.org/licenses/LICENSE-2.0
 *
 * Unless required by applicable law or agreed to in writing, software
 * distributed under the License is distributed on an "AS IS" BASIS,
 * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
 * See the License for the specific language governing permissions and
 * limitations under the License.
 */

#include "mir_to_lir-inl.h"

#include "dex/mir_graph.h"
#include "driver/compiler_driver.h"
#include "driver/compiler_options.h"
#include "driver/dex_compilation_unit.h"
#include "dex_file-inl.h"
#include "gc_map.h"
#include "gc_map_builder.h"
#include "mapping_table.h"
#include "dex/quick/dex_file_method_inliner.h"
#include "dex/quick/dex_file_to_method_inliner_map.h"
#include "dex/verification_results.h"
#include "dex/verified_method.h"
#include "verifier/dex_gc_map.h"
#include "verifier/method_verifier.h"
#include "vmap_table.h"

namespace art {

namespace {

/* Dump a mapping table */
template <typename It>
void DumpMappingTable(const char* table_name, const char* descriptor, const char* name,
                      const Signature& signature, uint32_t size, It first) {
  if (size != 0) {
    std::string line(StringPrintf("\n  %s %s%s_%s_table[%u] = {", table_name,
                     descriptor, name, signature.ToString().c_str(), size));
    std::replace(line.begin(), line.end(), ';', '_');
    LOG(INFO) << line;
    for (uint32_t i = 0; i != size; ++i) {
      line = StringPrintf("    {0x%05x, 0x%04x},", first.NativePcOffset(), first.DexPc());
      ++first;
      LOG(INFO) << line;
    }
    LOG(INFO) <<"  };\n\n";
  }
}

}  // anonymous namespace

bool Mir2Lir::IsInexpensiveConstant(RegLocation rl_src) {
  bool res = false;
  if (rl_src.is_const) {
    if (rl_src.wide) {
      // For wide registers, check whether we're the high partner. In that case we need to switch
      // to the lower one for the correct value.
      if (rl_src.high_word) {
        rl_src.high_word = false;
        rl_src.s_reg_low--;
        rl_src.orig_sreg--;
      }
      if (rl_src.fp) {
        res = InexpensiveConstantDouble(mir_graph_->ConstantValueWide(rl_src));
      } else {
        res = InexpensiveConstantLong(mir_graph_->ConstantValueWide(rl_src));
      }
    } else {
      if (rl_src.fp) {
        res = InexpensiveConstantFloat(mir_graph_->ConstantValue(rl_src));
      } else {
        res = InexpensiveConstantInt(mir_graph_->ConstantValue(rl_src));
      }
    }
  }
  return res;
}

void Mir2Lir::MarkSafepointPC(LIR* inst) {
  DCHECK(!inst->flags.use_def_invalid);
  inst->u.m.def_mask = &kEncodeAll;
  LIR* safepoint_pc = NewLIR0(kPseudoSafepointPC);
  DCHECK(safepoint_pc->u.m.def_mask->Equals(kEncodeAll));
}

void Mir2Lir::MarkSafepointPCAfter(LIR* after) {
  DCHECK(!after->flags.use_def_invalid);
  after->u.m.def_mask = &kEncodeAll;
  // As NewLIR0 uses Append, we need to create the LIR by hand.
  LIR* safepoint_pc = RawLIR(current_dalvik_offset_, kPseudoSafepointPC);
  if (after->next == nullptr) {
    DCHECK_EQ(after, last_lir_insn_);
    AppendLIR(safepoint_pc);
  } else {
    InsertLIRAfter(after, safepoint_pc);
  }
  DCHECK(safepoint_pc->u.m.def_mask->Equals(kEncodeAll));
}

/* Remove a LIR from the list. */
void Mir2Lir::UnlinkLIR(LIR* lir) {
  if (UNLIKELY(lir == first_lir_insn_)) {
    first_lir_insn_ = lir->next;
    if (lir->next != nullptr) {
      lir->next->prev = nullptr;
    } else {
      DCHECK(lir->next == nullptr);
      DCHECK(lir == last_lir_insn_);
      last_lir_insn_ = nullptr;
    }
  } else if (lir == last_lir_insn_) {
    last_lir_insn_ = lir->prev;
    lir->prev->next = nullptr;
  } else if ((lir->prev != nullptr) && (lir->next != nullptr)) {
    lir->prev->next = lir->next;
    lir->next->prev = lir->prev;
  }
}

/* Convert an instruction to a NOP */
void Mir2Lir::NopLIR(LIR* lir) {
  lir->flags.is_nop = true;
  if (!cu_->verbose) {
    UnlinkLIR(lir);
  }
}

void Mir2Lir::SetMemRefType(LIR* lir, bool is_load, int mem_type) {
  DCHECK(GetTargetInstFlags(lir->opcode) & (IS_LOAD | IS_STORE));
  DCHECK(!lir->flags.use_def_invalid);
  // TODO: Avoid the extra Arena allocation!
  const ResourceMask** mask_ptr;
  ResourceMask mask;
  if (is_load) {
    mask_ptr = &lir->u.m.use_mask;
  } else {
    mask_ptr = &lir->u.m.def_mask;
  }
  mask = **mask_ptr;
  /* Clear out the memref flags */
  mask.ClearBits(kEncodeMem);
  /* ..and then add back the one we need */
  switch (mem_type) {
    case ResourceMask::kLiteral:
      DCHECK(is_load);
      mask.SetBit(ResourceMask::kLiteral);
      break;
    case ResourceMask::kDalvikReg:
      mask.SetBit(ResourceMask::kDalvikReg);
      break;
    case ResourceMask::kHeapRef:
      mask.SetBit(ResourceMask::kHeapRef);
      break;
    case ResourceMask::kMustNotAlias:
      /* Currently only loads can be marked as kMustNotAlias */
      DCHECK(!(GetTargetInstFlags(lir->opcode) & IS_STORE));
      mask.SetBit(ResourceMask::kMustNotAlias);
      break;
    default:
      LOG(FATAL) << "Oat: invalid memref kind - " << mem_type;
  }
  *mask_ptr = mask_cache_.GetMask(mask);
}

/*
 * Mark load/store instructions that access Dalvik registers through the stack.
 */
void Mir2Lir::AnnotateDalvikRegAccess(LIR* lir, int reg_id, bool is_load,
                                      bool is64bit) {
  DCHECK((is_load ? lir->u.m.use_mask : lir->u.m.def_mask)->Intersection(kEncodeMem).Equals(
      kEncodeDalvikReg));

  /*
   * Store the Dalvik register id in alias_info. Mark the MSB if it is a 64-bit
   * access.
   */
  lir->flags.alias_info = ENCODE_ALIAS_INFO(reg_id, is64bit);
}

/*
 * Debugging macros
 */
#define DUMP_RESOURCE_MASK(X)

/* Pretty-print a LIR instruction */
void Mir2Lir::DumpLIRInsn(LIR* lir, unsigned char* base_addr) {
  int offset = lir->offset;
  int dest = lir->operands[0];
  const bool dump_nop = (cu_->enable_debug & (1 << kDebugShowNops));

  /* Handle pseudo-ops individually, and all regular insns as a group */
  switch (lir->opcode) {
    case kPseudoMethodEntry:
      LOG(INFO) << "-------- method entry "
                << PrettyMethod(cu_->method_idx, *cu_->dex_file);
      break;
    case kPseudoMethodExit:
      LOG(INFO) << "-------- Method_Exit";
      break;
    case kPseudoBarrier:
      LOG(INFO) << "-------- BARRIER";
      break;
    case kPseudoEntryBlock:
      LOG(INFO) << "-------- entry offset: 0x" << std::hex << dest;
      break;
    case kPseudoDalvikByteCodeBoundary:
      if (lir->operands[0] == 0) {
         // NOTE: only used for debug listings.
         lir->operands[0] = WrapPointer(ArenaStrdup("No instruction string"));
      }
      LOG(INFO) << "-------- dalvik offset: 0x" << std::hex
                << lir->dalvik_offset << " @ "
                << reinterpret_cast<char*>(UnwrapPointer(lir->operands[0]));
      break;
    case kPseudoExitBlock:
      LOG(INFO) << "-------- exit offset: 0x" << std::hex << dest;
      break;
    case kPseudoPseudoAlign4:
      LOG(INFO) << reinterpret_cast<uintptr_t>(base_addr) + offset << " (0x" << std::hex
                << offset << "): .align4";
      break;
    case kPseudoEHBlockLabel:
      LOG(INFO) << "Exception_Handling:";
      break;
    case kPseudoTargetLabel:
    case kPseudoNormalBlockLabel:
      LOG(INFO) << "L" << reinterpret_cast<void*>(lir) << ":";
      break;
    case kPseudoThrowTarget:
      LOG(INFO) << "LT" << reinterpret_cast<void*>(lir) << ":";
      break;
    case kPseudoIntrinsicRetry:
      LOG(INFO) << "IR" << reinterpret_cast<void*>(lir) << ":";
      break;
    case kPseudoSuspendTarget:
      LOG(INFO) << "LS" << reinterpret_cast<void*>(lir) << ":";
      break;
    case kPseudoSafepointPC:
      LOG(INFO) << "LsafepointPC_0x" << std::hex << lir->offset << "_" << lir->dalvik_offset << ":";
      break;
    case kPseudoExportedPC:
      LOG(INFO) << "LexportedPC_0x" << std::hex << lir->offset << "_" << lir->dalvik_offset << ":";
      break;
    case kPseudoCaseLabel:
      LOG(INFO) << "LC" << reinterpret_cast<void*>(lir) << ": Case target 0x"
                << std::hex << lir->operands[0] << "|" << std::dec <<
        lir->operands[0];
      break;
    default:
      if (lir->flags.is_nop && !dump_nop) {
        break;
      } else {
        std::string op_name(BuildInsnString(GetTargetInstName(lir->opcode),
                                               lir, base_addr));
        std::string op_operands(BuildInsnString(GetTargetInstFmt(lir->opcode),
                                                    lir, base_addr));
        LOG(INFO) << StringPrintf("%5p: %-9s%s%s",
                                  base_addr + offset,
                                  op_name.c_str(), op_operands.c_str(),
                                  lir->flags.is_nop ? "(nop)" : "");
      }
      break;
  }

  if (lir->u.m.use_mask && (!lir->flags.is_nop || dump_nop)) {
    DUMP_RESOURCE_MASK(DumpResourceMask(lir, *lir->u.m.use_mask, "use"));
  }
  if (lir->u.m.def_mask && (!lir->flags.is_nop || dump_nop)) {
    DUMP_RESOURCE_MASK(DumpResourceMask(lir, *lir->u.m.def_mask, "def"));
  }
}

void Mir2Lir::DumpPromotionMap() {
  uint32_t num_regs = mir_graph_->GetNumOfCodeAndTempVRs();
  for (uint32_t i = 0; i < num_regs; i++) {
    PromotionMap v_reg_map = promotion_map_[i];
    std::string buf;
    if (v_reg_map.fp_location == kLocPhysReg) {
      StringAppendF(&buf, " : s%d", RegStorage::RegNum(v_reg_map.fp_reg));
    }

    std::string buf3;
    if (i < mir_graph_->GetNumOfCodeVRs()) {
      StringAppendF(&buf3, "%02d", i);
    } else if (i == mir_graph_->GetNumOfCodeVRs()) {
      buf3 = "Method*";
    } else {
      uint32_t diff = i - mir_graph_->GetNumOfCodeVRs();
      StringAppendF(&buf3, "ct%d", diff);
    }

    LOG(INFO) << StringPrintf("V[%s] -> %s%d%s", buf3.c_str(),
                              v_reg_map.core_location == kLocPhysReg ?
                              "r" : "SP+", v_reg_map.core_location == kLocPhysReg ?
                              v_reg_map.core_reg : SRegOffset(i),
                              buf.c_str());
  }
}

void Mir2Lir::UpdateLIROffsets() {
  // Only used for code listings.
  size_t offset = 0;
  for (LIR* lir = first_lir_insn_; lir != nullptr; lir = lir->next) {
    lir->offset = offset;
    if (!lir->flags.is_nop && !IsPseudoLirOp(lir->opcode)) {
      offset += GetInsnSize(lir);
    } else if (lir->opcode == kPseudoPseudoAlign4) {
      offset += (offset & 0x2);
    }
  }
}

void Mir2Lir::MarkGCCard(int opt_flags, RegStorage val_reg, RegStorage tgt_addr_reg) {
  DCHECK(val_reg.Valid());
  DCHECK_EQ(val_reg.Is64Bit(), cu_->target64);
  if ((opt_flags & MIR_STORE_NON_NULL_VALUE) != 0) {
    UnconditionallyMarkGCCard(tgt_addr_reg);
  } else {
    LIR* branch_over = OpCmpImmBranch(kCondEq, val_reg, 0, nullptr);
    UnconditionallyMarkGCCard(tgt_addr_reg);
    LIR* target = NewLIR0(kPseudoTargetLabel);
    branch_over->target = target;
  }
}

/* Dump instructions and constant pool contents */
void Mir2Lir::CodegenDump() {
  LOG(INFO) << "Dumping LIR insns for "
            << PrettyMethod(cu_->method_idx, *cu_->dex_file);
  LIR* lir_insn;
  int insns_size = mir_graph_->GetNumDalvikInsns();

  LOG(INFO) << "Regs (excluding ins) : " << mir_graph_->GetNumOfLocalCodeVRs();
  LOG(INFO) << "Ins          : " << mir_graph_->GetNumOfInVRs();
  LOG(INFO) << "Outs         : " << mir_graph_->GetNumOfOutVRs();
  LOG(INFO) << "CoreSpills       : " << num_core_spills_;
  LOG(INFO) << "FPSpills       : " << num_fp_spills_;
  LOG(INFO) << "CompilerTemps    : " << mir_graph_->GetNumUsedCompilerTemps();
  LOG(INFO) << "Frame size       : " << frame_size_;
  LOG(INFO) << "code size is " << total_size_ <<
    " bytes, Dalvik size is " << insns_size * 2;
  LOG(INFO) << "expansion factor: "
            << static_cast<float>(total_size_) / static_cast<float>(insns_size * 2);
  DumpPromotionMap();
  UpdateLIROffsets();
  for (lir_insn = first_lir_insn_; lir_insn != nullptr; lir_insn = lir_insn->next) {
    DumpLIRInsn(lir_insn, 0);
  }
  for (lir_insn = literal_list_; lir_insn != nullptr; lir_insn = lir_insn->next) {
    LOG(INFO) << StringPrintf("%x (%04x): .word (%#x)", lir_insn->offset, lir_insn->offset,
                              lir_insn->operands[0]);
  }

  const DexFile::MethodId& method_id =
      cu_->dex_file->GetMethodId(cu_->method_idx);
  const Signature signature = cu_->dex_file->GetMethodSignature(method_id);
  const char* name = cu_->dex_file->GetMethodName(method_id);
  const char* descriptor(cu_->dex_file->GetMethodDeclaringClassDescriptor(method_id));

  // Dump mapping tables
  if (!encoded_mapping_table_.empty()) {
    MappingTable table(&encoded_mapping_table_[0]);
    DumpMappingTable("PC2Dex_MappingTable", descriptor, name, signature,
                     table.PcToDexSize(), table.PcToDexBegin());
    DumpMappingTable("Dex2PC_MappingTable", descriptor, name, signature,
                     table.DexToPcSize(), table.DexToPcBegin());
  }
}

/*
 * Search the existing constants in the literal pool for an exact or close match
 * within specified delta (greater or equal to 0).
 */
LIR* Mir2Lir::ScanLiteralPool(LIR* data_target, int value, unsigned int delta) {
  while (data_target) {
    if ((static_cast<unsigned>(value - data_target->operands[0])) <= delta)
      return data_target;
    data_target = data_target->next;
  }
  return nullptr;
}

/* Search the existing constants in the literal pool for an exact wide match */
LIR* Mir2Lir::ScanLiteralPoolWide(LIR* data_target, int val_lo, int val_hi) {
  bool lo_match = false;
  LIR* lo_target = nullptr;
  while (data_target) {
    if (lo_match && (data_target->operands[0] == val_hi)) {
      // Record high word in case we need to expand this later.
      lo_target->operands[1] = val_hi;
      return lo_target;
    }
    lo_match = false;
    if (data_target->operands[0] == val_lo) {
      lo_match = true;
      lo_target = data_target;
    }
    data_target = data_target->next;
  }
  return nullptr;
}

/* Search the existing constants in the literal pool for an exact method match */
LIR* Mir2Lir::ScanLiteralPoolMethod(LIR* data_target, const MethodReference& method) {
  while (data_target) {
    if (static_cast<uint32_t>(data_target->operands[0]) == method.dex_method_index &&
        UnwrapPointer(data_target->operands[1]) == method.dex_file) {
      return data_target;
    }
    data_target = data_target->next;
  }
  return nullptr;
}

/* Search the existing constants in the literal pool for an exact class match */
LIR* Mir2Lir::ScanLiteralPoolClass(LIR* data_target, const DexFile& dex_file, uint32_t type_idx) {
  while (data_target) {
    if (static_cast<uint32_t>(data_target->operands[0]) == type_idx &&
        UnwrapPointer(data_target->operands[1]) == &dex_file) {
      return data_target;
    }
    data_target = data_target->next;
  }
  return nullptr;
}

/*
 * The following are building blocks to insert constants into the pool or
 * instruction streams.
 */

/* Add a 32-bit constant to the constant pool */
LIR* Mir2Lir::AddWordData(LIR* *constant_list_p, int value) {
  /* Add the constant to the literal pool */
  if (constant_list_p) {
    LIR* new_value = static_cast<LIR*>(arena_->Alloc(sizeof(LIR), kArenaAllocData));
    new_value->operands[0] = value;
    new_value->next = *constant_list_p;
    *constant_list_p = new_value;
    estimated_native_code_size_ += sizeof(value);
    return new_value;
  }
  return nullptr;
}

/* Add a 64-bit constant to the constant pool or mixed with code */
LIR* Mir2Lir::AddWideData(LIR* *constant_list_p, int val_lo, int val_hi) {
  AddWordData(constant_list_p, val_hi);
  return AddWordData(constant_list_p, val_lo);
}

static void Push32(std::vector<uint8_t>&buf, int data) {
  buf.push_back(data & 0xff);
  buf.push_back((data >> 8) & 0xff);
  buf.push_back((data >> 16) & 0xff);
  buf.push_back((data >> 24) & 0xff);
}

/**
 * @brief Push a compressed reference which needs patching at link/patchoat-time.
 * @details This needs to be kept consistent with the code which actually does the patching in
 *   oat_writer.cc and in the patchoat tool.
 */
static void PushUnpatchedReference(std::vector<uint8_t>&buf) {
  // Note that we can safely initialize the patches to zero. The code deduplication mechanism takes
  // the patches into account when determining whether two pieces of codes are functionally
  // equivalent.
  Push32(buf, UINT32_C(0));
}

static void AlignBuffer(std::vector<uint8_t>&buf, size_t offset) {
  while (buf.size() < offset) {
    buf.push_back(0);
  }
}

/* Write the literal pool to the output stream */
void Mir2Lir::InstallLiteralPools() {
  AlignBuffer(code_buffer_, data_offset_);
  LIR* data_lir = literal_list_;
  while (data_lir != nullptr) {
    Push32(code_buffer_, data_lir->operands[0]);
    data_lir = NEXT_LIR(data_lir);
  }
  // TODO: patches_.reserve() as needed.
  // Push code and method literals, record offsets for the compiler to patch.
  data_lir = code_literal_list_;
  while (data_lir != nullptr) {
    uint32_t target_method_idx = data_lir->operands[0];
    const DexFile* target_dex_file =
        reinterpret_cast<const DexFile*>(UnwrapPointer(data_lir->operands[1]));
    patches_.push_back(LinkerPatch::CodePatch(code_buffer_.size(),
                                              target_dex_file, target_method_idx));
    PushUnpatchedReference(code_buffer_);
    data_lir = NEXT_LIR(data_lir);
  }
  data_lir = method_literal_list_;
  while (data_lir != nullptr) {
    uint32_t target_method_idx = data_lir->operands[0];
    const DexFile* target_dex_file =
        reinterpret_cast<const DexFile*>(UnwrapPointer(data_lir->operands[1]));
    patches_.push_back(LinkerPatch::MethodPatch(code_buffer_.size(),
                                                target_dex_file, target_method_idx));
    PushUnpatchedReference(code_buffer_);
    data_lir = NEXT_LIR(data_lir);
  }
  // Push class literals.
  data_lir = class_literal_list_;
  while (data_lir != nullptr) {
    uint32_t target_type_idx = data_lir->operands[0];
    const DexFile* class_dex_file =
      reinterpret_cast<const DexFile*>(UnwrapPointer(data_lir->operands[1]));
    patches_.push_back(LinkerPatch::TypePatch(code_buffer_.size(),
                                              class_dex_file, target_type_idx));
    PushUnpatchedReference(code_buffer_);
    data_lir = NEXT_LIR(data_lir);
  }
}

/* Write the switch tables to the output stream */
void Mir2Lir::InstallSwitchTables() {
  for (Mir2Lir::SwitchTable* tab_rec : switch_tables_) {
    AlignBuffer(code_buffer_, tab_rec->offset);
    /*
     * For Arm, our reference point is the address of the bx
     * instruction that does the launch, so we have to subtract
     * the auto pc-advance.  For other targets the reference point
     * is a label, so we can use the offset as-is.
     */
    int bx_offset = INVALID_OFFSET;
    switch (cu_->instruction_set) {
      case kThumb2:
        DCHECK(tab_rec->anchor->flags.fixup != kFixupNone);
        bx_offset = tab_rec->anchor->offset + 4;
        break;
      case kX86:
        bx_offset = 0;
        break;
      case kX86_64:
        // RIP relative to switch table.
        bx_offset = tab_rec->offset;
        break;
      case kArm64:
      case kMips:
        bx_offset = tab_rec->anchor->offset;
        break;
      default: LOG(FATAL) << "Unexpected instruction set: " << cu_->instruction_set;
    }
    if (cu_->verbose) {
      LOG(INFO) << "Switch table for offset 0x" << std::hex << bx_offset;
    }
    if (tab_rec->table[0] == Instruction::kSparseSwitchSignature) {
      const int32_t* keys = reinterpret_cast<const int32_t*>(&(tab_rec->table[2]));
      for (int elems = 0; elems < tab_rec->table[1]; elems++) {
        int disp = tab_rec->targets[elems]->offset - bx_offset;
        if (cu_->verbose) {
          LOG(INFO) << "  Case[" << elems << "] key: 0x"
                    << std::hex << keys[elems] << ", disp: 0x"
                    << std::hex << disp;
        }
        Push32(code_buffer_, keys[elems]);
        Push32(code_buffer_,
          tab_rec->targets[elems]->offset - bx_offset);
      }
    } else {
      DCHECK_EQ(static_cast<int>(tab_rec->table[0]),
                static_cast<int>(Instruction::kPackedSwitchSignature));
      for (int elems = 0; elems < tab_rec->table[1]; elems++) {
        int disp = tab_rec->targets[elems]->offset - bx_offset;
        if (cu_->verbose) {
          LOG(INFO) << "  Case[" << elems << "] disp: 0x"
                    << std::hex << disp;
        }
        Push32(code_buffer_, tab_rec->targets[elems]->offset - bx_offset);
      }
    }
  }
}

/* Write the fill array dta to the output stream */
void Mir2Lir::InstallFillArrayData() {
  for (Mir2Lir::FillArrayData* tab_rec : fill_array_data_) {
    AlignBuffer(code_buffer_, tab_rec->offset);
    for (int i = 0; i < (tab_rec->size + 1) / 2; i++) {
      code_buffer_.push_back(tab_rec->table[i] & 0xFF);
      code_buffer_.push_back((tab_rec->table[i] >> 8) & 0xFF);
    }
  }
}

static int AssignLiteralOffsetCommon(LIR* lir, CodeOffset offset) {
  for (; lir != nullptr; lir = lir->next) {
    lir->offset = offset;
    offset += 4;
  }
  return offset;
}

static int AssignLiteralPointerOffsetCommon(LIR* lir, CodeOffset offset,
                                            unsigned int element_size) {
  // Align to natural pointer size.
  offset = RoundUp(offset, element_size);
  for (; lir != nullptr; lir = lir->next) {
    lir->offset = offset;
    offset += element_size;
  }
  return offset;
}

// Make sure we have a code address for every declared catch entry
bool Mir2Lir::VerifyCatchEntries() {
  MappingTable table(&encoded_mapping_table_[0]);
  std::vector<uint32_t> dex_pcs;
  dex_pcs.reserve(table.DexToPcSize());
  for (auto it = table.DexToPcBegin(), end = table.DexToPcEnd(); it != end; ++it) {
    dex_pcs.push_back(it.DexPc());
  }
  // Sort dex_pcs, so that we can quickly check it against the ordered mir_graph_->catches_.
  std::sort(dex_pcs.begin(), dex_pcs.end());

  bool success = true;
  auto it = dex_pcs.begin(), end = dex_pcs.end();
  for (uint32_t dex_pc : mir_graph_->catches_) {
    while (it != end && *it < dex_pc) {
      LOG(INFO) << "Unexpected catch entry @ dex pc 0x" << std::hex << *it;
      ++it;
      success = false;
    }
    if (it == end || *it > dex_pc) {
      LOG(INFO) << "Missing native PC for catch entry @ 0x" << std::hex << dex_pc;
      success = false;
    } else {
      ++it;
    }
  }
  if (!success) {
    LOG(INFO) << "Bad dex2pcMapping table in " << PrettyMethod(cu_->method_idx, *cu_->dex_file);
    LOG(INFO) << "Entries @ decode: " << mir_graph_->catches_.size() << ", Entries in table: "
              << table.DexToPcSize();
  }
  return success;
}


void Mir2Lir::CreateMappingTables() {
  bool generate_src_map = cu_->compiler_driver->GetCompilerOptions().GetIncludeDebugSymbols();

  uint32_t pc2dex_data_size = 0u;
  uint32_t pc2dex_entries = 0u;
  uint32_t pc2dex_offset = 0u;
  uint32_t pc2dex_dalvik_offset = 0u;
  uint32_t pc2dex_src_entries = 0u;
  uint32_t dex2pc_data_size = 0u;
  uint32_t dex2pc_entries = 0u;
  uint32_t dex2pc_offset = 0u;
  uint32_t dex2pc_dalvik_offset = 0u;
  for (LIR* tgt_lir = first_lir_insn_; tgt_lir != nullptr; tgt_lir = NEXT_LIR(tgt_lir)) {
    pc2dex_src_entries++;
    if (!tgt_lir->flags.is_nop && (tgt_lir->opcode == kPseudoSafepointPC)) {
      pc2dex_entries += 1;
      DCHECK(pc2dex_offset <= tgt_lir->offset);
      pc2dex_data_size += UnsignedLeb128Size(tgt_lir->offset - pc2dex_offset);
      pc2dex_data_size += SignedLeb128Size(static_cast<int32_t>(tgt_lir->dalvik_offset) -
                                           static_cast<int32_t>(pc2dex_dalvik_offset));
      pc2dex_offset = tgt_lir->offset;
      pc2dex_dalvik_offset = tgt_lir->dalvik_offset;
    }
    if (!tgt_lir->flags.is_nop && (tgt_lir->opcode == kPseudoExportedPC)) {
      dex2pc_entries += 1;
      DCHECK(dex2pc_offset <= tgt_lir->offset);
      dex2pc_data_size += UnsignedLeb128Size(tgt_lir->offset - dex2pc_offset);
      dex2pc_data_size += SignedLeb128Size(static_cast<int32_t>(tgt_lir->dalvik_offset) -
                                           static_cast<int32_t>(dex2pc_dalvik_offset));
      dex2pc_offset = tgt_lir->offset;
      dex2pc_dalvik_offset = tgt_lir->dalvik_offset;
    }
  }

  if (generate_src_map) {
    src_mapping_table_.reserve(pc2dex_src_entries);
  }

  uint32_t total_entries = pc2dex_entries + dex2pc_entries;
  uint32_t hdr_data_size = UnsignedLeb128Size(total_entries) + UnsignedLeb128Size(pc2dex_entries);
  uint32_t data_size = hdr_data_size + pc2dex_data_size + dex2pc_data_size;
  encoded_mapping_table_.resize(data_size);
  uint8_t* write_pos = &encoded_mapping_table_[0];
  write_pos = EncodeUnsignedLeb128(write_pos, total_entries);
  write_pos = EncodeUnsignedLeb128(write_pos, pc2dex_entries);
  DCHECK_EQ(static_cast<size_t>(write_pos - &encoded_mapping_table_[0]), hdr_data_size);
  uint8_t* write_pos2 = write_pos + pc2dex_data_size;

  pc2dex_offset = 0u;
  pc2dex_dalvik_offset = 0u;
  dex2pc_offset = 0u;
  dex2pc_dalvik_offset = 0u;
  for (LIR* tgt_lir = first_lir_insn_; tgt_lir != nullptr; tgt_lir = NEXT_LIR(tgt_lir)) {
    if (generate_src_map && !tgt_lir->flags.is_nop) {
      src_mapping_table_.push_back(SrcMapElem({tgt_lir->offset,
              static_cast<int32_t>(tgt_lir->dalvik_offset)}));
    }
    if (!tgt_lir->flags.is_nop && (tgt_lir->opcode == kPseudoSafepointPC)) {
      DCHECK(pc2dex_offset <= tgt_lir->offset);
      write_pos = EncodeUnsignedLeb128(write_pos, tgt_lir->offset - pc2dex_offset);
      write_pos = EncodeSignedLeb128(write_pos, static_cast<int32_t>(tgt_lir->dalvik_offset) -
                                     static_cast<int32_t>(pc2dex_dalvik_offset));
      pc2dex_offset = tgt_lir->offset;
      pc2dex_dalvik_offset = tgt_lir->dalvik_offset;
    }
    if (!tgt_lir->flags.is_nop && (tgt_lir->opcode == kPseudoExportedPC)) {
      DCHECK(dex2pc_offset <= tgt_lir->offset);
      write_pos2 = EncodeUnsignedLeb128(write_pos2, tgt_lir->offset - dex2pc_offset);
      write_pos2 = EncodeSignedLeb128(write_pos2, static_cast<int32_t>(tgt_lir->dalvik_offset) -
                                      static_cast<int32_t>(dex2pc_dalvik_offset));
      dex2pc_offset = tgt_lir->offset;
      dex2pc_dalvik_offset = tgt_lir->dalvik_offset;
    }
  }
  DCHECK_EQ(static_cast<size_t>(write_pos - &encoded_mapping_table_[0]),
            hdr_data_size + pc2dex_data_size);
  DCHECK_EQ(static_cast<size_t>(write_pos2 - &encoded_mapping_table_[0]), data_size);

  if (kIsDebugBuild) {
    CHECK(VerifyCatchEntries());

    // Verify the encoded table holds the expected data.
    MappingTable table(&encoded_mapping_table_[0]);
    CHECK_EQ(table.TotalSize(), total_entries);
    CHECK_EQ(table.PcToDexSize(), pc2dex_entries);
    auto it = table.PcToDexBegin();
    auto it2 = table.DexToPcBegin();
    for (LIR* tgt_lir = first_lir_insn_; tgt_lir != nullptr; tgt_lir = NEXT_LIR(tgt_lir)) {
      if (!tgt_lir->flags.is_nop && (tgt_lir->opcode == kPseudoSafepointPC)) {
        CHECK_EQ(tgt_lir->offset, it.NativePcOffset());
        CHECK_EQ(tgt_lir->dalvik_offset, it.DexPc());
        ++it;
      }
      if (!tgt_lir->flags.is_nop && (tgt_lir->opcode == kPseudoExportedPC)) {
        CHECK_EQ(tgt_lir->offset, it2.NativePcOffset());
        CHECK_EQ(tgt_lir->dalvik_offset, it2.DexPc());
        ++it2;
      }
    }
    CHECK(it == table.PcToDexEnd());
    CHECK(it2 == table.DexToPcEnd());
  }
}

void Mir2Lir::CreateNativeGcMap() {
  DCHECK(!encoded_mapping_table_.empty());
  MappingTable mapping_table(&encoded_mapping_table_[0]);
  uint32_t max_native_offset = 0;
  for (auto it = mapping_table.PcToDexBegin(), end = mapping_table.PcToDexEnd(); it != end; ++it) {
    uint32_t native_offset = it.NativePcOffset();
    if (native_offset > max_native_offset) {
      max_native_offset = native_offset;
    }
  }
  MethodReference method_ref(cu_->dex_file, cu_->method_idx);
  const std::vector<uint8_t>& gc_map_raw =
      mir_graph_->GetCurrentDexCompilationUnit()->GetVerifiedMethod()->GetDexGcMap();
  verifier::DexPcToReferenceMap dex_gc_map(&(gc_map_raw)[0]);
  DCHECK_EQ(gc_map_raw.size(), dex_gc_map.RawSize());
  // Compute native offset to references size.
  GcMapBuilder native_gc_map_builder(&native_gc_map_,
                                     mapping_table.PcToDexSize(),
                                     max_native_offset, dex_gc_map.RegWidth());

  for (auto it = mapping_table.PcToDexBegin(), end = mapping_table.PcToDexEnd(); it != end; ++it) {
    uint32_t native_offset = it.NativePcOffset();
    uint32_t dex_pc = it.DexPc();
    const uint8_t* references = dex_gc_map.FindBitMap(dex_pc, false);
    CHECK(references != nullptr) << "Missing ref for dex pc 0x" << std::hex << dex_pc <<
        ": " << PrettyMethod(cu_->method_idx, *cu_->dex_file);
    native_gc_map_builder.AddEntry(native_offset, references);
  }

  // Maybe not necessary, but this could help prevent errors where we access the verified method
  // after it has been deleted.
  mir_graph_->GetCurrentDexCompilationUnit()->ClearVerifiedMethod();
}

/* Determine the offset of each literal field */
int Mir2Lir::AssignLiteralOffset(CodeOffset offset) {
  offset = AssignLiteralOffsetCommon(literal_list_, offset);
  constexpr unsigned int ptr_size = sizeof(uint32_t);
  static_assert(ptr_size >= sizeof(mirror::HeapReference<mirror::Object>),
                "Pointer size cannot hold a heap reference");
  offset = AssignLiteralPointerOffsetCommon(code_literal_list_, offset, ptr_size);
  offset = AssignLiteralPointerOffsetCommon(method_literal_list_, offset, ptr_size);
  offset = AssignLiteralPointerOffsetCommon(class_literal_list_, offset, ptr_size);
  return offset;
}

int Mir2Lir::AssignSwitchTablesOffset(CodeOffset offset) {
  for (Mir2Lir::SwitchTable* tab_rec : switch_tables_) {
    tab_rec->offset = offset;
    if (tab_rec->table[0] == Instruction::kSparseSwitchSignature) {
      offset += tab_rec->table[1] * (sizeof(int) * 2);
    } else {
      DCHECK_EQ(static_cast<int>(tab_rec->table[0]),
                static_cast<int>(Instruction::kPackedSwitchSignature));
      offset += tab_rec->table[1] * sizeof(int);
    }
  }
  return offset;
}

int Mir2Lir::AssignFillArrayDataOffset(CodeOffset offset) {
  for (Mir2Lir::FillArrayData* tab_rec : fill_array_data_) {
    tab_rec->offset = offset;
    offset += tab_rec->size;
    // word align
    offset = RoundUp(offset, 4);
  }
  return offset;
}

/*
 * Insert a kPseudoCaseLabel at the beginning of the Dalvik
 * offset vaddr if pretty-printing, otherise use the standard block
 * label.  The selected label will be used to fix up the case
 * branch table during the assembly phase.  All resource flags
 * are set to prevent code motion.  KeyVal is just there for debugging.
 */
LIR* Mir2Lir::InsertCaseLabel(DexOffset vaddr, int keyVal) {
  LIR* boundary_lir = &block_label_list_[mir_graph_->FindBlock(vaddr)->id];
  LIR* res = boundary_lir;
  if (cu_->verbose) {
    // Only pay the expense if we're pretty-printing.
    LIR* new_label = static_cast<LIR*>(arena_->Alloc(sizeof(LIR), kArenaAllocLIR));
    new_label->dalvik_offset = vaddr;
    new_label->opcode = kPseudoCaseLabel;
    new_label->operands[0] = keyVal;
    new_label->flags.fixup = kFixupLabel;
    DCHECK(!new_label->flags.use_def_invalid);
    new_label->u.m.def_mask = &kEncodeAll;
    InsertLIRAfter(boundary_lir, new_label);
    res = new_label;
  }
  return res;
}

void Mir2Lir::MarkPackedCaseLabels(Mir2Lir::SwitchTable* tab_rec) {
  const uint16_t* table = tab_rec->table;
  DexOffset base_vaddr = tab_rec->vaddr;
  const int32_t *targets = reinterpret_cast<const int32_t*>(&table[4]);
  int entries = table[1];
  int low_key = s4FromSwitchData(&table[2]);
  for (int i = 0; i < entries; i++) {
    tab_rec->targets[i] = InsertCaseLabel(base_vaddr + targets[i], i + low_key);
  }
}

void Mir2Lir::MarkSparseCaseLabels(Mir2Lir::SwitchTable* tab_rec) {
  const uint16_t* table = tab_rec->table;
  DexOffset base_vaddr = tab_rec->vaddr;
  int entries = table[1];
  const int32_t* keys = reinterpret_cast<const int32_t*>(&table[2]);
  const int32_t* targets = &keys[entries];
  for (int i = 0; i < entries; i++) {
    tab_rec->targets[i] = InsertCaseLabel(base_vaddr + targets[i], keys[i]);
  }
}

void Mir2Lir::ProcessSwitchTables() {
  for (Mir2Lir::SwitchTable* tab_rec : switch_tables_) {
    if (tab_rec->table[0] == Instruction::kPackedSwitchSignature) {
      MarkPackedCaseLabels(tab_rec);
    } else if (tab_rec->table[0] == Instruction::kSparseSwitchSignature) {
      MarkSparseCaseLabels(tab_rec);
    } else {
      LOG(FATAL) << "Invalid switch table";
    }
  }
}

void Mir2Lir::DumpSparseSwitchTable(const uint16_t* table) {
  /*
   * Sparse switch data format:
   *  ushort ident = 0x0200   magic value
   *  ushort size       number of entries in the table; > 0
   *  int keys[size]      keys, sorted low-to-high; 32-bit aligned
   *  int targets[size]     branch targets, relative to switch opcode
   *
   * Total size is (2+size*4) 16-bit code units.
   */
  uint16_t ident = table[0];
  int entries = table[1];
  const int32_t* keys = reinterpret_cast<const int32_t*>(&table[2]);
  const int32_t* targets = &keys[entries];
  LOG(INFO) <<  "Sparse switch table - ident:0x" << std::hex << ident
            << ", entries: " << std::dec << entries;
  for (int i = 0; i < entries; i++) {
    LOG(INFO) << "  Key[" << keys[i] << "] -> 0x" << std::hex << targets[i];
  }
}

void Mir2Lir::DumpPackedSwitchTable(const uint16_t* table) {
  /*
   * Packed switch data format:
   *  ushort ident = 0x0100   magic value
   *  ushort size       number of entries in the table
   *  int first_key       first (and lowest) switch case value
   *  int targets[size]     branch targets, relative to switch opcode
   *
   * Total size is (4+size*2) 16-bit code units.
   */
  uint16_t ident = table[0];
  const int32_t* targets = reinterpret_cast<const int32_t*>(&table[4]);
  int entries = table[1];
  int low_key = s4FromSwitchData(&table[2]);
  LOG(INFO) << "Packed switch table - ident:0x" << std::hex << ident
            << ", entries: " << std::dec << entries << ", low_key: " << low_key;
  for (int i = 0; i < entries; i++) {
    LOG(INFO) << "  Key[" << (i + low_key) << "] -> 0x" << std::hex
              << targets[i];
  }
}

/* Set up special LIR to mark a Dalvik byte-code instruction start for pretty printing */
void Mir2Lir::MarkBoundary(DexOffset offset, const char* inst_str) {
  UNUSED(offset);
  // NOTE: only used for debug listings.
  NewLIR1(kPseudoDalvikByteCodeBoundary, WrapPointer(ArenaStrdup(inst_str)));
}

// Convert relation of src1/src2 to src2/src1
ConditionCode Mir2Lir::FlipComparisonOrder(ConditionCode before) {
  ConditionCode res;
  switch (before) {
    case kCondEq: res = kCondEq; break;
    case kCondNe: res = kCondNe; break;
    case kCondLt: res = kCondGt; break;
    case kCondGt: res = kCondLt; break;
    case kCondLe: res = kCondGe; break;
    case kCondGe: res = kCondLe; break;
    default:
      LOG(FATAL) << "Unexpected ccode " << before;
      UNREACHABLE();
  }
  return res;
}

ConditionCode Mir2Lir::NegateComparison(ConditionCode before) {
  ConditionCode res;
  switch (before) {
    case kCondEq: res = kCondNe; break;
    case kCondNe: res = kCondEq; break;
    case kCondLt: res = kCondGe; break;
    case kCondGt: res = kCondLe; break;
    case kCondLe: res = kCondGt; break;
    case kCondGe: res = kCondLt; break;
    default:
      LOG(FATAL) << "Unexpected ccode " << before;
      UNREACHABLE();
  }
  return res;
}

// TODO: move to mir_to_lir.cc
Mir2Lir::Mir2Lir(CompilationUnit* cu, MIRGraph* mir_graph, ArenaAllocator* arena)
    : Backend(arena),
      literal_list_(nullptr),
      method_literal_list_(nullptr),
      class_literal_list_(nullptr),
      code_literal_list_(nullptr),
      first_fixup_(nullptr),
      cu_(cu),
      mir_graph_(mir_graph),
      switch_tables_(arena->Adapter(kArenaAllocSwitchTable)),
      fill_array_data_(arena->Adapter(kArenaAllocFillArrayData)),
      tempreg_info_(arena->Adapter()),
      reginfo_map_(arena->Adapter()),
      pointer_storage_(arena->Adapter()),
      data_offset_(0),
      total_size_(0),
      block_label_list_(nullptr),
      promotion_map_(nullptr),
      current_dalvik_offset_(0),
      estimated_native_code_size_(0),
      reg_pool_(nullptr),
      live_sreg_(0),
      core_vmap_table_(mir_graph->GetArena()->Adapter()),
      fp_vmap_table_(mir_graph->GetArena()->Adapter()),
      patches_(mir_graph->GetArena()->Adapter()),
      num_core_spills_(0),
      num_fp_spills_(0),
      frame_size_(0),
      core_spill_mask_(0),
      fp_spill_mask_(0),
      first_lir_insn_(nullptr),
      last_lir_insn_(nullptr),
      slow_paths_(arena->Adapter(kArenaAllocSlowPaths)),
      mem_ref_type_(ResourceMask::kHeapRef),
      mask_cache_(arena),
      in_to_reg_storage_mapping_(arena) {
  switch_tables_.reserve(4);
  fill_array_data_.reserve(4);
  tempreg_info_.reserve(20);
  reginfo_map_.reserve(RegStorage::kMaxRegs);
  pointer_storage_.reserve(128);
  slow_paths_.reserve(32);
  // Reserve pointer id 0 for nullptr.
  size_t null_idx = WrapPointer(nullptr);
  DCHECK_EQ(null_idx, 0U);
}

void Mir2Lir::Materialize() {
  cu_->NewTimingSplit("RegisterAllocation");
  CompilerInitializeRegAlloc();  // Needs to happen after SSA naming

  /* Allocate Registers using simple local allocation scheme */
  SimpleRegAlloc();

  /* First try the custom light codegen for special cases. */
  DCHECK(cu_->compiler_driver->GetMethodInlinerMap() != nullptr);
  bool special_worked = cu_->compiler_driver->GetMethodInlinerMap()->GetMethodInliner(cu_->dex_file)
      ->GenSpecial(this, cu_->method_idx);

  /* Take normal path for converting MIR to LIR only if the special codegen did not succeed. */
  if (special_worked == false) {
    MethodMIR2LIR();
  }

  /* Method is not empty */
  if (first_lir_insn_) {
    // mark the targets of switch statement case labels
    ProcessSwitchTables();

    /* Convert LIR into machine code. */
    AssembleLIR();

    if ((cu_->enable_debug & (1 << kDebugCodegenDump)) != 0) {
      CodegenDump();
    }
  }
}

CompiledMethod* Mir2Lir::GetCompiledMethod() {
  // Combine vmap tables - core regs, then fp regs - into vmap_table.
  Leb128EncodingVector vmap_encoder;
  if (frame_size_ > 0) {
    // Prefix the encoded data with its size.
    size_t size = core_vmap_table_.size() + 1 /* marker */ + fp_vmap_table_.size();
    vmap_encoder.Reserve(size + 1u);  // All values are likely to be one byte in ULEB128 (<128).
    vmap_encoder.PushBackUnsigned(size);
    // Core regs may have been inserted out of order - sort first.
    std::sort(core_vmap_table_.begin(), core_vmap_table_.end());
    for (size_t i = 0 ; i < core_vmap_table_.size(); ++i) {
      // Copy, stripping out the phys register sort key.
      vmap_encoder.PushBackUnsigned(
          ~(-1 << VREG_NUM_WIDTH) & (core_vmap_table_[i] + VmapTable::kEntryAdjustment));
    }
    // Push a marker to take place of lr.
    vmap_encoder.PushBackUnsigned(VmapTable::kAdjustedFpMarker);
    if (cu_->instruction_set == kThumb2) {
      // fp regs already sorted.
      for (uint32_t i = 0; i < fp_vmap_table_.size(); i++) {
        vmap_encoder.PushBackUnsigned(fp_vmap_table_[i] + VmapTable::kEntryAdjustment);
      }
    } else {
      // For other platforms regs may have been inserted out of order - sort first.
      std::sort(fp_vmap_table_.begin(), fp_vmap_table_.end());
      for (size_t i = 0 ; i < fp_vmap_table_.size(); ++i) {
        // Copy, stripping out the phys register sort key.
        vmap_encoder.PushBackUnsigned(
            ~(-1 << VREG_NUM_WIDTH) & (fp_vmap_table_[i] + VmapTable::kEntryAdjustment));
      }
    }
  } else {
    DCHECK_EQ(POPCOUNT(core_spill_mask_), 0);
    DCHECK_EQ(POPCOUNT(fp_spill_mask_), 0);
    DCHECK_EQ(core_vmap_table_.size(), 0u);
    DCHECK_EQ(fp_vmap_table_.size(), 0u);
    vmap_encoder.PushBackUnsigned(0u);  // Size is 0.
  }

  // Sort patches by literal offset for better deduplication.
  std::sort(patches_.begin(), patches_.end(), [](const LinkerPatch& lhs, const LinkerPatch& rhs) {
    return lhs.LiteralOffset() < rhs.LiteralOffset();
  });

  std::unique_ptr<std::vector<uint8_t>> cfi_info(ReturnFrameDescriptionEntry());
  ArrayRef<const uint8_t> cfi_ref;
  if (cfi_info.get() != nullptr) {
    cfi_ref = ArrayRef<const uint8_t>(*cfi_info);
  }
  return CompiledMethod::SwapAllocCompiledMethod(
      cu_->compiler_driver, cu_->instruction_set,
      ArrayRef<const uint8_t>(code_buffer_),
      frame_size_, core_spill_mask_, fp_spill_mask_,
      &src_mapping_table_,
      ArrayRef<const uint8_t>(encoded_mapping_table_),
      ArrayRef<const uint8_t>(vmap_encoder.GetData()),
      ArrayRef<const uint8_t>(native_gc_map_),
      cfi_ref,
      ArrayRef<LinkerPatch>(patches_));
}

size_t Mir2Lir::GetMaxPossibleCompilerTemps() const {
  // Chose a reasonably small value in order to contain stack growth.
  // Backends that are smarter about spill region can return larger values.
  const size_t max_compiler_temps = 10;
  return max_compiler_temps;
}

size_t Mir2Lir::GetNumBytesForCompilerTempSpillRegion() {
  // By default assume that the Mir2Lir will need one slot for each temporary.
  // If the backend can better determine temps that have non-overlapping ranges and
  // temps that do not need spilled, it can actually provide a small region.
  mir_graph_->CommitCompilerTemps();
  return mir_graph_->GetNumBytesForSpecialTemps() + mir_graph_->GetMaximumBytesForNonSpecialTemps();
}

int Mir2Lir::ComputeFrameSize() {
  /* Figure out the frame size */
  uint32_t size = num_core_spills_ * GetBytesPerGprSpillLocation(cu_->instruction_set)
                  + num_fp_spills_ * GetBytesPerFprSpillLocation(cu_->instruction_set)
                  + sizeof(uint32_t)  // Filler.
                  + mir_graph_->GetNumOfLocalCodeVRs()  * sizeof(uint32_t)
                  + mir_graph_->GetNumOfOutVRs() * sizeof(uint32_t)
                  + GetNumBytesForCompilerTempSpillRegion();
  /* Align and set */
  return RoundUp(size, kStackAlignment);
}

/*
 * Append an LIR instruction to the LIR list maintained by a compilation
 * unit
 */
void Mir2Lir::AppendLIR(LIR* lir) {
  if (first_lir_insn_ == nullptr) {
    DCHECK(last_lir_insn_ == nullptr);
    last_lir_insn_ = first_lir_insn_ = lir;
    lir->prev = lir->next = nullptr;
  } else {
    last_lir_insn_->next = lir;
    lir->prev = last_lir_insn_;
    lir->next = nullptr;
    last_lir_insn_ = lir;
  }
}

/*
 * Insert an LIR instruction before the current instruction, which cannot be the
 * first instruction.
 *
 * prev_lir <-> new_lir <-> current_lir
 */
void Mir2Lir::InsertLIRBefore(LIR* current_lir, LIR* new_lir) {
  DCHECK(current_lir->prev != nullptr);
  LIR *prev_lir = current_lir->prev;

  prev_lir->next = new_lir;
  new_lir->prev = prev_lir;
  new_lir->next = current_lir;
  current_lir->prev = new_lir;
}

/*
 * Insert an LIR instruction after the current instruction, which cannot be the
 * last instruction.
 *
 * current_lir -> new_lir -> old_next
 */
void Mir2Lir::InsertLIRAfter(LIR* current_lir, LIR* new_lir) {
  new_lir->prev = current_lir;
  new_lir->next = current_lir->next;
  current_lir->next = new_lir;
  new_lir->next->prev = new_lir;
}

bool Mir2Lir::PartiallyIntersects(RegLocation rl_src, RegLocation rl_dest) {
  DCHECK(rl_src.wide);
  DCHECK(rl_dest.wide);
  return (abs(mir_graph_->SRegToVReg(rl_src.s_reg_low) - mir_graph_->SRegToVReg(rl_dest.s_reg_low)) == 1);
}

bool Mir2Lir::Intersects(RegLocation rl_src, RegLocation rl_dest) {
  DCHECK(rl_src.wide);
  DCHECK(rl_dest.wide);
  return (abs(mir_graph_->SRegToVReg(rl_src.s_reg_low) - mir_graph_->SRegToVReg(rl_dest.s_reg_low)) <= 1);
}

LIR *Mir2Lir::OpCmpMemImmBranch(ConditionCode cond, RegStorage temp_reg, RegStorage base_reg,
                                int offset, int check_value, LIR* target, LIR** compare) {
  // Handle this for architectures that can't compare to memory.
  LIR* inst = Load32Disp(base_reg, offset, temp_reg);
  if (compare != nullptr) {
    *compare = inst;
  }
  LIR* branch = OpCmpImmBranch(cond, temp_reg, check_value, target);
  return branch;
}

void Mir2Lir::AddSlowPath(LIRSlowPath* slowpath) {
  slow_paths_.push_back(slowpath);
  ResetDefTracking();
}

void Mir2Lir::LoadCodeAddress(const MethodReference& target_method, InvokeType type,
                              SpecialTargetRegister symbolic_reg) {
  LIR* data_target = ScanLiteralPoolMethod(code_literal_list_, target_method);
  if (data_target == nullptr) {
    data_target = AddWordData(&code_literal_list_, target_method.dex_method_index);
    data_target->operands[1] = WrapPointer(const_cast<DexFile*>(target_method.dex_file));
    // NOTE: The invoke type doesn't contribute to the literal identity. In fact, we can have
    // the same method invoked with kVirtual, kSuper and kInterface but the class linker will
    // resolve these invokes to the same method, so we don't care which one we record here.
    data_target->operands[2] = type;
  }
  // Loads a code pointer. Code from oat file can be mapped anywhere.
  LIR* load_pc_rel = OpPcRelLoad(TargetPtrReg(symbolic_reg), data_target);
  AppendLIR(load_pc_rel);
  DCHECK_NE(cu_->instruction_set, kMips) << reinterpret_cast<void*>(data_target);
}

void Mir2Lir::LoadMethodAddress(const MethodReference& target_method, InvokeType type,
                                SpecialTargetRegister symbolic_reg) {
  LIR* data_target = ScanLiteralPoolMethod(method_literal_list_, target_method);
  if (data_target == nullptr) {
    data_target = AddWordData(&method_literal_list_, target_method.dex_method_index);
    data_target->operands[1] = WrapPointer(const_cast<DexFile*>(target_method.dex_file));
    // NOTE: The invoke type doesn't contribute to the literal identity. In fact, we can have
    // the same method invoked with kVirtual, kSuper and kInterface but the class linker will
    // resolve these invokes to the same method, so we don't care which one we record here.
    data_target->operands[2] = type;
  }
  // Loads an ArtMethod pointer, which is a reference as it lives in the heap.
  LIR* load_pc_rel = OpPcRelLoad(TargetReg(symbolic_reg, kRef), data_target);
  AppendLIR(load_pc_rel);
  DCHECK_NE(cu_->instruction_set, kMips) << reinterpret_cast<void*>(data_target);
}

void Mir2Lir::LoadClassType(const DexFile& dex_file, uint32_t type_idx,
                            SpecialTargetRegister symbolic_reg) {
  // Use the literal pool and a PC-relative load from a data word.
  LIR* data_target = ScanLiteralPoolClass(class_literal_list_, dex_file, type_idx);
  if (data_target == nullptr) {
    data_target = AddWordData(&class_literal_list_, type_idx);
    data_target->operands[1] = WrapPointer(const_cast<DexFile*>(&dex_file));
  }
  // Loads a Class pointer, which is a reference as it lives in the heap.
  LIR* load_pc_rel = OpPcRelLoad(TargetReg(symbolic_reg, kRef), data_target);
  AppendLIR(load_pc_rel);
}

std::vector<uint8_t>* Mir2Lir::ReturnFrameDescriptionEntry() {
  // Default case is to do nothing.
  return nullptr;
}

RegLocation Mir2Lir::NarrowRegLoc(RegLocation loc) {
  if (loc.location == kLocPhysReg) {
    DCHECK(!loc.reg.Is32Bit());
    if (loc.reg.IsPair()) {
      RegisterInfo* info_lo = GetRegInfo(loc.reg.GetLow());
      RegisterInfo* info_hi = GetRegInfo(loc.reg.GetHigh());
      info_lo->SetIsWide(false);
      info_hi->SetIsWide(false);
      loc.reg = info_lo->GetReg();
    } else {
      RegisterInfo* info = GetRegInfo(loc.reg);
      RegisterInfo* info_new = info->FindMatchingView(RegisterInfo::k32SoloStorageMask);
      DCHECK(info_new != nullptr);
      if (info->IsLive() && (info->SReg() == loc.s_reg_low)) {
        info->MarkDead();
        info_new->MarkLive(loc.s_reg_low);
      }
      loc.reg = info_new->GetReg();
    }
    DCHECK(loc.reg.Valid());
  }
  loc.wide = false;
  return loc;
}

void Mir2Lir::GenMachineSpecificExtendedMethodMIR(BasicBlock* bb, MIR* mir) {
  UNUSED(bb, mir);
  LOG(FATAL) << "Unknown MIR opcode not supported on this architecture";
  UNREACHABLE();
}

}  // namespace art