1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835
1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889
1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1940
1941
1942
1943
1944
1945
1946
1947
1948
1949
1950
1951
1952
1953
1954
1955
1956
1957
1958
1959
1960
1961
1962
1963
1964
1965
1966
1967
1968
1969
1970
1971
1972
1973
1974
1975
1976
1977
1978
1979
1980
1981
1982
1983
1984
1985
1986
1987
1988
1989
1990
1991
1992
1993
1994
1995
1996
1997
1998
1999
2000
2001
2002
2003
2004
2005
2006
2007
2008
2009
2010
2011
2012
2013
2014
2015
2016
2017
2018
2019
2020
2021
2022
2023
2024
2025
2026
2027
2028
2029
2030
2031
2032
2033
2034
2035
2036
2037
2038
2039
2040
2041
2042
2043
2044
2045
2046
2047
2048
2049
2050
2051
2052
2053
2054
2055
2056
2057
2058
2059
2060
2061
2062
2063
2064
2065
2066
2067
2068
2069
2070
2071
2072
2073
2074
2075
2076
2077
2078
2079
2080
2081
2082
2083
2084
2085
2086
2087
2088
2089
2090
2091
2092
2093
2094
2095
2096
2097
2098
2099
2100
2101
2102
2103
2104
2105
2106
2107
2108
2109
2110
2111
2112
2113
2114
2115
2116
2117
2118
2119
2120
2121
2122
2123
2124
2125
2126
2127
2128
2129
2130
2131
2132
2133
2134
2135
2136
2137
2138
2139
2140
2141
2142
2143
2144
2145
2146
2147
2148
2149
2150
2151
2152
2153
2154
2155
2156
2157
2158
2159
2160
2161
2162
2163
2164
2165
2166
2167
2168
2169
2170
2171
2172
2173
2174
2175
2176
2177
2178
2179
2180
2181
2182
2183
2184
2185
2186
2187
2188
2189
2190
2191
2192
2193
2194
2195
2196
2197
2198
2199
2200
2201
2202
2203
2204
2205
2206
2207
2208
2209
2210
2211
2212
2213
2214
2215
2216
2217
2218
2219
2220
2221
2222
2223
2224
2225
2226
2227
2228
2229
2230
2231
2232
2233
2234
2235
2236
2237
2238
2239
2240
2241
2242
2243
2244
2245
2246
2247
2248
2249
2250
2251
2252
2253
2254
2255
2256
2257
2258
2259
2260
2261
2262
2263
2264
2265
2266
2267
2268
2269
2270
2271
2272
2273
2274
2275
2276
2277
2278
2279
2280
2281
2282
2283
|
/*
* Copyright (C) 2012 The Android Open Source Project
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
#include "mir_to_lir-inl.h"
#include <functional>
#include "arch/arm/instruction_set_features_arm.h"
#include "base/bit_utils.h"
#include "base/macros.h"
#include "dex/compiler_ir.h"
#include "dex/mir_graph.h"
#include "dex/quick/arm/arm_lir.h"
#include "driver/compiler_driver.h"
#include "driver/compiler_options.h"
#include "entrypoints/quick/quick_entrypoints.h"
#include "mirror/array.h"
#include "mirror/object_array-inl.h"
#include "mirror/object-inl.h"
#include "mirror/object_reference.h"
#include "utils/dex_cache_arrays_layout-inl.h"
#include "verifier/method_verifier.h"
namespace art {
// Shortcuts to repeatedly used long types.
typedef mirror::ObjectArray<mirror::Object> ObjArray;
typedef mirror::ObjectArray<mirror::Class> ClassArray;
/*
* This source files contains "gen" codegen routines that should
* be applicable to most targets. Only mid-level support utilities
* and "op" calls may be used here.
*/
ALWAYS_INLINE static inline bool ForceSlowFieldPath(CompilationUnit* cu) {
return (cu->enable_debug & (1 << kDebugSlowFieldPath)) != 0;
}
ALWAYS_INLINE static inline bool ForceSlowStringPath(CompilationUnit* cu) {
return (cu->enable_debug & (1 << kDebugSlowStringPath)) != 0;
}
ALWAYS_INLINE static inline bool ForceSlowTypePath(CompilationUnit* cu) {
return (cu->enable_debug & (1 << kDebugSlowTypePath)) != 0;
}
void Mir2Lir::GenIfNullUseHelperImm(RegStorage r_result, QuickEntrypointEnum trampoline, int imm) {
class CallHelperImmMethodSlowPath : public LIRSlowPath {
public:
CallHelperImmMethodSlowPath(Mir2Lir* m2l, LIR* fromfast, LIR* cont,
QuickEntrypointEnum trampoline_in, int imm_in,
RegStorage r_result_in)
: LIRSlowPath(m2l, fromfast, cont), trampoline_(trampoline_in),
imm_(imm_in), r_result_(r_result_in) {
}
void Compile() {
GenerateTargetLabel();
m2l_->CallRuntimeHelperImm(trampoline_, imm_, true);
m2l_->OpRegCopy(r_result_, m2l_->TargetReg(kRet0, kRef));
m2l_->OpUnconditionalBranch(cont_);
}
private:
QuickEntrypointEnum trampoline_;
const int imm_;
const RegStorage r_result_;
};
LIR* branch = OpCmpImmBranch(kCondEq, r_result, 0, nullptr);
LIR* cont = NewLIR0(kPseudoTargetLabel);
AddSlowPath(new (arena_) CallHelperImmMethodSlowPath(this, branch, cont, trampoline, imm,
r_result));
}
RegStorage Mir2Lir::GenGetOtherTypeForSgetSput(const MirSFieldLoweringInfo& field_info,
int opt_flags) {
DCHECK_NE(field_info.StorageIndex(), DexFile::kDexNoIndex);
// May do runtime call so everything to home locations.
FlushAllRegs();
RegStorage r_base = TargetReg(kArg0, kRef);
LockTemp(r_base);
if (CanUseOpPcRelDexCacheArrayLoad()) {
uint32_t offset = dex_cache_arrays_layout_.TypeOffset(field_info.StorageIndex());
OpPcRelDexCacheArrayLoad(cu_->dex_file, offset, r_base, false);
} else {
// Using fixed register to sync with possible call to runtime support.
RegStorage r_method = LoadCurrMethodWithHint(r_base);
LoadRefDisp(r_method, ArtMethod::DexCacheResolvedTypesOffset().Int32Value(), r_base,
kNotVolatile);
int32_t offset_of_field = ObjArray::OffsetOfElement(field_info.StorageIndex()).Int32Value();
LoadRefDisp(r_base, offset_of_field, r_base, kNotVolatile);
}
// r_base now points at static storage (Class*) or null if the type is not yet resolved.
LIR* unresolved_branch = nullptr;
if (!field_info.IsClassInDexCache() && (opt_flags & MIR_CLASS_IS_IN_DEX_CACHE) == 0) {
// Check if r_base is null.
unresolved_branch = OpCmpImmBranch(kCondEq, r_base, 0, nullptr);
}
LIR* uninit_branch = nullptr;
if (!field_info.IsClassInitialized() && (opt_flags & MIR_CLASS_IS_INITIALIZED) == 0) {
// Check if r_base is not yet initialized class.
RegStorage r_tmp = TargetReg(kArg2, kNotWide);
LockTemp(r_tmp);
uninit_branch = OpCmpMemImmBranch(kCondLt, r_tmp, r_base,
mirror::Class::StatusOffset().Int32Value(),
mirror::Class::kStatusInitialized, nullptr, nullptr);
FreeTemp(r_tmp);
}
if (unresolved_branch != nullptr || uninit_branch != nullptr) {
//
// Slow path to ensure a class is initialized for sget/sput.
//
class StaticFieldSlowPath : public Mir2Lir::LIRSlowPath {
public:
// There are up to two branches to the static field slow path, the "unresolved" when the type
// entry in the dex cache is null, and the "uninit" when the class is not yet initialized.
// At least one will be non-null here, otherwise we wouldn't generate the slow path.
StaticFieldSlowPath(Mir2Lir* m2l, LIR* unresolved, LIR* uninit, LIR* cont, int storage_index,
RegStorage r_base_in)
: LIRSlowPath(m2l, unresolved != nullptr ? unresolved : uninit, cont),
second_branch_(unresolved != nullptr ? uninit : nullptr),
storage_index_(storage_index), r_base_(r_base_in) {
}
void Compile() {
LIR* target = GenerateTargetLabel();
if (second_branch_ != nullptr) {
second_branch_->target = target;
}
m2l_->CallRuntimeHelperImm(kQuickInitializeStaticStorage, storage_index_, true);
// Copy helper's result into r_base, a no-op on all but MIPS.
m2l_->OpRegCopy(r_base_, m2l_->TargetReg(kRet0, kRef));
m2l_->OpUnconditionalBranch(cont_);
}
private:
// Second branch to the slow path, or null if there's only one branch.
LIR* const second_branch_;
const int storage_index_;
const RegStorage r_base_;
};
// The slow path is invoked if the r_base is null or the class pointed
// to by it is not initialized.
LIR* cont = NewLIR0(kPseudoTargetLabel);
AddSlowPath(new (arena_) StaticFieldSlowPath(this, unresolved_branch, uninit_branch, cont,
field_info.StorageIndex(), r_base));
}
return r_base;
}
/*
* Generate a kPseudoBarrier marker to indicate the boundary of special
* blocks.
*/
void Mir2Lir::GenBarrier() {
LIR* barrier = NewLIR0(kPseudoBarrier);
/* Mark all resources as being clobbered */
DCHECK(!barrier->flags.use_def_invalid);
barrier->u.m.def_mask = &kEncodeAll;
}
void Mir2Lir::GenDivZeroException() {
LIR* branch = OpUnconditionalBranch(nullptr);
AddDivZeroCheckSlowPath(branch);
}
void Mir2Lir::GenDivZeroCheck(ConditionCode c_code) {
LIR* branch = OpCondBranch(c_code, nullptr);
AddDivZeroCheckSlowPath(branch);
}
void Mir2Lir::GenDivZeroCheck(RegStorage reg) {
LIR* branch = OpCmpImmBranch(kCondEq, reg, 0, nullptr);
AddDivZeroCheckSlowPath(branch);
}
void Mir2Lir::AddDivZeroCheckSlowPath(LIR* branch) {
class DivZeroCheckSlowPath : public Mir2Lir::LIRSlowPath {
public:
DivZeroCheckSlowPath(Mir2Lir* m2l, LIR* branch_in)
: LIRSlowPath(m2l, branch_in) {
}
void Compile() OVERRIDE {
m2l_->ResetRegPool();
m2l_->ResetDefTracking();
GenerateTargetLabel(kPseudoThrowTarget);
m2l_->CallRuntimeHelper(kQuickThrowDivZero, true);
}
};
AddSlowPath(new (arena_) DivZeroCheckSlowPath(this, branch));
}
void Mir2Lir::GenArrayBoundsCheck(RegStorage index, RegStorage length) {
class ArrayBoundsCheckSlowPath : public Mir2Lir::LIRSlowPath {
public:
ArrayBoundsCheckSlowPath(Mir2Lir* m2l, LIR* branch_in, RegStorage index_in,
RegStorage length_in)
: LIRSlowPath(m2l, branch_in),
index_(index_in), length_(length_in) {
}
void Compile() OVERRIDE {
m2l_->ResetRegPool();
m2l_->ResetDefTracking();
GenerateTargetLabel(kPseudoThrowTarget);
m2l_->CallRuntimeHelperRegReg(kQuickThrowArrayBounds, index_, length_, true);
}
private:
const RegStorage index_;
const RegStorage length_;
};
LIR* branch = OpCmpBranch(kCondUge, index, length, nullptr);
AddSlowPath(new (arena_) ArrayBoundsCheckSlowPath(this, branch, index, length));
}
void Mir2Lir::GenArrayBoundsCheck(int index, RegStorage length) {
class ArrayBoundsCheckSlowPath : public Mir2Lir::LIRSlowPath {
public:
ArrayBoundsCheckSlowPath(Mir2Lir* m2l, LIR* branch_in, int index_in, RegStorage length_in)
: LIRSlowPath(m2l, branch_in),
index_(index_in), length_(length_in) {
}
void Compile() OVERRIDE {
m2l_->ResetRegPool();
m2l_->ResetDefTracking();
GenerateTargetLabel(kPseudoThrowTarget);
RegStorage arg1_32 = m2l_->TargetReg(kArg1, kNotWide);
RegStorage arg0_32 = m2l_->TargetReg(kArg0, kNotWide);
m2l_->OpRegCopy(arg1_32, length_);
m2l_->LoadConstant(arg0_32, index_);
m2l_->CallRuntimeHelperRegReg(kQuickThrowArrayBounds, arg0_32, arg1_32, true);
}
private:
const int32_t index_;
const RegStorage length_;
};
LIR* branch = OpCmpImmBranch(kCondLs, length, index, nullptr);
AddSlowPath(new (arena_) ArrayBoundsCheckSlowPath(this, branch, index, length));
}
LIR* Mir2Lir::GenNullCheck(RegStorage reg) {
class NullCheckSlowPath : public Mir2Lir::LIRSlowPath {
public:
NullCheckSlowPath(Mir2Lir* m2l, LIR* branch)
: LIRSlowPath(m2l, branch) {
}
void Compile() OVERRIDE {
m2l_->ResetRegPool();
m2l_->ResetDefTracking();
GenerateTargetLabel(kPseudoThrowTarget);
m2l_->CallRuntimeHelper(kQuickThrowNullPointer, true);
}
};
LIR* branch = OpCmpImmBranch(kCondEq, reg, 0, nullptr);
AddSlowPath(new (arena_) NullCheckSlowPath(this, branch));
return branch;
}
/* Perform null-check on a register. */
LIR* Mir2Lir::GenNullCheck(RegStorage m_reg, int opt_flags) {
if (!cu_->compiler_driver->GetCompilerOptions().GetImplicitNullChecks()) {
return GenExplicitNullCheck(m_reg, opt_flags);
}
// If null check has not been eliminated, reset redundant store tracking.
if ((opt_flags & MIR_IGNORE_NULL_CHECK) == 0) {
ResetDefTracking();
}
return nullptr;
}
/* Perform an explicit null-check on a register. */
LIR* Mir2Lir::GenExplicitNullCheck(RegStorage m_reg, int opt_flags) {
if (!(cu_->disable_opt & (1 << kNullCheckElimination)) && (opt_flags & MIR_IGNORE_NULL_CHECK)) {
return nullptr;
}
return GenNullCheck(m_reg);
}
void Mir2Lir::MarkPossibleNullPointerException(int opt_flags) {
if (cu_->compiler_driver->GetCompilerOptions().GetImplicitNullChecks()) {
if (!(cu_->disable_opt & (1 << kNullCheckElimination)) && (opt_flags & MIR_IGNORE_NULL_CHECK)) {
return;
}
// Insert after last instruction.
MarkSafepointPC(last_lir_insn_);
}
}
void Mir2Lir::MarkPossibleNullPointerExceptionAfter(int opt_flags, LIR* after) {
if (cu_->compiler_driver->GetCompilerOptions().GetImplicitNullChecks()) {
if (!(cu_->disable_opt & (1 << kNullCheckElimination)) && (opt_flags & MIR_IGNORE_NULL_CHECK)) {
return;
}
MarkSafepointPCAfter(after);
}
}
void Mir2Lir::MarkPossibleStackOverflowException() {
if (cu_->compiler_driver->GetCompilerOptions().GetImplicitStackOverflowChecks()) {
MarkSafepointPC(last_lir_insn_);
}
}
void Mir2Lir::ForceImplicitNullCheck(RegStorage reg, int opt_flags) {
if (cu_->compiler_driver->GetCompilerOptions().GetImplicitNullChecks()) {
if (!(cu_->disable_opt & (1 << kNullCheckElimination)) && (opt_flags & MIR_IGNORE_NULL_CHECK)) {
return;
}
// Force an implicit null check by performing a memory operation (load) from the given
// register with offset 0. This will cause a signal if the register contains 0 (null).
RegStorage tmp = AllocTemp();
// TODO: for Mips, would be best to use rZERO as the bogus register target.
LIR* load = Load32Disp(reg, 0, tmp);
FreeTemp(tmp);
MarkSafepointPC(load);
}
}
void Mir2Lir::GenCompareAndBranch(Instruction::Code opcode, RegLocation rl_src1,
RegLocation rl_src2, LIR* taken) {
ConditionCode cond;
RegisterClass reg_class = (rl_src1.ref || rl_src2.ref) ? kRefReg : kCoreReg;
switch (opcode) {
case Instruction::IF_EQ:
cond = kCondEq;
break;
case Instruction::IF_NE:
cond = kCondNe;
break;
case Instruction::IF_LT:
cond = kCondLt;
break;
case Instruction::IF_GE:
cond = kCondGe;
break;
case Instruction::IF_GT:
cond = kCondGt;
break;
case Instruction::IF_LE:
cond = kCondLe;
break;
default:
cond = static_cast<ConditionCode>(0);
LOG(FATAL) << "Unexpected opcode " << opcode;
}
// Normalize such that if either operand is constant, src2 will be constant
if (rl_src1.is_const) {
RegLocation rl_temp = rl_src1;
rl_src1 = rl_src2;
rl_src2 = rl_temp;
cond = FlipComparisonOrder(cond);
}
rl_src1 = LoadValue(rl_src1, reg_class);
// Is this really an immediate comparison?
if (rl_src2.is_const) {
// If it's already live in a register or not easily materialized, just keep going
RegLocation rl_temp = UpdateLoc(rl_src2);
int32_t constant_value = mir_graph_->ConstantValue(rl_src2);
if ((rl_temp.location == kLocDalvikFrame) &&
InexpensiveConstantInt(constant_value, opcode)) {
// OK - convert this to a compare immediate and branch
OpCmpImmBranch(cond, rl_src1.reg, mir_graph_->ConstantValue(rl_src2), taken);
return;
}
// It's also commonly more efficient to have a test against zero with Eq/Ne. This is not worse
// for x86, and allows a cbz/cbnz for Arm and Mips. At the same time, it works around a register
// mismatch for 64b systems, where a reference is compared against null, as dex bytecode uses
// the 32b literal 0 for null.
if (constant_value == 0 && (cond == kCondEq || cond == kCondNe)) {
// Use the OpCmpImmBranch and ignore the value in the register.
OpCmpImmBranch(cond, rl_src1.reg, 0, taken);
return;
}
}
rl_src2 = LoadValue(rl_src2, reg_class);
OpCmpBranch(cond, rl_src1.reg, rl_src2.reg, taken);
}
void Mir2Lir::GenCompareZeroAndBranch(Instruction::Code opcode, RegLocation rl_src, LIR* taken) {
ConditionCode cond;
RegisterClass reg_class = rl_src.ref ? kRefReg : kCoreReg;
rl_src = LoadValue(rl_src, reg_class);
switch (opcode) {
case Instruction::IF_EQZ:
cond = kCondEq;
break;
case Instruction::IF_NEZ:
cond = kCondNe;
break;
case Instruction::IF_LTZ:
cond = kCondLt;
break;
case Instruction::IF_GEZ:
cond = kCondGe;
break;
case Instruction::IF_GTZ:
cond = kCondGt;
break;
case Instruction::IF_LEZ:
cond = kCondLe;
break;
default:
cond = static_cast<ConditionCode>(0);
LOG(FATAL) << "Unexpected opcode " << opcode;
}
OpCmpImmBranch(cond, rl_src.reg, 0, taken);
}
void Mir2Lir::GenIntToLong(RegLocation rl_dest, RegLocation rl_src) {
RegLocation rl_result = EvalLoc(rl_dest, kCoreReg, true);
if (rl_src.location == kLocPhysReg) {
OpRegCopy(rl_result.reg, rl_src.reg);
} else {
LoadValueDirect(rl_src, rl_result.reg.GetLow());
}
OpRegRegImm(kOpAsr, rl_result.reg.GetHigh(), rl_result.reg.GetLow(), 31);
StoreValueWide(rl_dest, rl_result);
}
void Mir2Lir::GenLongToInt(RegLocation rl_dest, RegLocation rl_src) {
rl_src = UpdateLocWide(rl_src);
rl_src = NarrowRegLoc(rl_src);
StoreValue(rl_dest, rl_src);
}
void Mir2Lir::GenIntNarrowing(Instruction::Code opcode, RegLocation rl_dest,
RegLocation rl_src) {
rl_src = LoadValue(rl_src, kCoreReg);
RegLocation rl_result = EvalLoc(rl_dest, kCoreReg, true);
OpKind op = kOpInvalid;
switch (opcode) {
case Instruction::INT_TO_BYTE:
op = kOp2Byte;
break;
case Instruction::INT_TO_SHORT:
op = kOp2Short;
break;
case Instruction::INT_TO_CHAR:
op = kOp2Char;
break;
default:
LOG(ERROR) << "Bad int conversion type";
}
OpRegReg(op, rl_result.reg, rl_src.reg);
StoreValue(rl_dest, rl_result);
}
/*
* Let helper function take care of everything. Will call
* Array::AllocFromCode(type_idx, method, count);
* Note: AllocFromCode will handle checks for errNegativeArraySize.
*/
void Mir2Lir::GenNewArray(uint32_t type_idx, RegLocation rl_dest,
RegLocation rl_src) {
FlushAllRegs(); /* Everything to home location */
const DexFile* dex_file = cu_->dex_file;
CompilerDriver* driver = cu_->compiler_driver;
if (cu_->compiler_driver->CanAccessTypeWithoutChecks(cu_->method_idx, *dex_file, type_idx)) {
bool is_type_initialized; // Ignored as an array does not have an initializer.
bool use_direct_type_ptr;
uintptr_t direct_type_ptr;
bool is_finalizable;
if (kEmbedClassInCode &&
driver->CanEmbedTypeInCode(*dex_file, type_idx, &is_type_initialized, &use_direct_type_ptr,
&direct_type_ptr, &is_finalizable)) {
// The fast path.
if (!use_direct_type_ptr) {
LoadClassType(*dex_file, type_idx, kArg0);
CallRuntimeHelperRegRegLocationMethod(kQuickAllocArrayResolved, TargetReg(kArg0, kNotWide),
rl_src, true);
} else {
// Use the direct pointer.
CallRuntimeHelperImmRegLocationMethod(kQuickAllocArrayResolved, direct_type_ptr, rl_src,
true);
}
} else {
// The slow path.
CallRuntimeHelperImmRegLocationMethod(kQuickAllocArray, type_idx, rl_src, true);
}
} else {
CallRuntimeHelperImmRegLocationMethod(kQuickAllocArrayWithAccessCheck, type_idx, rl_src, true);
}
StoreValue(rl_dest, GetReturn(kRefReg));
}
/*
* Similar to GenNewArray, but with post-allocation initialization.
* Verifier guarantees we're dealing with an array class. Current
* code throws runtime exception "bad Filled array req" for 'D' and 'J'.
* Current code also throws internal unimp if not 'L', '[' or 'I'.
*/
void Mir2Lir::GenFilledNewArray(CallInfo* info) {
size_t elems = info->num_arg_words;
int type_idx = info->index;
FlushAllRegs(); /* Everything to home location */
QuickEntrypointEnum target;
if (cu_->compiler_driver->CanAccessTypeWithoutChecks(cu_->method_idx, *cu_->dex_file,
type_idx)) {
target = kQuickCheckAndAllocArray;
} else {
target = kQuickCheckAndAllocArrayWithAccessCheck;
}
CallRuntimeHelperImmImmMethod(target, type_idx, elems, true);
FreeTemp(TargetReg(kArg2, kNotWide));
FreeTemp(TargetReg(kArg1, kNotWide));
/*
* NOTE: the implicit target for Instruction::FILLED_NEW_ARRAY is the
* return region. Because AllocFromCode placed the new array
* in kRet0, we'll just lock it into place. When debugger support is
* added, it may be necessary to additionally copy all return
* values to a home location in thread-local storage
*/
RegStorage ref_reg = TargetReg(kRet0, kRef);
LockTemp(ref_reg);
// TODO: use the correct component size, currently all supported types
// share array alignment with ints (see comment at head of function)
size_t component_size = sizeof(int32_t);
if (elems > 5) {
DCHECK(info->is_range); // Non-range insn can't encode more than 5 elems.
/*
* Bit of ugliness here. We're going generate a mem copy loop
* on the register range, but it is possible that some regs
* in the range have been promoted. This is unlikely, but
* before generating the copy, we'll just force a flush
* of any regs in the source range that have been promoted to
* home location.
*/
for (size_t i = 0; i < elems; i++) {
RegLocation loc = UpdateLoc(info->args[i]);
if (loc.location == kLocPhysReg) {
ScopedMemRefType mem_ref_type(this, ResourceMask::kDalvikReg);
if (loc.ref) {
StoreRefDisp(TargetPtrReg(kSp), SRegOffset(loc.s_reg_low), loc.reg, kNotVolatile);
} else {
Store32Disp(TargetPtrReg(kSp), SRegOffset(loc.s_reg_low), loc.reg);
}
}
}
/*
* TUNING note: generated code here could be much improved, but
* this is an uncommon operation and isn't especially performance
* critical.
*/
// This is addressing the stack, which may be out of the 4G area.
RegStorage r_src = AllocTempRef();
RegStorage r_dst = AllocTempRef();
RegStorage r_idx = AllocTempRef(); // Not really a reference, but match src/dst.
RegStorage r_val;
switch (cu_->instruction_set) {
case kThumb2:
case kArm64:
r_val = TargetReg(kLr, kNotWide);
break;
case kX86:
case kX86_64:
FreeTemp(ref_reg);
r_val = AllocTemp();
break;
case kMips:
case kMips64:
r_val = AllocTemp();
break;
default: LOG(FATAL) << "Unexpected instruction set: " << cu_->instruction_set;
}
// Set up source pointer
RegLocation rl_first = info->args[0];
OpRegRegImm(kOpAdd, r_src, TargetPtrReg(kSp), SRegOffset(rl_first.s_reg_low));
// Set up the target pointer
OpRegRegImm(kOpAdd, r_dst, ref_reg,
mirror::Array::DataOffset(component_size).Int32Value());
// Set up the loop counter (known to be > 0)
LoadConstant(r_idx, static_cast<int>(elems - 1));
// Generate the copy loop. Going backwards for convenience
LIR* loop_head_target = NewLIR0(kPseudoTargetLabel);
// Copy next element
{
ScopedMemRefType mem_ref_type(this, ResourceMask::kDalvikReg);
LoadBaseIndexed(r_src, r_idx, r_val, 2, k32);
// NOTE: No dalvik register annotation, local optimizations will be stopped
// by the loop boundaries.
}
StoreBaseIndexed(r_dst, r_idx, r_val, 2, k32);
FreeTemp(r_val);
OpDecAndBranch(kCondGe, r_idx, loop_head_target);
if (cu_->instruction_set == kX86 || cu_->instruction_set == kX86_64) {
// Restore the target pointer
OpRegRegImm(kOpAdd, ref_reg, r_dst,
-mirror::Array::DataOffset(component_size).Int32Value());
}
FreeTemp(r_idx);
FreeTemp(r_dst);
FreeTemp(r_src);
} else {
DCHECK_LE(elems, 5u); // Usually but not necessarily non-range.
// TUNING: interleave
for (size_t i = 0; i < elems; i++) {
RegLocation rl_arg;
if (info->args[i].ref) {
rl_arg = LoadValue(info->args[i], kRefReg);
StoreRefDisp(ref_reg,
mirror::Array::DataOffset(component_size).Int32Value() + i * 4, rl_arg.reg,
kNotVolatile);
} else {
rl_arg = LoadValue(info->args[i], kCoreReg);
Store32Disp(ref_reg,
mirror::Array::DataOffset(component_size).Int32Value() + i * 4, rl_arg.reg);
}
// If the LoadValue caused a temp to be allocated, free it
if (IsTemp(rl_arg.reg)) {
FreeTemp(rl_arg.reg);
}
}
}
if (elems != 0 && info->args[0].ref) {
// If there is at least one potentially non-null value, unconditionally mark the GC card.
for (size_t i = 0; i < elems; i++) {
if (!mir_graph_->IsConstantNullRef(info->args[i])) {
UnconditionallyMarkGCCard(ref_reg);
break;
}
}
}
if (info->result.location != kLocInvalid) {
StoreValue(info->result, GetReturn(kRefReg));
}
}
/*
* Array data table format:
* ushort ident = 0x0300 magic value
* ushort width width of each element in the table
* uint size number of elements in the table
* ubyte data[size*width] table of data values (may contain a single-byte
* padding at the end)
*
* Total size is 4+(width * size + 1)/2 16-bit code units.
*/
void Mir2Lir::GenFillArrayData(MIR* mir, DexOffset table_offset, RegLocation rl_src) {
if (kIsDebugBuild) {
const uint16_t* table = mir_graph_->GetTable(mir, table_offset);
const Instruction::ArrayDataPayload* payload =
reinterpret_cast<const Instruction::ArrayDataPayload*>(table);
CHECK_EQ(payload->ident, static_cast<uint16_t>(Instruction::kArrayDataSignature));
}
uint32_t table_offset_from_start = mir->offset + static_cast<int32_t>(table_offset);
CallRuntimeHelperImmRegLocation(kQuickHandleFillArrayData, table_offset_from_start, rl_src, true);
}
void Mir2Lir::GenSput(MIR* mir, RegLocation rl_src, OpSize size) {
const MirSFieldLoweringInfo& field_info = mir_graph_->GetSFieldLoweringInfo(mir);
DCHECK_EQ(SPutMemAccessType(mir->dalvikInsn.opcode), field_info.MemAccessType());
cu_->compiler_driver->ProcessedStaticField(field_info.FastPut(), field_info.IsReferrersClass());
if (!ForceSlowFieldPath(cu_) && field_info.FastPut()) {
DCHECK_GE(field_info.FieldOffset().Int32Value(), 0);
RegStorage r_base;
if (field_info.IsReferrersClass()) {
// Fast path, static storage base is this method's class
r_base = AllocTempRef();
RegStorage r_method = LoadCurrMethodWithHint(r_base);
LoadRefDisp(r_method, ArtMethod::DeclaringClassOffset().Int32Value(), r_base,
kNotVolatile);
} else {
// Medium path, static storage base in a different class which requires checks that the other
// class is initialized.
r_base = GenGetOtherTypeForSgetSput(field_info, mir->optimization_flags);
if (!field_info.IsClassInitialized() &&
(mir->optimization_flags & MIR_CLASS_IS_INITIALIZED) == 0) {
// Ensure load of status and store of value don't re-order.
// TODO: Presumably the actual value store is control-dependent on the status load,
// and will thus not be reordered in any case, since stores are never speculated.
// Does later code "know" that the class is now initialized? If so, we still
// need the barrier to guard later static loads.
GenMemBarrier(kLoadAny);
}
}
// rBase now holds static storage base
RegisterClass reg_class = RegClassForFieldLoadStore(size, field_info.IsVolatile());
if (IsWide(size)) {
rl_src = LoadValueWide(rl_src, reg_class);
} else {
rl_src = LoadValue(rl_src, reg_class);
}
if (IsRef(size)) {
StoreRefDisp(r_base, field_info.FieldOffset().Int32Value(), rl_src.reg,
field_info.IsVolatile() ? kVolatile : kNotVolatile);
} else {
StoreBaseDisp(r_base, field_info.FieldOffset().Int32Value(), rl_src.reg, size,
field_info.IsVolatile() ? kVolatile : kNotVolatile);
}
if (IsRef(size) && !mir_graph_->IsConstantNullRef(rl_src)) {
MarkGCCard(mir->optimization_flags, rl_src.reg, r_base);
}
FreeTemp(r_base);
} else {
FlushAllRegs(); // Everything to home locations
QuickEntrypointEnum target;
switch (size) {
case kReference:
target = kQuickSetObjStatic;
break;
case k64:
case kDouble:
target = kQuickSet64Static;
break;
case k32:
case kSingle:
target = kQuickSet32Static;
break;
case kSignedHalf:
case kUnsignedHalf:
target = kQuickSet16Static;
break;
case kSignedByte:
case kUnsignedByte:
target = kQuickSet8Static;
break;
case kWord: // Intentional fallthrough.
default:
LOG(FATAL) << "Can't determine entrypoint for: " << size;
target = kQuickSet32Static;
}
CallRuntimeHelperImmRegLocation(target, field_info.FieldIndex(), rl_src, true);
}
}
void Mir2Lir::GenSget(MIR* mir, RegLocation rl_dest, OpSize size, Primitive::Type type) {
const MirSFieldLoweringInfo& field_info = mir_graph_->GetSFieldLoweringInfo(mir);
DCHECK_EQ(SGetMemAccessType(mir->dalvikInsn.opcode), field_info.MemAccessType());
cu_->compiler_driver->ProcessedStaticField(field_info.FastGet(), field_info.IsReferrersClass());
if (!ForceSlowFieldPath(cu_) && field_info.FastGet()) {
DCHECK_GE(field_info.FieldOffset().Int32Value(), 0);
RegStorage r_base;
if (field_info.IsReferrersClass()) {
// Fast path, static storage base is this method's class
r_base = AllocTempRef();
RegStorage r_method = LoadCurrMethodWithHint(r_base);
LoadRefDisp(r_method, ArtMethod::DeclaringClassOffset().Int32Value(), r_base,
kNotVolatile);
} else {
// Medium path, static storage base in a different class which requires checks that the other
// class is initialized
r_base = GenGetOtherTypeForSgetSput(field_info, mir->optimization_flags);
if (!field_info.IsClassInitialized() &&
(mir->optimization_flags & MIR_CLASS_IS_INITIALIZED) == 0) {
// Ensure load of status and load of value don't re-order.
GenMemBarrier(kLoadAny);
}
}
// r_base now holds static storage base
RegisterClass reg_class = RegClassForFieldLoadStore(size, field_info.IsVolatile());
RegLocation rl_result = EvalLoc(rl_dest, reg_class, true);
int field_offset = field_info.FieldOffset().Int32Value();
if (IsRef(size)) {
// TODO: DCHECK?
LoadRefDisp(r_base, field_offset, rl_result.reg, field_info.IsVolatile() ? kVolatile :
kNotVolatile);
} else {
LoadBaseDisp(r_base, field_offset, rl_result.reg, size, field_info.IsVolatile() ?
kVolatile : kNotVolatile);
}
FreeTemp(r_base);
if (IsWide(size)) {
StoreValueWide(rl_dest, rl_result);
} else {
StoreValue(rl_dest, rl_result);
}
} else {
DCHECK(SizeMatchesTypeForEntrypoint(size, type));
FlushAllRegs(); // Everything to home locations
QuickEntrypointEnum target;
switch (type) {
case Primitive::kPrimNot:
target = kQuickGetObjStatic;
break;
case Primitive::kPrimLong:
case Primitive::kPrimDouble:
target = kQuickGet64Static;
break;
case Primitive::kPrimInt:
case Primitive::kPrimFloat:
target = kQuickGet32Static;
break;
case Primitive::kPrimShort:
target = kQuickGetShortStatic;
break;
case Primitive::kPrimChar:
target = kQuickGetCharStatic;
break;
case Primitive::kPrimByte:
target = kQuickGetByteStatic;
break;
case Primitive::kPrimBoolean:
target = kQuickGetBooleanStatic;
break;
case Primitive::kPrimVoid: // Intentional fallthrough.
default:
LOG(FATAL) << "Can't determine entrypoint for: " << type;
target = kQuickGet32Static;
}
CallRuntimeHelperImm(target, field_info.FieldIndex(), true);
// FIXME: pGetXXStatic always return an int or int64 regardless of rl_dest.fp.
if (IsWide(size)) {
RegLocation rl_result = GetReturnWide(kCoreReg);
StoreValueWide(rl_dest, rl_result);
} else {
RegLocation rl_result = GetReturn(rl_dest.ref ? kRefReg : kCoreReg);
StoreValue(rl_dest, rl_result);
}
}
}
// Generate code for all slow paths.
void Mir2Lir::HandleSlowPaths() {
// We should check slow_paths_.Size() every time, because a new slow path
// may be created during slowpath->Compile().
for (LIRSlowPath* slowpath : slow_paths_) {
slowpath->Compile();
}
slow_paths_.clear();
}
void Mir2Lir::GenIGet(MIR* mir, int opt_flags, OpSize size, Primitive::Type type,
RegLocation rl_dest, RegLocation rl_obj) {
const MirIFieldLoweringInfo& field_info = mir_graph_->GetIFieldLoweringInfo(mir);
if (kIsDebugBuild) {
auto mem_access_type = IsInstructionIGetQuickOrIPutQuick(mir->dalvikInsn.opcode) ?
IGetQuickOrIPutQuickMemAccessType(mir->dalvikInsn.opcode) :
IGetMemAccessType(mir->dalvikInsn.opcode);
DCHECK_EQ(mem_access_type, field_info.MemAccessType()) << mir->dalvikInsn.opcode;
}
cu_->compiler_driver->ProcessedInstanceField(field_info.FastGet());
if (!ForceSlowFieldPath(cu_) && field_info.FastGet()) {
RegisterClass reg_class = RegClassForFieldLoadStore(size, field_info.IsVolatile());
// A load of the class will lead to an iget with offset 0.
DCHECK_GE(field_info.FieldOffset().Int32Value(), 0);
rl_obj = LoadValue(rl_obj, kRefReg);
GenNullCheck(rl_obj.reg, opt_flags);
RegLocation rl_result = EvalLoc(rl_dest, reg_class, true);
int field_offset = field_info.FieldOffset().Int32Value();
LIR* load_lir;
if (IsRef(size)) {
load_lir = LoadRefDisp(rl_obj.reg, field_offset, rl_result.reg, field_info.IsVolatile() ?
kVolatile : kNotVolatile);
} else {
load_lir = LoadBaseDisp(rl_obj.reg, field_offset, rl_result.reg, size,
field_info.IsVolatile() ? kVolatile : kNotVolatile);
}
MarkPossibleNullPointerExceptionAfter(opt_flags, load_lir);
if (IsWide(size)) {
StoreValueWide(rl_dest, rl_result);
} else {
StoreValue(rl_dest, rl_result);
}
} else {
DCHECK(SizeMatchesTypeForEntrypoint(size, type));
QuickEntrypointEnum target;
switch (type) {
case Primitive::kPrimNot:
target = kQuickGetObjInstance;
break;
case Primitive::kPrimLong:
case Primitive::kPrimDouble:
target = kQuickGet64Instance;
break;
case Primitive::kPrimFloat:
case Primitive::kPrimInt:
target = kQuickGet32Instance;
break;
case Primitive::kPrimShort:
target = kQuickGetShortInstance;
break;
case Primitive::kPrimChar:
target = kQuickGetCharInstance;
break;
case Primitive::kPrimByte:
target = kQuickGetByteInstance;
break;
case Primitive::kPrimBoolean:
target = kQuickGetBooleanInstance;
break;
case Primitive::kPrimVoid: // Intentional fallthrough.
default:
LOG(FATAL) << "Can't determine entrypoint for: " << type;
target = kQuickGet32Instance;
}
// Second argument of pGetXXInstance is always a reference.
DCHECK_EQ(static_cast<unsigned int>(rl_obj.wide), 0U);
CallRuntimeHelperImmRegLocation(target, field_info.FieldIndex(), rl_obj, true);
// FIXME: pGetXXInstance always return an int or int64 regardless of rl_dest.fp.
if (IsWide(size)) {
RegLocation rl_result = GetReturnWide(kCoreReg);
StoreValueWide(rl_dest, rl_result);
} else {
RegLocation rl_result = GetReturn(rl_dest.ref ? kRefReg : kCoreReg);
StoreValue(rl_dest, rl_result);
}
}
}
void Mir2Lir::GenIPut(MIR* mir, int opt_flags, OpSize size,
RegLocation rl_src, RegLocation rl_obj) {
const MirIFieldLoweringInfo& field_info = mir_graph_->GetIFieldLoweringInfo(mir);
if (kIsDebugBuild) {
auto mem_access_type = IsInstructionIGetQuickOrIPutQuick(mir->dalvikInsn.opcode) ?
IGetQuickOrIPutQuickMemAccessType(mir->dalvikInsn.opcode) :
IPutMemAccessType(mir->dalvikInsn.opcode);
DCHECK_EQ(mem_access_type, field_info.MemAccessType());
}
cu_->compiler_driver->ProcessedInstanceField(field_info.FastPut());
if (!ForceSlowFieldPath(cu_) && field_info.FastPut()) {
RegisterClass reg_class = RegClassForFieldLoadStore(size, field_info.IsVolatile());
// Dex code never writes to the class field.
DCHECK_GE(static_cast<uint32_t>(field_info.FieldOffset().Int32Value()),
sizeof(mirror::HeapReference<mirror::Class>));
rl_obj = LoadValue(rl_obj, kRefReg);
if (IsWide(size)) {
rl_src = LoadValueWide(rl_src, reg_class);
} else {
rl_src = LoadValue(rl_src, reg_class);
}
GenNullCheck(rl_obj.reg, opt_flags);
int field_offset = field_info.FieldOffset().Int32Value();
LIR* null_ck_insn;
if (IsRef(size)) {
null_ck_insn = StoreRefDisp(rl_obj.reg, field_offset, rl_src.reg, field_info.IsVolatile() ?
kVolatile : kNotVolatile);
} else {
null_ck_insn = StoreBaseDisp(rl_obj.reg, field_offset, rl_src.reg, size,
field_info.IsVolatile() ? kVolatile : kNotVolatile);
}
MarkPossibleNullPointerExceptionAfter(opt_flags, null_ck_insn);
if (IsRef(size) && !mir_graph_->IsConstantNullRef(rl_src)) {
MarkGCCard(opt_flags, rl_src.reg, rl_obj.reg);
}
} else {
QuickEntrypointEnum target;
switch (size) {
case kReference:
target = kQuickSetObjInstance;
break;
case k64:
case kDouble:
target = kQuickSet64Instance;
break;
case k32:
case kSingle:
target = kQuickSet32Instance;
break;
case kSignedHalf:
case kUnsignedHalf:
target = kQuickSet16Instance;
break;
case kSignedByte:
case kUnsignedByte:
target = kQuickSet8Instance;
break;
case kWord: // Intentional fallthrough.
default:
LOG(FATAL) << "Can't determine entrypoint for: " << size;
target = kQuickSet32Instance;
}
CallRuntimeHelperImmRegLocationRegLocation(target, field_info.FieldIndex(), rl_obj, rl_src,
true);
}
}
void Mir2Lir::GenArrayObjPut(int opt_flags, RegLocation rl_array, RegLocation rl_index,
RegLocation rl_src) {
bool needs_range_check = !(opt_flags & MIR_IGNORE_RANGE_CHECK);
bool needs_null_check = !((cu_->disable_opt & (1 << kNullCheckElimination)) &&
(opt_flags & MIR_IGNORE_NULL_CHECK));
QuickEntrypointEnum target = needs_range_check
? (needs_null_check ? kQuickAputObjectWithNullAndBoundCheck
: kQuickAputObjectWithBoundCheck)
: kQuickAputObject;
CallRuntimeHelperRegLocationRegLocationRegLocation(target, rl_array, rl_index, rl_src, true);
}
void Mir2Lir::GenConstClass(uint32_t type_idx, RegLocation rl_dest) {
RegLocation rl_result;
if (!cu_->compiler_driver->CanAccessTypeWithoutChecks(cu_->method_idx,
*cu_->dex_file,
type_idx)) {
// Call out to helper which resolves type and verifies access.
// Resolved type returned in kRet0.
CallRuntimeHelperImm(kQuickInitializeTypeAndVerifyAccess, type_idx, true);
rl_result = GetReturn(kRefReg);
} else {
rl_result = EvalLoc(rl_dest, kRefReg, true);
// We don't need access checks, load type from dex cache
if (CanUseOpPcRelDexCacheArrayLoad()) {
size_t offset = dex_cache_arrays_layout_.TypeOffset(type_idx);
OpPcRelDexCacheArrayLoad(cu_->dex_file, offset, rl_result.reg, false);
} else {
int32_t dex_cache_offset =
ArtMethod::DexCacheResolvedTypesOffset().Int32Value();
RegStorage res_reg = AllocTempRef();
RegStorage r_method = LoadCurrMethodWithHint(res_reg);
LoadRefDisp(r_method, dex_cache_offset, res_reg, kNotVolatile);
int32_t offset_of_type = ClassArray::OffsetOfElement(type_idx).Int32Value();
LoadRefDisp(res_reg, offset_of_type, rl_result.reg, kNotVolatile);
FreeTemp(res_reg);
}
if (!cu_->compiler_driver->CanAssumeTypeIsPresentInDexCache(*cu_->dex_file,
type_idx) || ForceSlowTypePath(cu_)) {
// Slow path, at runtime test if type is null and if so initialize
FlushAllRegs();
GenIfNullUseHelperImm(rl_result.reg, kQuickInitializeType, type_idx);
}
}
StoreValue(rl_dest, rl_result);
}
void Mir2Lir::GenConstString(uint32_t string_idx, RegLocation rl_dest) {
/* NOTE: Most strings should be available at compile time */
int32_t offset_of_string = mirror::ObjectArray<mirror::String>::OffsetOfElement(string_idx).
Int32Value();
if (!cu_->compiler_driver->CanAssumeStringIsPresentInDexCache(
*cu_->dex_file, string_idx) || ForceSlowStringPath(cu_)) {
// slow path, resolve string if not in dex cache
FlushAllRegs();
LockCallTemps(); // Using explicit registers
// Might call out to helper, which will return resolved string in kRet0
RegStorage ret0 = TargetReg(kRet0, kRef);
if (CanUseOpPcRelDexCacheArrayLoad()) {
size_t offset = dex_cache_arrays_layout_.StringOffset(string_idx);
OpPcRelDexCacheArrayLoad(cu_->dex_file, offset, ret0, false);
} else {
// Method to declaring class.
RegStorage arg0 = TargetReg(kArg0, kRef);
RegStorage r_method = LoadCurrMethodWithHint(arg0);
LoadRefDisp(r_method, ArtMethod::DeclaringClassOffset().Int32Value(), arg0, kNotVolatile);
// Declaring class to dex cache strings.
LoadRefDisp(arg0, mirror::Class::DexCacheStringsOffset().Int32Value(), arg0, kNotVolatile);
LoadRefDisp(arg0, offset_of_string, ret0, kNotVolatile);
}
GenIfNullUseHelperImm(ret0, kQuickResolveString, string_idx);
GenBarrier();
StoreValue(rl_dest, GetReturn(kRefReg));
} else {
RegLocation rl_result = EvalLoc(rl_dest, kRefReg, true);
if (CanUseOpPcRelDexCacheArrayLoad()) {
size_t offset = dex_cache_arrays_layout_.StringOffset(string_idx);
OpPcRelDexCacheArrayLoad(cu_->dex_file, offset, rl_result.reg, false);
} else {
RegLocation rl_method = LoadCurrMethod();
RegStorage res_reg = AllocTempRef();
LoadRefDisp(rl_method.reg, ArtMethod::DeclaringClassOffset().Int32Value(), res_reg,
kNotVolatile);
LoadRefDisp(res_reg, mirror::Class::DexCacheStringsOffset().Int32Value(), res_reg,
kNotVolatile);
LoadRefDisp(res_reg, offset_of_string, rl_result.reg, kNotVolatile);
FreeTemp(res_reg);
}
StoreValue(rl_dest, rl_result);
}
}
/*
* Let helper function take care of everything. Will
* call Class::NewInstanceFromCode(type_idx, method);
*/
void Mir2Lir::GenNewInstance(uint32_t type_idx, RegLocation rl_dest) {
FlushAllRegs(); /* Everything to home location */
// alloc will always check for resolution, do we also need to verify
// access because the verifier was unable to?
const DexFile* dex_file = cu_->dex_file;
CompilerDriver* driver = cu_->compiler_driver;
if (driver->CanAccessInstantiableTypeWithoutChecks(cu_->method_idx, *dex_file, type_idx)) {
bool is_type_initialized;
bool use_direct_type_ptr;
uintptr_t direct_type_ptr;
bool is_finalizable;
if (kEmbedClassInCode &&
driver->CanEmbedTypeInCode(*dex_file, type_idx, &is_type_initialized, &use_direct_type_ptr,
&direct_type_ptr, &is_finalizable) &&
!is_finalizable) {
// The fast path.
if (!use_direct_type_ptr) {
LoadClassType(*dex_file, type_idx, kArg0);
if (!is_type_initialized) {
CallRuntimeHelperRegMethod(kQuickAllocObjectResolved, TargetReg(kArg0, kRef), true);
} else {
CallRuntimeHelperRegMethod(kQuickAllocObjectInitialized, TargetReg(kArg0, kRef), true);
}
} else {
// Use the direct pointer.
if (!is_type_initialized) {
CallRuntimeHelperImmMethod(kQuickAllocObjectResolved, direct_type_ptr, true);
} else {
CallRuntimeHelperImmMethod(kQuickAllocObjectInitialized, direct_type_ptr, true);
}
}
} else {
// The slow path.
CallRuntimeHelperImmMethod(kQuickAllocObject, type_idx, true);
}
} else {
CallRuntimeHelperImmMethod(kQuickAllocObjectWithAccessCheck, type_idx, true);
}
StoreValue(rl_dest, GetReturn(kRefReg));
}
void Mir2Lir::GenThrow(RegLocation rl_src) {
FlushAllRegs();
CallRuntimeHelperRegLocation(kQuickDeliverException, rl_src, true);
}
// For final classes there are no sub-classes to check and so we can answer the instance-of
// question with simple comparisons.
void Mir2Lir::GenInstanceofFinal(bool use_declaring_class, uint32_t type_idx, RegLocation rl_dest,
RegLocation rl_src) {
// X86 has its own implementation.
DCHECK(cu_->instruction_set != kX86 && cu_->instruction_set != kX86_64);
RegLocation object = LoadValue(rl_src, kRefReg);
RegLocation rl_result = EvalLoc(rl_dest, kCoreReg, true);
RegStorage result_reg = rl_result.reg;
if (IsSameReg(result_reg, object.reg)) {
result_reg = AllocTypedTemp(false, kCoreReg);
DCHECK(!IsSameReg(result_reg, object.reg));
}
LoadConstant(result_reg, 0); // assume false
LIR* null_branchover = OpCmpImmBranch(kCondEq, object.reg, 0, nullptr);
RegStorage check_class = AllocTypedTemp(false, kRefReg);
RegStorage object_class = AllocTypedTemp(false, kRefReg);
if (use_declaring_class) {
RegStorage r_method = LoadCurrMethodWithHint(check_class);
LoadRefDisp(r_method, ArtMethod::DeclaringClassOffset().Int32Value(), check_class,
kNotVolatile);
LoadRefDisp(object.reg, mirror::Object::ClassOffset().Int32Value(), object_class,
kNotVolatile);
} else if (CanUseOpPcRelDexCacheArrayLoad()) {
size_t offset = dex_cache_arrays_layout_.TypeOffset(type_idx);
OpPcRelDexCacheArrayLoad(cu_->dex_file, offset, check_class, false);
LoadRefDisp(object.reg, mirror::Object::ClassOffset().Int32Value(), object_class,
kNotVolatile);
} else {
RegStorage r_method = LoadCurrMethodWithHint(check_class);
LoadRefDisp(r_method, ArtMethod::DexCacheResolvedTypesOffset().Int32Value(),
check_class, kNotVolatile);
LoadRefDisp(object.reg, mirror::Object::ClassOffset().Int32Value(), object_class,
kNotVolatile);
int32_t offset_of_type = ClassArray::OffsetOfElement(type_idx).Int32Value();
LoadRefDisp(check_class, offset_of_type, check_class, kNotVolatile);
}
// FIXME: what should we be comparing here? compressed or decompressed references?
if (cu_->instruction_set == kThumb2) {
OpRegReg(kOpCmp, check_class, object_class); // Same?
LIR* it = OpIT(kCondEq, ""); // if-convert the test
LoadConstant(result_reg, 1); // .eq case - load true
OpEndIT(it);
} else {
GenSelectConst32(check_class, object_class, kCondEq, 1, 0, result_reg, kCoreReg);
}
LIR* target = NewLIR0(kPseudoTargetLabel);
null_branchover->target = target;
FreeTemp(object_class);
FreeTemp(check_class);
if (IsTemp(result_reg)) {
OpRegCopy(rl_result.reg, result_reg);
FreeTemp(result_reg);
}
StoreValue(rl_dest, rl_result);
}
void Mir2Lir::GenInstanceofCallingHelper(bool needs_access_check, bool type_known_final,
bool type_known_abstract, bool use_declaring_class,
bool can_assume_type_is_in_dex_cache,
uint32_t type_idx, RegLocation rl_dest,
RegLocation rl_src) {
FlushAllRegs();
// May generate a call - use explicit registers
LockCallTemps();
RegStorage class_reg = TargetReg(kArg2, kRef); // kArg2 will hold the Class*
RegStorage ref_reg = TargetReg(kArg0, kRef); // kArg0 will hold the ref.
RegStorage ret_reg = GetReturn(kRefReg).reg;
if (needs_access_check) {
// Check we have access to type_idx and if not throw IllegalAccessError,
// returns Class* in kArg0
CallRuntimeHelperImmMethod(kQuickInitializeTypeAndVerifyAccess, type_idx, true);
OpRegCopy(class_reg, ret_reg); // Align usage with fast path
LoadValueDirectFixed(rl_src, ref_reg); // kArg0 <= ref
} else if (use_declaring_class) {
RegStorage r_method = LoadCurrMethodWithHint(TargetReg(kArg1, kRef));
LoadValueDirectFixed(rl_src, ref_reg); // kArg0 <= ref
LoadRefDisp(r_method, ArtMethod::DeclaringClassOffset().Int32Value(),
class_reg, kNotVolatile);
} else {
if (can_assume_type_is_in_dex_cache) {
// Conditionally, as in the other case we will also load it.
LoadValueDirectFixed(rl_src, ref_reg); // kArg0 <= ref
}
if (CanUseOpPcRelDexCacheArrayLoad()) {
size_t offset = dex_cache_arrays_layout_.TypeOffset(type_idx);
OpPcRelDexCacheArrayLoad(cu_->dex_file, offset, class_reg, false);
} else {
RegStorage r_method = LoadCurrMethodWithHint(class_reg);
// Load dex cache entry into class_reg (kArg2)
LoadRefDisp(r_method, ArtMethod::DexCacheResolvedTypesOffset().Int32Value(),
class_reg, kNotVolatile);
int32_t offset_of_type = ClassArray::OffsetOfElement(type_idx).Int32Value();
LoadRefDisp(class_reg, offset_of_type, class_reg, kNotVolatile);
}
if (!can_assume_type_is_in_dex_cache) {
GenIfNullUseHelperImm(class_reg, kQuickInitializeType, type_idx);
// Should load value here.
LoadValueDirectFixed(rl_src, ref_reg); // kArg0 <= ref
}
}
/* kArg0 is ref, kArg2 is class. If ref==null, use directly as bool result */
RegLocation rl_result = GetReturn(kCoreReg);
if (!IsSameReg(rl_result.reg, ref_reg)) {
// On MIPS and x86_64 rArg0 != rl_result, place false in result if branch is taken.
LoadConstant(rl_result.reg, 0);
}
LIR* branch1 = OpCmpImmBranch(kCondEq, ref_reg, 0, nullptr);
/* load object->klass_ */
RegStorage ref_class_reg = TargetReg(kArg1, kRef); // kArg1 will hold the Class* of ref.
DCHECK_EQ(mirror::Object::ClassOffset().Int32Value(), 0);
LoadRefDisp(ref_reg, mirror::Object::ClassOffset().Int32Value(),
ref_class_reg, kNotVolatile);
/* kArg0 is ref, kArg1 is ref->klass_, kArg2 is class */
LIR* branchover = nullptr;
if (type_known_final) {
// rl_result == ref == class.
GenSelectConst32(ref_class_reg, class_reg, kCondEq, 1, 0, rl_result.reg,
kCoreReg);
} else {
if (cu_->instruction_set == kThumb2) {
RegStorage r_tgt = LoadHelper(kQuickInstanceofNonTrivial);
LIR* it = nullptr;
if (!type_known_abstract) {
/* Uses conditional nullification */
OpRegReg(kOpCmp, ref_class_reg, class_reg); // Same?
it = OpIT(kCondEq, "EE"); // if-convert the test
LoadConstant(rl_result.reg, 1); // .eq case - load true
}
OpRegCopy(ref_reg, class_reg); // .ne case - arg0 <= class
OpReg(kOpBlx, r_tgt); // .ne case: helper(class, ref->class)
if (it != nullptr) {
OpEndIT(it);
}
FreeTemp(r_tgt);
} else {
if (!type_known_abstract) {
/* Uses branchovers */
LoadConstant(rl_result.reg, 1); // assume true
branchover = OpCmpBranch(kCondEq, TargetReg(kArg1, kRef), TargetReg(kArg2, kRef), nullptr);
}
OpRegCopy(TargetReg(kArg0, kRef), class_reg); // .ne case - arg0 <= class
CallRuntimeHelper(kQuickInstanceofNonTrivial, false);
}
}
// TODO: only clobber when type isn't final?
ClobberCallerSave();
/* branch targets here */
LIR* target = NewLIR0(kPseudoTargetLabel);
StoreValue(rl_dest, rl_result);
branch1->target = target;
if (branchover != nullptr) {
branchover->target = target;
}
}
void Mir2Lir::GenInstanceof(uint32_t type_idx, RegLocation rl_dest, RegLocation rl_src) {
bool type_known_final, type_known_abstract, use_declaring_class;
bool needs_access_check = !cu_->compiler_driver->CanAccessTypeWithoutChecks(cu_->method_idx,
*cu_->dex_file,
type_idx,
&type_known_final,
&type_known_abstract,
&use_declaring_class);
bool can_assume_type_is_in_dex_cache = !needs_access_check &&
cu_->compiler_driver->CanAssumeTypeIsPresentInDexCache(*cu_->dex_file, type_idx);
if ((use_declaring_class || can_assume_type_is_in_dex_cache) && type_known_final) {
GenInstanceofFinal(use_declaring_class, type_idx, rl_dest, rl_src);
} else {
GenInstanceofCallingHelper(needs_access_check, type_known_final, type_known_abstract,
use_declaring_class, can_assume_type_is_in_dex_cache,
type_idx, rl_dest, rl_src);
}
}
void Mir2Lir::GenCheckCast(int opt_flags, uint32_t insn_idx, uint32_t type_idx,
RegLocation rl_src) {
if ((opt_flags & MIR_IGNORE_CHECK_CAST) != 0) {
// Compiler analysis proved that this check-cast would never cause an exception.
return;
}
bool type_known_final, type_known_abstract, use_declaring_class;
bool needs_access_check = !cu_->compiler_driver->CanAccessTypeWithoutChecks(cu_->method_idx,
*cu_->dex_file,
type_idx,
&type_known_final,
&type_known_abstract,
&use_declaring_class);
// Note: currently type_known_final is unused, as optimizing will only improve the performance
// of the exception throw path.
DexCompilationUnit* cu = mir_graph_->GetCurrentDexCompilationUnit();
if (!needs_access_check && cu_->compiler_driver->IsSafeCast(cu, insn_idx)) {
// Verifier type analysis proved this check cast would never cause an exception.
return;
}
FlushAllRegs();
// May generate a call - use explicit registers
LockCallTemps();
RegStorage class_reg = TargetReg(kArg2, kRef); // kArg2 will hold the Class*
if (needs_access_check) {
// Check we have access to type_idx and if not throw IllegalAccessError,
// returns Class* in kRet0
// InitializeTypeAndVerifyAccess(idx, method)
CallRuntimeHelperImmMethod(kQuickInitializeTypeAndVerifyAccess, type_idx, true);
OpRegCopy(class_reg, TargetReg(kRet0, kRef)); // Align usage with fast path
} else if (use_declaring_class) {
RegStorage method_reg = LoadCurrMethodWithHint(TargetReg(kArg1, kRef));
LoadRefDisp(method_reg, ArtMethod::DeclaringClassOffset().Int32Value(),
class_reg, kNotVolatile);
} else {
// Load dex cache entry into class_reg (kArg2)
if (CanUseOpPcRelDexCacheArrayLoad()) {
size_t offset = dex_cache_arrays_layout_.TypeOffset(type_idx);
OpPcRelDexCacheArrayLoad(cu_->dex_file, offset, class_reg, false);
} else {
RegStorage r_method = LoadCurrMethodWithHint(class_reg);
LoadRefDisp(r_method, ArtMethod::DexCacheResolvedTypesOffset().Int32Value(),
class_reg, kNotVolatile);
int32_t offset_of_type = ClassArray::OffsetOfElement(type_idx).Int32Value();
LoadRefDisp(class_reg, offset_of_type, class_reg, kNotVolatile);
}
if (!cu_->compiler_driver->CanAssumeTypeIsPresentInDexCache(*cu_->dex_file, type_idx)) {
// Need to test presence of type in dex cache at runtime
GenIfNullUseHelperImm(class_reg, kQuickInitializeType, type_idx);
}
}
// At this point, class_reg (kArg2) has class
LoadValueDirectFixed(rl_src, TargetReg(kArg0, kRef)); // kArg0 <= ref
// Slow path for the case where the classes are not equal. In this case we need
// to call a helper function to do the check.
class SlowPath : public LIRSlowPath {
public:
SlowPath(Mir2Lir* m2l, LIR* fromfast, LIR* cont, bool load)
: LIRSlowPath(m2l, fromfast, cont), load_(load) {
}
void Compile() {
GenerateTargetLabel();
if (load_) {
m2l_->LoadRefDisp(m2l_->TargetReg(kArg0, kRef), mirror::Object::ClassOffset().Int32Value(),
m2l_->TargetReg(kArg1, kRef), kNotVolatile);
}
m2l_->CallRuntimeHelperRegReg(kQuickCheckCast, m2l_->TargetReg(kArg2, kRef),
m2l_->TargetReg(kArg1, kRef), true);
m2l_->OpUnconditionalBranch(cont_);
}
private:
const bool load_;
};
if (type_known_abstract) {
// Easier case, run slow path if target is non-null (slow path will load from target)
LIR* branch = OpCmpImmBranch(kCondNe, TargetReg(kArg0, kRef), 0, nullptr);
LIR* cont = NewLIR0(kPseudoTargetLabel);
AddSlowPath(new (arena_) SlowPath(this, branch, cont, true));
} else {
// Harder, more common case. We need to generate a forward branch over the load
// if the target is null. If it's non-null we perform the load and branch to the
// slow path if the classes are not equal.
/* Null is OK - continue */
LIR* branch1 = OpCmpImmBranch(kCondEq, TargetReg(kArg0, kRef), 0, nullptr);
/* load object->klass_ */
DCHECK_EQ(mirror::Object::ClassOffset().Int32Value(), 0);
LoadRefDisp(TargetReg(kArg0, kRef), mirror::Object::ClassOffset().Int32Value(),
TargetReg(kArg1, kRef), kNotVolatile);
LIR* branch2 = OpCmpBranch(kCondNe, TargetReg(kArg1, kRef), class_reg, nullptr);
LIR* cont = NewLIR0(kPseudoTargetLabel);
// Add the slow path that will not perform load since this is already done.
AddSlowPath(new (arena_) SlowPath(this, branch2, cont, false));
// Set the null check to branch to the continuation.
branch1->target = cont;
}
}
void Mir2Lir::GenLong3Addr(OpKind first_op, OpKind second_op, RegLocation rl_dest,
RegLocation rl_src1, RegLocation rl_src2) {
RegLocation rl_result;
if (cu_->instruction_set == kThumb2) {
/*
* NOTE: This is the one place in the code in which we might have
* as many as six live temporary registers. There are 5 in the normal
* set for Arm. Until we have spill capabilities, temporarily add
* lr to the temp set. It is safe to do this locally, but note that
* lr is used explicitly elsewhere in the code generator and cannot
* normally be used as a general temp register.
*/
MarkTemp(TargetReg(kLr, kNotWide)); // Add lr to the temp pool
FreeTemp(TargetReg(kLr, kNotWide)); // and make it available
}
rl_src1 = LoadValueWide(rl_src1, kCoreReg);
rl_src2 = LoadValueWide(rl_src2, kCoreReg);
rl_result = EvalLoc(rl_dest, kCoreReg, true);
// The longs may overlap - use intermediate temp if so
if ((rl_result.reg.GetLowReg() == rl_src1.reg.GetHighReg()) || (rl_result.reg.GetLowReg() == rl_src2.reg.GetHighReg())) {
RegStorage t_reg = AllocTemp();
OpRegRegReg(first_op, t_reg, rl_src1.reg.GetLow(), rl_src2.reg.GetLow());
OpRegRegReg(second_op, rl_result.reg.GetHigh(), rl_src1.reg.GetHigh(), rl_src2.reg.GetHigh());
OpRegCopy(rl_result.reg.GetLow(), t_reg);
FreeTemp(t_reg);
} else {
OpRegRegReg(first_op, rl_result.reg.GetLow(), rl_src1.reg.GetLow(), rl_src2.reg.GetLow());
OpRegRegReg(second_op, rl_result.reg.GetHigh(), rl_src1.reg.GetHigh(), rl_src2.reg.GetHigh());
}
/*
* NOTE: If rl_dest refers to a frame variable in a large frame, the
* following StoreValueWide might need to allocate a temp register.
* To further work around the lack of a spill capability, explicitly
* free any temps from rl_src1 & rl_src2 that aren't still live in rl_result.
* Remove when spill is functional.
*/
FreeRegLocTemps(rl_result, rl_src1);
FreeRegLocTemps(rl_result, rl_src2);
StoreValueWide(rl_dest, rl_result);
if (cu_->instruction_set == kThumb2) {
Clobber(TargetReg(kLr, kNotWide));
UnmarkTemp(TargetReg(kLr, kNotWide)); // Remove lr from the temp pool
}
}
void Mir2Lir::GenShiftOpLong(Instruction::Code opcode, RegLocation rl_dest,
RegLocation rl_src1, RegLocation rl_shift) {
QuickEntrypointEnum target;
switch (opcode) {
case Instruction::SHL_LONG:
case Instruction::SHL_LONG_2ADDR:
target = kQuickShlLong;
break;
case Instruction::SHR_LONG:
case Instruction::SHR_LONG_2ADDR:
target = kQuickShrLong;
break;
case Instruction::USHR_LONG:
case Instruction::USHR_LONG_2ADDR:
target = kQuickUshrLong;
break;
default:
LOG(FATAL) << "Unexpected case";
target = kQuickShlLong;
}
FlushAllRegs(); /* Send everything to home location */
CallRuntimeHelperRegLocationRegLocation(target, rl_src1, rl_shift, false);
RegLocation rl_result = GetReturnWide(kCoreReg);
StoreValueWide(rl_dest, rl_result);
}
void Mir2Lir::GenArithOpInt(Instruction::Code opcode, RegLocation rl_dest,
RegLocation rl_src1, RegLocation rl_src2, int flags) {
DCHECK(cu_->instruction_set != kX86 && cu_->instruction_set != kX86_64);
OpKind op = kOpBkpt;
bool is_div_rem = false;
bool check_zero = false;
bool unary = false;
RegLocation rl_result;
bool shift_op = false;
switch (opcode) {
case Instruction::NEG_INT:
op = kOpNeg;
unary = true;
break;
case Instruction::NOT_INT:
op = kOpMvn;
unary = true;
break;
case Instruction::ADD_INT:
case Instruction::ADD_INT_2ADDR:
op = kOpAdd;
break;
case Instruction::SUB_INT:
case Instruction::SUB_INT_2ADDR:
op = kOpSub;
break;
case Instruction::MUL_INT:
case Instruction::MUL_INT_2ADDR:
op = kOpMul;
break;
case Instruction::DIV_INT:
case Instruction::DIV_INT_2ADDR:
check_zero = true;
op = kOpDiv;
is_div_rem = true;
break;
/* NOTE: returns in kArg1 */
case Instruction::REM_INT:
case Instruction::REM_INT_2ADDR:
check_zero = true;
op = kOpRem;
is_div_rem = true;
break;
case Instruction::AND_INT:
case Instruction::AND_INT_2ADDR:
op = kOpAnd;
break;
case Instruction::OR_INT:
case Instruction::OR_INT_2ADDR:
op = kOpOr;
break;
case Instruction::XOR_INT:
case Instruction::XOR_INT_2ADDR:
op = kOpXor;
break;
case Instruction::SHL_INT:
case Instruction::SHL_INT_2ADDR:
shift_op = true;
op = kOpLsl;
break;
case Instruction::SHR_INT:
case Instruction::SHR_INT_2ADDR:
shift_op = true;
op = kOpAsr;
break;
case Instruction::USHR_INT:
case Instruction::USHR_INT_2ADDR:
shift_op = true;
op = kOpLsr;
break;
default:
LOG(FATAL) << "Invalid word arith op: " << opcode;
}
if (!is_div_rem) {
if (unary) {
rl_src1 = LoadValue(rl_src1, kCoreReg);
rl_result = EvalLoc(rl_dest, kCoreReg, true);
OpRegReg(op, rl_result.reg, rl_src1.reg);
} else {
if ((shift_op) && (cu_->instruction_set != kArm64)) {
rl_src2 = LoadValue(rl_src2, kCoreReg);
RegStorage t_reg = AllocTemp();
OpRegRegImm(kOpAnd, t_reg, rl_src2.reg, 31);
rl_src1 = LoadValue(rl_src1, kCoreReg);
rl_result = EvalLoc(rl_dest, kCoreReg, true);
OpRegRegReg(op, rl_result.reg, rl_src1.reg, t_reg);
FreeTemp(t_reg);
} else {
rl_src1 = LoadValue(rl_src1, kCoreReg);
rl_src2 = LoadValue(rl_src2, kCoreReg);
rl_result = EvalLoc(rl_dest, kCoreReg, true);
OpRegRegReg(op, rl_result.reg, rl_src1.reg, rl_src2.reg);
}
}
StoreValue(rl_dest, rl_result);
} else {
bool done = false; // Set to true if we happen to find a way to use a real instruction.
if (cu_->instruction_set == kMips || cu_->instruction_set == kMips64 ||
cu_->instruction_set == kArm64) {
rl_src1 = LoadValue(rl_src1, kCoreReg);
rl_src2 = LoadValue(rl_src2, kCoreReg);
if (check_zero && (flags & MIR_IGNORE_DIV_ZERO_CHECK) == 0) {
GenDivZeroCheck(rl_src2.reg);
}
rl_result = GenDivRem(rl_dest, rl_src1.reg, rl_src2.reg, op == kOpDiv);
done = true;
} else if (cu_->instruction_set == kThumb2) {
if (cu_->compiler_driver->GetInstructionSetFeatures()->AsArmInstructionSetFeatures()->
HasDivideInstruction()) {
// Use ARM SDIV instruction for division. For remainder we also need to
// calculate using a MUL and subtract.
rl_src1 = LoadValue(rl_src1, kCoreReg);
rl_src2 = LoadValue(rl_src2, kCoreReg);
if (check_zero && (flags & MIR_IGNORE_DIV_ZERO_CHECK) == 0) {
GenDivZeroCheck(rl_src2.reg);
}
rl_result = GenDivRem(rl_dest, rl_src1.reg, rl_src2.reg, op == kOpDiv);
done = true;
}
}
// If we haven't already generated the code use the callout function.
if (!done) {
FlushAllRegs(); /* Send everything to home location */
LoadValueDirectFixed(rl_src2, TargetReg(kArg1, kNotWide));
RegStorage r_tgt = CallHelperSetup(kQuickIdivmod);
LoadValueDirectFixed(rl_src1, TargetReg(kArg0, kNotWide));
if (check_zero && (flags & MIR_IGNORE_DIV_ZERO_CHECK) == 0) {
GenDivZeroCheck(TargetReg(kArg1, kNotWide));
}
// NOTE: callout here is not a safepoint.
CallHelper(r_tgt, kQuickIdivmod, false /* not a safepoint */);
if (op == kOpDiv)
rl_result = GetReturn(kCoreReg);
else
rl_result = GetReturnAlt();
}
StoreValue(rl_dest, rl_result);
}
}
/*
* The following are the first-level codegen routines that analyze the format
* of each bytecode then either dispatch special purpose codegen routines
* or produce corresponding Thumb instructions directly.
*/
// Returns true if no more than two bits are set in 'x'.
static bool IsPopCountLE2(unsigned int x) {
x &= x - 1;
return (x & (x - 1)) == 0;
}
// Returns true if it added instructions to 'cu' to divide 'rl_src' by 'lit'
// and store the result in 'rl_dest'.
bool Mir2Lir::HandleEasyDivRem(Instruction::Code dalvik_opcode ATTRIBUTE_UNUSED, bool is_div,
RegLocation rl_src, RegLocation rl_dest, int lit) {
if ((lit < 2) || (!IsPowerOfTwo(lit))) {
return false;
}
int k = CTZ(lit);
if (k >= 30) {
// Avoid special cases.
return false;
}
rl_src = LoadValue(rl_src, kCoreReg);
RegLocation rl_result = EvalLoc(rl_dest, kCoreReg, true);
if (is_div) {
RegStorage t_reg = AllocTemp();
if (lit == 2) {
// Division by 2 is by far the most common division by constant.
OpRegRegImm(kOpLsr, t_reg, rl_src.reg, 32 - k);
OpRegRegReg(kOpAdd, t_reg, t_reg, rl_src.reg);
OpRegRegImm(kOpAsr, rl_result.reg, t_reg, k);
} else {
OpRegRegImm(kOpAsr, t_reg, rl_src.reg, 31);
OpRegRegImm(kOpLsr, t_reg, t_reg, 32 - k);
OpRegRegReg(kOpAdd, t_reg, t_reg, rl_src.reg);
OpRegRegImm(kOpAsr, rl_result.reg, t_reg, k);
}
} else {
RegStorage t_reg1 = AllocTemp();
RegStorage t_reg2 = AllocTemp();
if (lit == 2) {
OpRegRegImm(kOpLsr, t_reg1, rl_src.reg, 32 - k);
OpRegRegReg(kOpAdd, t_reg2, t_reg1, rl_src.reg);
OpRegRegImm(kOpAnd, t_reg2, t_reg2, lit -1);
OpRegRegReg(kOpSub, rl_result.reg, t_reg2, t_reg1);
} else {
OpRegRegImm(kOpAsr, t_reg1, rl_src.reg, 31);
OpRegRegImm(kOpLsr, t_reg1, t_reg1, 32 - k);
OpRegRegReg(kOpAdd, t_reg2, t_reg1, rl_src.reg);
OpRegRegImm(kOpAnd, t_reg2, t_reg2, lit - 1);
OpRegRegReg(kOpSub, rl_result.reg, t_reg2, t_reg1);
}
}
StoreValue(rl_dest, rl_result);
return true;
}
// Returns true if it added instructions to 'cu' to multiply 'rl_src' by 'lit'
// and store the result in 'rl_dest'.
bool Mir2Lir::HandleEasyMultiply(RegLocation rl_src, RegLocation rl_dest, int lit) {
if (lit < 0) {
return false;
}
if (lit == 0) {
RegLocation rl_result = EvalLoc(rl_dest, kCoreReg, true);
LoadConstant(rl_result.reg, 0);
StoreValue(rl_dest, rl_result);
return true;
}
if (lit == 1) {
rl_src = LoadValue(rl_src, kCoreReg);
RegLocation rl_result = EvalLoc(rl_dest, kCoreReg, true);
OpRegCopy(rl_result.reg, rl_src.reg);
StoreValue(rl_dest, rl_result);
return true;
}
// There is RegRegRegShift on Arm, so check for more special cases
if (cu_->instruction_set == kThumb2) {
return EasyMultiply(rl_src, rl_dest, lit);
}
// Can we simplify this multiplication?
bool power_of_two = false;
bool pop_count_le2 = false;
bool power_of_two_minus_one = false;
if (IsPowerOfTwo(lit)) {
power_of_two = true;
} else if (IsPopCountLE2(lit)) {
pop_count_le2 = true;
} else if (IsPowerOfTwo(lit + 1)) {
power_of_two_minus_one = true;
} else {
return false;
}
rl_src = LoadValue(rl_src, kCoreReg);
RegLocation rl_result = EvalLoc(rl_dest, kCoreReg, true);
if (power_of_two) {
// Shift.
OpRegRegImm(kOpLsl, rl_result.reg, rl_src.reg, CTZ(lit));
} else if (pop_count_le2) {
// Shift and add and shift.
int first_bit = CTZ(lit);
int second_bit = CTZ(lit ^ (1 << first_bit));
GenMultiplyByTwoBitMultiplier(rl_src, rl_result, lit, first_bit, second_bit);
} else {
// Reverse subtract: (src << (shift + 1)) - src.
DCHECK(power_of_two_minus_one);
// TUNING: rsb dst, src, src lsl#CTZ(lit + 1)
RegStorage t_reg = AllocTemp();
OpRegRegImm(kOpLsl, t_reg, rl_src.reg, CTZ(lit + 1));
OpRegRegReg(kOpSub, rl_result.reg, t_reg, rl_src.reg);
}
StoreValue(rl_dest, rl_result);
return true;
}
// Returns true if it generates instructions.
bool Mir2Lir::HandleEasyFloatingPointDiv(RegLocation rl_dest, RegLocation rl_src1,
RegLocation rl_src2) {
if (!rl_src2.is_const ||
((cu_->instruction_set != kThumb2) && (cu_->instruction_set != kArm64))) {
return false;
}
if (!rl_src2.wide) {
int32_t divisor = mir_graph_->ConstantValue(rl_src2);
if (CanDivideByReciprocalMultiplyFloat(divisor)) {
// Generate multiply by reciprocal instead of div.
float recip = 1.0f/bit_cast<float, int32_t>(divisor);
GenMultiplyByConstantFloat(rl_dest, rl_src1, bit_cast<int32_t, float>(recip));
return true;
}
} else {
int64_t divisor = mir_graph_->ConstantValueWide(rl_src2);
if (CanDivideByReciprocalMultiplyDouble(divisor)) {
// Generate multiply by reciprocal instead of div.
double recip = 1.0/bit_cast<double, int64_t>(divisor);
GenMultiplyByConstantDouble(rl_dest, rl_src1, bit_cast<int64_t, double>(recip));
return true;
}
}
return false;
}
void Mir2Lir::GenArithOpIntLit(Instruction::Code opcode, RegLocation rl_dest, RegLocation rl_src,
int lit) {
RegLocation rl_result;
OpKind op = static_cast<OpKind>(0); /* Make gcc happy */
int shift_op = false;
bool is_div = false;
switch (opcode) {
case Instruction::RSUB_INT_LIT8:
case Instruction::RSUB_INT: {
rl_src = LoadValue(rl_src, kCoreReg);
rl_result = EvalLoc(rl_dest, kCoreReg, true);
if (cu_->instruction_set == kThumb2) {
OpRegRegImm(kOpRsub, rl_result.reg, rl_src.reg, lit);
} else {
OpRegReg(kOpNeg, rl_result.reg, rl_src.reg);
OpRegImm(kOpAdd, rl_result.reg, lit);
}
StoreValue(rl_dest, rl_result);
return;
}
case Instruction::SUB_INT:
case Instruction::SUB_INT_2ADDR:
lit = -lit;
FALLTHROUGH_INTENDED;
case Instruction::ADD_INT:
case Instruction::ADD_INT_2ADDR:
case Instruction::ADD_INT_LIT8:
case Instruction::ADD_INT_LIT16:
op = kOpAdd;
break;
case Instruction::MUL_INT:
case Instruction::MUL_INT_2ADDR:
case Instruction::MUL_INT_LIT8:
case Instruction::MUL_INT_LIT16: {
if (HandleEasyMultiply(rl_src, rl_dest, lit)) {
return;
}
op = kOpMul;
break;
}
case Instruction::AND_INT:
case Instruction::AND_INT_2ADDR:
case Instruction::AND_INT_LIT8:
case Instruction::AND_INT_LIT16:
op = kOpAnd;
break;
case Instruction::OR_INT:
case Instruction::OR_INT_2ADDR:
case Instruction::OR_INT_LIT8:
case Instruction::OR_INT_LIT16:
op = kOpOr;
break;
case Instruction::XOR_INT:
case Instruction::XOR_INT_2ADDR:
case Instruction::XOR_INT_LIT8:
case Instruction::XOR_INT_LIT16:
op = kOpXor;
break;
case Instruction::SHL_INT_LIT8:
case Instruction::SHL_INT:
case Instruction::SHL_INT_2ADDR:
lit &= 31;
shift_op = true;
op = kOpLsl;
break;
case Instruction::SHR_INT_LIT8:
case Instruction::SHR_INT:
case Instruction::SHR_INT_2ADDR:
lit &= 31;
shift_op = true;
op = kOpAsr;
break;
case Instruction::USHR_INT_LIT8:
case Instruction::USHR_INT:
case Instruction::USHR_INT_2ADDR:
lit &= 31;
shift_op = true;
op = kOpLsr;
break;
case Instruction::DIV_INT:
case Instruction::DIV_INT_2ADDR:
case Instruction::DIV_INT_LIT8:
case Instruction::DIV_INT_LIT16:
case Instruction::REM_INT:
case Instruction::REM_INT_2ADDR:
case Instruction::REM_INT_LIT8:
case Instruction::REM_INT_LIT16: {
if (lit == 0) {
GenDivZeroException();
return;
}
if ((opcode == Instruction::DIV_INT) ||
(opcode == Instruction::DIV_INT_2ADDR) ||
(opcode == Instruction::DIV_INT_LIT8) ||
(opcode == Instruction::DIV_INT_LIT16)) {
is_div = true;
} else {
is_div = false;
}
if (HandleEasyDivRem(opcode, is_div, rl_src, rl_dest, lit)) {
return;
}
bool done = false;
if (cu_->instruction_set == kMips || cu_->instruction_set == kMips64 ||
cu_->instruction_set == kArm64) {
rl_src = LoadValue(rl_src, kCoreReg);
rl_result = GenDivRemLit(rl_dest, rl_src.reg, lit, is_div);
done = true;
} else if (cu_->instruction_set == kX86 || cu_->instruction_set == kX86_64) {
rl_result = GenDivRemLit(rl_dest, rl_src, lit, is_div);
done = true;
} else if (cu_->instruction_set == kThumb2) {
if (cu_->compiler_driver->GetInstructionSetFeatures()->AsArmInstructionSetFeatures()->
HasDivideInstruction()) {
// Use ARM SDIV instruction for division. For remainder we also need to
// calculate using a MUL and subtract.
rl_src = LoadValue(rl_src, kCoreReg);
rl_result = GenDivRemLit(rl_dest, rl_src.reg, lit, is_div);
done = true;
}
}
if (!done) {
FlushAllRegs(); /* Everything to home location. */
LoadValueDirectFixed(rl_src, TargetReg(kArg0, kNotWide));
Clobber(TargetReg(kArg0, kNotWide));
CallRuntimeHelperRegImm(kQuickIdivmod, TargetReg(kArg0, kNotWide), lit, false);
if (is_div)
rl_result = GetReturn(kCoreReg);
else
rl_result = GetReturnAlt();
}
StoreValue(rl_dest, rl_result);
return;
}
default:
LOG(FATAL) << "Unexpected opcode " << opcode;
}
rl_src = LoadValue(rl_src, kCoreReg);
rl_result = EvalLoc(rl_dest, kCoreReg, true);
// Avoid shifts by literal 0 - no support in Thumb. Change to copy.
if (shift_op && (lit == 0)) {
OpRegCopy(rl_result.reg, rl_src.reg);
} else {
OpRegRegImm(op, rl_result.reg, rl_src.reg, lit);
}
StoreValue(rl_dest, rl_result);
}
void Mir2Lir::GenArithOpLong(Instruction::Code opcode, RegLocation rl_dest,
RegLocation rl_src1, RegLocation rl_src2, int flags) {
RegLocation rl_result;
OpKind first_op = kOpBkpt;
OpKind second_op = kOpBkpt;
bool call_out = false;
bool check_zero = false;
int ret_reg = TargetReg(kRet0, kNotWide).GetReg();
QuickEntrypointEnum target;
switch (opcode) {
case Instruction::NOT_LONG:
rl_src2 = LoadValueWide(rl_src2, kCoreReg);
rl_result = EvalLoc(rl_dest, kCoreReg, true);
// Check for destructive overlap
if (rl_result.reg.GetLowReg() == rl_src2.reg.GetHighReg()) {
RegStorage t_reg = AllocTemp();
OpRegCopy(t_reg, rl_src2.reg.GetHigh());
OpRegReg(kOpMvn, rl_result.reg.GetLow(), rl_src2.reg.GetLow());
OpRegReg(kOpMvn, rl_result.reg.GetHigh(), t_reg);
FreeTemp(t_reg);
} else {
OpRegReg(kOpMvn, rl_result.reg.GetLow(), rl_src2.reg.GetLow());
OpRegReg(kOpMvn, rl_result.reg.GetHigh(), rl_src2.reg.GetHigh());
}
StoreValueWide(rl_dest, rl_result);
return;
case Instruction::ADD_LONG:
case Instruction::ADD_LONG_2ADDR:
first_op = kOpAdd;
second_op = kOpAdc;
break;
case Instruction::SUB_LONG:
case Instruction::SUB_LONG_2ADDR:
first_op = kOpSub;
second_op = kOpSbc;
break;
case Instruction::MUL_LONG:
case Instruction::MUL_LONG_2ADDR:
call_out = true;
ret_reg = TargetReg(kRet0, kNotWide).GetReg();
target = kQuickLmul;
break;
case Instruction::DIV_LONG:
case Instruction::DIV_LONG_2ADDR:
call_out = true;
check_zero = true;
ret_reg = TargetReg(kRet0, kNotWide).GetReg();
target = kQuickLdiv;
break;
case Instruction::REM_LONG:
case Instruction::REM_LONG_2ADDR:
call_out = true;
check_zero = true;
target = kQuickLmod;
/* NOTE - for Arm, result is in kArg2/kArg3 instead of kRet0/kRet1 */
ret_reg = (cu_->instruction_set == kThumb2) ? TargetReg(kArg2, kNotWide).GetReg() :
TargetReg(kRet0, kNotWide).GetReg();
break;
case Instruction::AND_LONG_2ADDR:
case Instruction::AND_LONG:
first_op = kOpAnd;
second_op = kOpAnd;
break;
case Instruction::OR_LONG:
case Instruction::OR_LONG_2ADDR:
first_op = kOpOr;
second_op = kOpOr;
break;
case Instruction::XOR_LONG:
case Instruction::XOR_LONG_2ADDR:
first_op = kOpXor;
second_op = kOpXor;
break;
default:
LOG(FATAL) << "Invalid long arith op";
}
if (!call_out) {
GenLong3Addr(first_op, second_op, rl_dest, rl_src1, rl_src2);
} else {
FlushAllRegs(); /* Send everything to home location */
if (check_zero) {
RegStorage r_tmp1 = TargetReg(kArg0, kWide);
RegStorage r_tmp2 = TargetReg(kArg2, kWide);
LoadValueDirectWideFixed(rl_src2, r_tmp2);
RegStorage r_tgt = CallHelperSetup(target);
if ((flags & MIR_IGNORE_DIV_ZERO_CHECK) == 0) {
GenDivZeroCheckWide(r_tmp2);
}
LoadValueDirectWideFixed(rl_src1, r_tmp1);
// NOTE: callout here is not a safepoint
CallHelper(r_tgt, target, false /* not safepoint */);
} else {
CallRuntimeHelperRegLocationRegLocation(target, rl_src1, rl_src2, false);
}
// Adjust return regs in to handle case of rem returning kArg2/kArg3
if (ret_reg == TargetReg(kRet0, kNotWide).GetReg())
rl_result = GetReturnWide(kCoreReg);
else
rl_result = GetReturnWideAlt();
StoreValueWide(rl_dest, rl_result);
}
}
void Mir2Lir::GenConst(RegLocation rl_dest, int value) {
RegLocation rl_result = EvalLoc(rl_dest, kAnyReg, true);
LoadConstantNoClobber(rl_result.reg, value);
StoreValue(rl_dest, rl_result);
}
void Mir2Lir::GenConversionCall(QuickEntrypointEnum trampoline, RegLocation rl_dest,
RegLocation rl_src, RegisterClass return_reg_class) {
/*
* Don't optimize the register usage since it calls out to support
* functions
*/
FlushAllRegs(); /* Send everything to home location */
CallRuntimeHelperRegLocation(trampoline, rl_src, false);
if (rl_dest.wide) {
RegLocation rl_result = GetReturnWide(return_reg_class);
StoreValueWide(rl_dest, rl_result);
} else {
RegLocation rl_result = GetReturn(return_reg_class);
StoreValue(rl_dest, rl_result);
}
}
class Mir2Lir::SuspendCheckSlowPath : public Mir2Lir::LIRSlowPath {
public:
SuspendCheckSlowPath(Mir2Lir* m2l, LIR* branch, LIR* cont)
: LIRSlowPath(m2l, branch, cont) {
}
void Compile() OVERRIDE {
m2l_->ResetRegPool();
m2l_->ResetDefTracking();
GenerateTargetLabel(kPseudoSuspendTarget);
m2l_->CallRuntimeHelper(kQuickTestSuspend, true);
if (cont_ != nullptr) {
m2l_->OpUnconditionalBranch(cont_);
}
}
};
/* Check if we need to check for pending suspend request */
void Mir2Lir::GenSuspendTest(int opt_flags) {
if (NO_SUSPEND || (opt_flags & MIR_IGNORE_SUSPEND_CHECK) != 0) {
return;
}
if (!cu_->compiler_driver->GetCompilerOptions().GetImplicitSuspendChecks()) {
FlushAllRegs();
LIR* branch = OpTestSuspend(nullptr);
LIR* cont = NewLIR0(kPseudoTargetLabel);
AddSlowPath(new (arena_) SuspendCheckSlowPath(this, branch, cont));
} else {
FlushAllRegs(); // TODO: needed?
LIR* inst = CheckSuspendUsingLoad();
MarkSafepointPC(inst);
}
}
/* Check if we need to check for pending suspend request */
void Mir2Lir::GenSuspendTestAndBranch(int opt_flags, LIR* target) {
if (NO_SUSPEND || (opt_flags & MIR_IGNORE_SUSPEND_CHECK) != 0) {
OpUnconditionalBranch(target);
return;
}
if (!cu_->compiler_driver->GetCompilerOptions().GetImplicitSuspendChecks()) {
OpTestSuspend(target);
FlushAllRegs();
LIR* branch = OpUnconditionalBranch(nullptr);
AddSlowPath(new (arena_) SuspendCheckSlowPath(this, branch, target));
} else {
// For the implicit suspend check, just perform the trigger
// load and branch to the target.
FlushAllRegs();
LIR* inst = CheckSuspendUsingLoad();
MarkSafepointPC(inst);
OpUnconditionalBranch(target);
}
}
/* Call out to helper assembly routine that will null check obj and then lock it. */
void Mir2Lir::GenMonitorEnter(int opt_flags, RegLocation rl_src) {
UNUSED(opt_flags); // TODO: avoid null check with specialized non-null helper.
FlushAllRegs();
CallRuntimeHelperRegLocation(kQuickLockObject, rl_src, true);
}
/* Call out to helper assembly routine that will null check obj and then unlock it. */
void Mir2Lir::GenMonitorExit(int opt_flags, RegLocation rl_src) {
UNUSED(opt_flags); // TODO: avoid null check with specialized non-null helper.
FlushAllRegs();
CallRuntimeHelperRegLocation(kQuickUnlockObject, rl_src, true);
}
/* Generic code for generating a wide constant into a VR. */
void Mir2Lir::GenConstWide(RegLocation rl_dest, int64_t value) {
RegLocation rl_result = EvalLoc(rl_dest, kAnyReg, true);
LoadConstantWide(rl_result.reg, value);
StoreValueWide(rl_dest, rl_result);
}
void Mir2Lir::GenSmallPackedSwitch(MIR* mir, DexOffset table_offset, RegLocation rl_src) {
BasicBlock* bb = mir_graph_->GetBasicBlock(mir->bb);
DCHECK(bb != nullptr);
ArenaVector<SuccessorBlockInfo*>::const_iterator succ_bb_iter = bb->successor_blocks.cbegin();
const uint16_t* table = mir_graph_->GetTable(mir, table_offset);
const uint16_t entries = table[1];
// Chained cmp-and-branch.
const int32_t* as_int32 = reinterpret_cast<const int32_t*>(&table[2]);
int32_t starting_key = as_int32[0];
rl_src = LoadValue(rl_src, kCoreReg);
int i = 0;
for (; i < entries; ++i, ++succ_bb_iter) {
if (!InexpensiveConstantInt(starting_key + i, Instruction::Code::IF_EQ)) {
// Switch to using a temp and add.
break;
}
SuccessorBlockInfo* successor_block_info = *succ_bb_iter;
DCHECK(successor_block_info != nullptr);
int case_block_id = successor_block_info->block;
DCHECK_EQ(starting_key + i, successor_block_info->key);
OpCmpImmBranch(kCondEq, rl_src.reg, starting_key + i, &block_label_list_[case_block_id]);
}
if (i < entries) {
// The rest do not seem to be inexpensive. Try to allocate a temp and use add.
RegStorage key_temp = AllocTypedTemp(false, kCoreReg, false);
if (key_temp.Valid()) {
LoadConstantNoClobber(key_temp, starting_key + i);
for (; i < entries - 1; ++i, ++succ_bb_iter) {
SuccessorBlockInfo* successor_block_info = *succ_bb_iter;
DCHECK(successor_block_info != nullptr);
int case_block_id = successor_block_info->block;
DCHECK_EQ(starting_key + i, successor_block_info->key);
OpCmpBranch(kCondEq, rl_src.reg, key_temp, &block_label_list_[case_block_id]);
OpRegImm(kOpAdd, key_temp, 1); // Increment key.
}
SuccessorBlockInfo* successor_block_info = *succ_bb_iter;
DCHECK(successor_block_info != nullptr);
int case_block_id = successor_block_info->block;
DCHECK_EQ(starting_key + i, successor_block_info->key);
OpCmpBranch(kCondEq, rl_src.reg, key_temp, &block_label_list_[case_block_id]);
} else {
// No free temp, just finish the old loop.
for (; i < entries; ++i, ++succ_bb_iter) {
SuccessorBlockInfo* successor_block_info = *succ_bb_iter;
DCHECK(successor_block_info != nullptr);
int case_block_id = successor_block_info->block;
DCHECK_EQ(starting_key + i, successor_block_info->key);
OpCmpImmBranch(kCondEq, rl_src.reg, starting_key + i, &block_label_list_[case_block_id]);
}
}
}
}
void Mir2Lir::GenPackedSwitch(MIR* mir, DexOffset table_offset, RegLocation rl_src) {
const uint16_t* table = mir_graph_->GetTable(mir, table_offset);
if (cu_->verbose) {
DumpPackedSwitchTable(table);
}
const uint16_t entries = table[1];
if (entries <= kSmallSwitchThreshold) {
GenSmallPackedSwitch(mir, table_offset, rl_src);
} else {
// Use the backend-specific implementation.
GenLargePackedSwitch(mir, table_offset, rl_src);
}
}
void Mir2Lir::GenSmallSparseSwitch(MIR* mir, DexOffset table_offset, RegLocation rl_src) {
BasicBlock* bb = mir_graph_->GetBasicBlock(mir->bb);
DCHECK(bb != nullptr);
const uint16_t* table = mir_graph_->GetTable(mir, table_offset);
const uint16_t entries = table[1];
// Chained cmp-and-branch.
rl_src = LoadValue(rl_src, kCoreReg);
int i = 0;
for (SuccessorBlockInfo* successor_block_info : bb->successor_blocks) {
int case_block_id = successor_block_info->block;
int key = successor_block_info->key;
OpCmpImmBranch(kCondEq, rl_src.reg, key, &block_label_list_[case_block_id]);
i++;
}
DCHECK_EQ(i, entries);
}
void Mir2Lir::GenSparseSwitch(MIR* mir, DexOffset table_offset, RegLocation rl_src) {
const uint16_t* table = mir_graph_->GetTable(mir, table_offset);
if (cu_->verbose) {
DumpSparseSwitchTable(table);
}
const uint16_t entries = table[1];
if (entries <= kSmallSwitchThreshold) {
GenSmallSparseSwitch(mir, table_offset, rl_src);
} else {
// Use the backend-specific implementation.
GenLargeSparseSwitch(mir, table_offset, rl_src);
}
}
bool Mir2Lir::SizeMatchesTypeForEntrypoint(OpSize size, Primitive::Type type) {
switch (size) {
case kReference:
return type == Primitive::kPrimNot;
case k64:
case kDouble:
return type == Primitive::kPrimLong || type == Primitive::kPrimDouble;
case k32:
case kSingle:
return type == Primitive::kPrimInt || type == Primitive::kPrimFloat;
case kSignedHalf:
return type == Primitive::kPrimShort;
case kUnsignedHalf:
return type == Primitive::kPrimChar;
case kSignedByte:
return type == Primitive::kPrimByte;
case kUnsignedByte:
return type == Primitive::kPrimBoolean;
case kWord: // Intentional fallthrough.
default:
return false; // There are no sane types with this op size.
}
}
} // namespace art
|