1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
|
/*
* Copyright (C) 2012 The Android Open Source Project
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
#include "dex/compiler_ir.h"
#include "dex_file-inl.h"
#include "entrypoints/quick/quick_entrypoints.h"
#include "invoke_type.h"
#include "mirror/array.h"
#include "mirror/string.h"
#include "mir_to_lir-inl.h"
#include "x86/codegen_x86.h"
namespace art {
/*
* This source files contains "gen" codegen routines that should
* be applicable to most targets. Only mid-level support utilities
* and "op" calls may be used here.
*/
/*
* To save scheduling time, helper calls are broken into two parts: generation of
* the helper target address, and the actuall call to the helper. Because x86
* has a memory call operation, part 1 is a NOP for x86. For other targets,
* load arguments between the two parts.
*/
int Mir2Lir::CallHelperSetup(int helper_offset) {
return (cu_->instruction_set == kX86) ? 0 : LoadHelper(helper_offset);
}
/* NOTE: if r_tgt is a temp, it will be freed following use */
LIR* Mir2Lir::CallHelper(int r_tgt, int helper_offset, bool safepoint_pc) {
LIR* call_inst;
if (cu_->instruction_set == kX86) {
call_inst = OpThreadMem(kOpBlx, helper_offset);
} else {
call_inst = OpReg(kOpBlx, r_tgt);
FreeTemp(r_tgt);
}
if (safepoint_pc) {
MarkSafepointPC(call_inst);
}
return call_inst;
}
void Mir2Lir::CallRuntimeHelperImm(int helper_offset, int arg0, bool safepoint_pc) {
int r_tgt = CallHelperSetup(helper_offset);
LoadConstant(TargetReg(kArg0), arg0);
ClobberCalleeSave();
CallHelper(r_tgt, helper_offset, safepoint_pc);
}
void Mir2Lir::CallRuntimeHelperReg(int helper_offset, int arg0, bool safepoint_pc) {
int r_tgt = CallHelperSetup(helper_offset);
OpRegCopy(TargetReg(kArg0), arg0);
ClobberCalleeSave();
CallHelper(r_tgt, helper_offset, safepoint_pc);
}
void Mir2Lir::CallRuntimeHelperRegLocation(int helper_offset, RegLocation arg0, bool safepoint_pc) {
int r_tgt = CallHelperSetup(helper_offset);
if (arg0.wide == 0) {
LoadValueDirectFixed(arg0, TargetReg(kArg0));
} else {
LoadValueDirectWideFixed(arg0, TargetReg(kArg0), TargetReg(kArg1));
}
ClobberCalleeSave();
CallHelper(r_tgt, helper_offset, safepoint_pc);
}
void Mir2Lir::CallRuntimeHelperImmImm(int helper_offset, int arg0, int arg1,
bool safepoint_pc) {
int r_tgt = CallHelperSetup(helper_offset);
LoadConstant(TargetReg(kArg0), arg0);
LoadConstant(TargetReg(kArg1), arg1);
ClobberCalleeSave();
CallHelper(r_tgt, helper_offset, safepoint_pc);
}
void Mir2Lir::CallRuntimeHelperImmRegLocation(int helper_offset, int arg0,
RegLocation arg1, bool safepoint_pc) {
int r_tgt = CallHelperSetup(helper_offset);
if (arg1.wide == 0) {
LoadValueDirectFixed(arg1, TargetReg(kArg1));
} else {
LoadValueDirectWideFixed(arg1, TargetReg(kArg1), TargetReg(kArg2));
}
LoadConstant(TargetReg(kArg0), arg0);
ClobberCalleeSave();
CallHelper(r_tgt, helper_offset, safepoint_pc);
}
void Mir2Lir::CallRuntimeHelperRegLocationImm(int helper_offset, RegLocation arg0, int arg1,
bool safepoint_pc) {
int r_tgt = CallHelperSetup(helper_offset);
LoadValueDirectFixed(arg0, TargetReg(kArg0));
LoadConstant(TargetReg(kArg1), arg1);
ClobberCalleeSave();
CallHelper(r_tgt, helper_offset, safepoint_pc);
}
void Mir2Lir::CallRuntimeHelperImmReg(int helper_offset, int arg0, int arg1,
bool safepoint_pc) {
int r_tgt = CallHelperSetup(helper_offset);
OpRegCopy(TargetReg(kArg1), arg1);
LoadConstant(TargetReg(kArg0), arg0);
ClobberCalleeSave();
CallHelper(r_tgt, helper_offset, safepoint_pc);
}
void Mir2Lir::CallRuntimeHelperRegImm(int helper_offset, int arg0, int arg1,
bool safepoint_pc) {
int r_tgt = CallHelperSetup(helper_offset);
OpRegCopy(TargetReg(kArg0), arg0);
LoadConstant(TargetReg(kArg1), arg1);
ClobberCalleeSave();
CallHelper(r_tgt, helper_offset, safepoint_pc);
}
void Mir2Lir::CallRuntimeHelperImmMethod(int helper_offset, int arg0, bool safepoint_pc) {
int r_tgt = CallHelperSetup(helper_offset);
LoadCurrMethodDirect(TargetReg(kArg1));
LoadConstant(TargetReg(kArg0), arg0);
ClobberCalleeSave();
CallHelper(r_tgt, helper_offset, safepoint_pc);
}
void Mir2Lir::CallRuntimeHelperRegLocationRegLocation(int helper_offset, RegLocation arg0,
RegLocation arg1, bool safepoint_pc) {
int r_tgt = CallHelperSetup(helper_offset);
if (arg0.wide == 0) {
LoadValueDirectFixed(arg0, arg0.fp ? TargetReg(kFArg0) : TargetReg(kArg0));
if (arg1.wide == 0) {
if (cu_->instruction_set == kMips) {
LoadValueDirectFixed(arg1, arg1.fp ? TargetReg(kFArg2) : TargetReg(kArg1));
} else {
LoadValueDirectFixed(arg1, TargetReg(kArg1));
}
} else {
if (cu_->instruction_set == kMips) {
LoadValueDirectWideFixed(arg1, arg1.fp ? TargetReg(kFArg2) : TargetReg(kArg1), arg1.fp ? TargetReg(kFArg3) : TargetReg(kArg2));
} else {
LoadValueDirectWideFixed(arg1, TargetReg(kArg1), TargetReg(kArg2));
}
}
} else {
LoadValueDirectWideFixed(arg0, arg0.fp ? TargetReg(kFArg0) : TargetReg(kArg0), arg0.fp ? TargetReg(kFArg1) : TargetReg(kArg1));
if (arg1.wide == 0) {
LoadValueDirectFixed(arg1, arg1.fp ? TargetReg(kFArg2) : TargetReg(kArg2));
} else {
LoadValueDirectWideFixed(arg1, arg1.fp ? TargetReg(kFArg2) : TargetReg(kArg2), arg1.fp ? TargetReg(kFArg3) : TargetReg(kArg3));
}
}
ClobberCalleeSave();
CallHelper(r_tgt, helper_offset, safepoint_pc);
}
void Mir2Lir::CallRuntimeHelperRegReg(int helper_offset, int arg0, int arg1, bool safepoint_pc) {
int r_tgt = CallHelperSetup(helper_offset);
DCHECK_NE(TargetReg(kArg0), arg1); // check copy into arg0 won't clobber arg1
OpRegCopy(TargetReg(kArg0), arg0);
OpRegCopy(TargetReg(kArg1), arg1);
ClobberCalleeSave();
CallHelper(r_tgt, helper_offset, safepoint_pc);
}
void Mir2Lir::CallRuntimeHelperRegRegImm(int helper_offset, int arg0, int arg1,
int arg2, bool safepoint_pc) {
int r_tgt = CallHelperSetup(helper_offset);
DCHECK_NE(TargetReg(kArg0), arg1); // check copy into arg0 won't clobber arg1
OpRegCopy(TargetReg(kArg0), arg0);
OpRegCopy(TargetReg(kArg1), arg1);
LoadConstant(TargetReg(kArg2), arg2);
ClobberCalleeSave();
CallHelper(r_tgt, helper_offset, safepoint_pc);
}
void Mir2Lir::CallRuntimeHelperImmMethodRegLocation(int helper_offset,
int arg0, RegLocation arg2, bool safepoint_pc) {
int r_tgt = CallHelperSetup(helper_offset);
LoadValueDirectFixed(arg2, TargetReg(kArg2));
LoadCurrMethodDirect(TargetReg(kArg1));
LoadConstant(TargetReg(kArg0), arg0);
ClobberCalleeSave();
CallHelper(r_tgt, helper_offset, safepoint_pc);
}
void Mir2Lir::CallRuntimeHelperImmMethodImm(int helper_offset, int arg0,
int arg2, bool safepoint_pc) {
int r_tgt = CallHelperSetup(helper_offset);
LoadCurrMethodDirect(TargetReg(kArg1));
LoadConstant(TargetReg(kArg2), arg2);
LoadConstant(TargetReg(kArg0), arg0);
ClobberCalleeSave();
CallHelper(r_tgt, helper_offset, safepoint_pc);
}
void Mir2Lir::CallRuntimeHelperImmRegLocationRegLocation(int helper_offset,
int arg0, RegLocation arg1,
RegLocation arg2, bool safepoint_pc) {
int r_tgt = CallHelperSetup(helper_offset);
LoadValueDirectFixed(arg1, TargetReg(kArg1));
if (arg2.wide == 0) {
LoadValueDirectFixed(arg2, TargetReg(kArg2));
} else {
LoadValueDirectWideFixed(arg2, TargetReg(kArg2), TargetReg(kArg3));
}
LoadConstant(TargetReg(kArg0), arg0);
ClobberCalleeSave();
CallHelper(r_tgt, helper_offset, safepoint_pc);
}
/*
* If there are any ins passed in registers that have not been promoted
* to a callee-save register, flush them to the frame. Perform intial
* assignment of promoted arguments.
*
* ArgLocs is an array of location records describing the incoming arguments
* with one location record per word of argument.
*/
void Mir2Lir::FlushIns(RegLocation* ArgLocs, RegLocation rl_method) {
/*
* Dummy up a RegLocation for the incoming Method*
* It will attempt to keep kArg0 live (or copy it to home location
* if promoted).
*/
RegLocation rl_src = rl_method;
rl_src.location = kLocPhysReg;
rl_src.low_reg = TargetReg(kArg0);
rl_src.home = false;
MarkLive(rl_src.low_reg, rl_src.s_reg_low);
StoreValue(rl_method, rl_src);
// If Method* has been promoted, explicitly flush
if (rl_method.location == kLocPhysReg) {
StoreWordDisp(TargetReg(kSp), 0, TargetReg(kArg0));
}
if (cu_->num_ins == 0)
return;
const int num_arg_regs = 3;
static SpecialTargetRegister arg_regs[] = {kArg1, kArg2, kArg3};
int start_vreg = cu_->num_dalvik_registers - cu_->num_ins;
/*
* Copy incoming arguments to their proper home locations.
* NOTE: an older version of dx had an issue in which
* it would reuse static method argument registers.
* This could result in the same Dalvik virtual register
* being promoted to both core and fp regs. To account for this,
* we only copy to the corresponding promoted physical register
* if it matches the type of the SSA name for the incoming
* argument. It is also possible that long and double arguments
* end up half-promoted. In those cases, we must flush the promoted
* half to memory as well.
*/
for (int i = 0; i < cu_->num_ins; i++) {
PromotionMap* v_map = &promotion_map_[start_vreg + i];
if (i < num_arg_regs) {
// If arriving in register
bool need_flush = true;
RegLocation* t_loc = &ArgLocs[i];
if ((v_map->core_location == kLocPhysReg) && !t_loc->fp) {
OpRegCopy(v_map->core_reg, TargetReg(arg_regs[i]));
need_flush = false;
} else if ((v_map->fp_location == kLocPhysReg) && t_loc->fp) {
OpRegCopy(v_map->FpReg, TargetReg(arg_regs[i]));
need_flush = false;
} else {
need_flush = true;
}
// For wide args, force flush if only half is promoted
if (t_loc->wide) {
PromotionMap* p_map = v_map + (t_loc->high_word ? -1 : +1);
need_flush |= (p_map->core_location != v_map->core_location) ||
(p_map->fp_location != v_map->fp_location);
}
if (need_flush) {
StoreBaseDisp(TargetReg(kSp), SRegOffset(start_vreg + i),
TargetReg(arg_regs[i]), kWord);
}
} else {
// If arriving in frame & promoted
if (v_map->core_location == kLocPhysReg) {
LoadWordDisp(TargetReg(kSp), SRegOffset(start_vreg + i),
v_map->core_reg);
}
if (v_map->fp_location == kLocPhysReg) {
LoadWordDisp(TargetReg(kSp), SRegOffset(start_vreg + i),
v_map->FpReg);
}
}
}
}
/*
* Bit of a hack here - in the absence of a real scheduling pass,
* emit the next instruction in static & direct invoke sequences.
*/
static int NextSDCallInsn(CompilationUnit* cu, CallInfo* info,
int state, const MethodReference& target_method,
uint32_t unused,
uintptr_t direct_code, uintptr_t direct_method,
InvokeType type) {
Mir2Lir* cg = static_cast<Mir2Lir*>(cu->cg.get());
if (cu->instruction_set != kThumb2) {
// Disable sharpening
direct_code = 0;
direct_method = 0;
}
if (direct_code != 0 && direct_method != 0) {
switch (state) {
case 0: // Get the current Method* [sets kArg0]
if (direct_code != static_cast<unsigned int>(-1)) {
cg->LoadConstant(cg->TargetReg(kInvokeTgt), direct_code);
} else {
CHECK_EQ(cu->dex_file, target_method.dex_file);
LIR* data_target = cg->ScanLiteralPool(cg->code_literal_list_,
target_method.dex_method_index, 0);
if (data_target == NULL) {
data_target = cg->AddWordData(&cg->code_literal_list_, target_method.dex_method_index);
data_target->operands[1] = type;
}
LIR* load_pc_rel = cg->OpPcRelLoad(cg->TargetReg(kInvokeTgt), data_target);
cg->AppendLIR(load_pc_rel);
DCHECK_EQ(cu->instruction_set, kThumb2) << reinterpret_cast<void*>(data_target);
}
if (direct_method != static_cast<unsigned int>(-1)) {
cg->LoadConstant(cg->TargetReg(kArg0), direct_method);
} else {
CHECK_EQ(cu->dex_file, target_method.dex_file);
LIR* data_target = cg->ScanLiteralPool(cg->method_literal_list_,
target_method.dex_method_index, 0);
if (data_target == NULL) {
data_target = cg->AddWordData(&cg->method_literal_list_, target_method.dex_method_index);
data_target->operands[1] = type;
}
LIR* load_pc_rel = cg->OpPcRelLoad(cg->TargetReg(kArg0), data_target);
cg->AppendLIR(load_pc_rel);
DCHECK_EQ(cu->instruction_set, kThumb2) << reinterpret_cast<void*>(data_target);
}
break;
default:
return -1;
}
} else {
switch (state) {
case 0: // Get the current Method* [sets kArg0]
// TUNING: we can save a reg copy if Method* has been promoted.
cg->LoadCurrMethodDirect(cg->TargetReg(kArg0));
break;
case 1: // Get method->dex_cache_resolved_methods_
cg->LoadWordDisp(cg->TargetReg(kArg0),
mirror::AbstractMethod::DexCacheResolvedMethodsOffset().Int32Value(), cg->TargetReg(kArg0));
// Set up direct code if known.
if (direct_code != 0) {
if (direct_code != static_cast<unsigned int>(-1)) {
cg->LoadConstant(cg->TargetReg(kInvokeTgt), direct_code);
} else {
CHECK_EQ(cu->dex_file, target_method.dex_file);
LIR* data_target = cg->ScanLiteralPool(cg->code_literal_list_,
target_method.dex_method_index, 0);
if (data_target == NULL) {
data_target = cg->AddWordData(&cg->code_literal_list_, target_method.dex_method_index);
data_target->operands[1] = type;
}
LIR* load_pc_rel = cg->OpPcRelLoad(cg->TargetReg(kInvokeTgt), data_target);
cg->AppendLIR(load_pc_rel);
DCHECK_EQ(cu->instruction_set, kThumb2) << reinterpret_cast<void*>(data_target);
}
}
break;
case 2: // Grab target method*
CHECK_EQ(cu->dex_file, target_method.dex_file);
cg->LoadWordDisp(cg->TargetReg(kArg0),
mirror::Array::DataOffset(sizeof(mirror::Object*)).Int32Value() +
(target_method.dex_method_index * 4),
cg-> TargetReg(kArg0));
break;
case 3: // Grab the code from the method*
if (cu->instruction_set != kX86) {
if (direct_code == 0) {
cg->LoadWordDisp(cg->TargetReg(kArg0),
mirror::AbstractMethod::GetEntryPointFromCompiledCodeOffset().Int32Value(),
cg->TargetReg(kInvokeTgt));
}
break;
}
// Intentional fallthrough for x86
default:
return -1;
}
}
return state + 1;
}
/*
* Bit of a hack here - in the absence of a real scheduling pass,
* emit the next instruction in a virtual invoke sequence.
* We can use kLr as a temp prior to target address loading
* Note also that we'll load the first argument ("this") into
* kArg1 here rather than the standard LoadArgRegs.
*/
static int NextVCallInsn(CompilationUnit* cu, CallInfo* info,
int state, const MethodReference& target_method,
uint32_t method_idx, uintptr_t unused, uintptr_t unused2,
InvokeType unused3) {
Mir2Lir* cg = static_cast<Mir2Lir*>(cu->cg.get());
/*
* This is the fast path in which the target virtual method is
* fully resolved at compile time.
*/
switch (state) {
case 0: { // Get "this" [set kArg1]
RegLocation rl_arg = info->args[0];
cg->LoadValueDirectFixed(rl_arg, cg->TargetReg(kArg1));
break;
}
case 1: // Is "this" null? [use kArg1]
cg->GenNullCheck(info->args[0].s_reg_low, cg->TargetReg(kArg1), info->opt_flags);
// get this->klass_ [use kArg1, set kInvokeTgt]
cg->LoadWordDisp(cg->TargetReg(kArg1), mirror::Object::ClassOffset().Int32Value(),
cg->TargetReg(kInvokeTgt));
break;
case 2: // Get this->klass_->vtable [usr kInvokeTgt, set kInvokeTgt]
cg->LoadWordDisp(cg->TargetReg(kInvokeTgt), mirror::Class::VTableOffset().Int32Value(),
cg->TargetReg(kInvokeTgt));
break;
case 3: // Get target method [use kInvokeTgt, set kArg0]
cg->LoadWordDisp(cg->TargetReg(kInvokeTgt), (method_idx * 4) +
mirror::Array::DataOffset(sizeof(mirror::Object*)).Int32Value(),
cg->TargetReg(kArg0));
break;
case 4: // Get the compiled code address [uses kArg0, sets kInvokeTgt]
if (cu->instruction_set != kX86) {
cg->LoadWordDisp(cg->TargetReg(kArg0),
mirror::AbstractMethod::GetEntryPointFromCompiledCodeOffset().Int32Value(),
cg->TargetReg(kInvokeTgt));
break;
}
// Intentional fallthrough for X86
default:
return -1;
}
return state + 1;
}
/*
* All invoke-interface calls bounce off of art_quick_invoke_interface_trampoline,
* which will locate the target and continue on via a tail call.
*/
static int NextInterfaceCallInsn(CompilationUnit* cu, CallInfo* info, int state,
const MethodReference& target_method,
uint32_t unused, uintptr_t unused2,
uintptr_t direct_method, InvokeType unused4) {
Mir2Lir* cg = static_cast<Mir2Lir*>(cu->cg.get());
if (cu->instruction_set != kThumb2) {
// Disable sharpening
direct_method = 0;
}
int trampoline = (cu->instruction_set == kX86) ? 0
: QUICK_ENTRYPOINT_OFFSET(pInvokeInterfaceTrampoline);
if (direct_method != 0) {
switch (state) {
case 0: // Load the trampoline target [sets kInvokeTgt].
if (cu->instruction_set != kX86) {
cg->LoadWordDisp(cg->TargetReg(kSelf), trampoline, cg->TargetReg(kInvokeTgt));
}
// Get the interface Method* [sets kArg0]
if (direct_method != static_cast<unsigned int>(-1)) {
cg->LoadConstant(cg->TargetReg(kArg0), direct_method);
} else {
CHECK_EQ(cu->dex_file, target_method.dex_file);
LIR* data_target = cg->ScanLiteralPool(cg->method_literal_list_,
target_method.dex_method_index, 0);
if (data_target == NULL) {
data_target = cg->AddWordData(&cg->method_literal_list_,
target_method.dex_method_index);
data_target->operands[1] = kInterface;
}
LIR* load_pc_rel = cg->OpPcRelLoad(cg->TargetReg(kArg0), data_target);
cg->AppendLIR(load_pc_rel);
DCHECK_EQ(cu->instruction_set, kThumb2) << reinterpret_cast<void*>(data_target);
}
break;
default:
return -1;
}
} else {
switch (state) {
case 0:
// Get the current Method* [sets kArg0] - TUNING: remove copy of method if it is promoted.
cg->LoadCurrMethodDirect(cg->TargetReg(kArg0));
// Load the trampoline target [sets kInvokeTgt].
if (cu->instruction_set != kX86) {
cg->LoadWordDisp(cg->TargetReg(kSelf), trampoline, cg->TargetReg(kInvokeTgt));
}
break;
case 1: // Get method->dex_cache_resolved_methods_ [set/use kArg0]
cg->LoadWordDisp(cg->TargetReg(kArg0),
mirror::AbstractMethod::DexCacheResolvedMethodsOffset().Int32Value(),
cg->TargetReg(kArg0));
break;
case 2: // Grab target method* [set/use kArg0]
CHECK_EQ(cu->dex_file, target_method.dex_file);
cg->LoadWordDisp(cg->TargetReg(kArg0),
mirror::Array::DataOffset(sizeof(mirror::Object*)).Int32Value() +
(target_method.dex_method_index * 4),
cg->TargetReg(kArg0));
break;
default:
return -1;
}
}
return state + 1;
}
static int NextInvokeInsnSP(CompilationUnit* cu, CallInfo* info, int trampoline,
int state, const MethodReference& target_method,
uint32_t method_idx) {
Mir2Lir* cg = static_cast<Mir2Lir*>(cu->cg.get());
/*
* This handles the case in which the base method is not fully
* resolved at compile time, we bail to a runtime helper.
*/
if (state == 0) {
if (cu->instruction_set != kX86) {
// Load trampoline target
cg->LoadWordDisp(cg->TargetReg(kSelf), trampoline, cg->TargetReg(kInvokeTgt));
}
// Load kArg0 with method index
CHECK_EQ(cu->dex_file, target_method.dex_file);
cg->LoadConstant(cg->TargetReg(kArg0), target_method.dex_method_index);
return 1;
}
return -1;
}
static int NextStaticCallInsnSP(CompilationUnit* cu, CallInfo* info,
int state,
const MethodReference& target_method,
uint32_t method_idx,
uintptr_t unused, uintptr_t unused2,
InvokeType unused3) {
int trampoline = QUICK_ENTRYPOINT_OFFSET(pInvokeStaticTrampolineWithAccessCheck);
return NextInvokeInsnSP(cu, info, trampoline, state, target_method, 0);
}
static int NextDirectCallInsnSP(CompilationUnit* cu, CallInfo* info, int state,
const MethodReference& target_method,
uint32_t method_idx, uintptr_t unused,
uintptr_t unused2, InvokeType unused3) {
int trampoline = QUICK_ENTRYPOINT_OFFSET(pInvokeDirectTrampolineWithAccessCheck);
return NextInvokeInsnSP(cu, info, trampoline, state, target_method, 0);
}
static int NextSuperCallInsnSP(CompilationUnit* cu, CallInfo* info, int state,
const MethodReference& target_method,
uint32_t method_idx, uintptr_t unused,
uintptr_t unused2, InvokeType unused3) {
int trampoline = QUICK_ENTRYPOINT_OFFSET(pInvokeSuperTrampolineWithAccessCheck);
return NextInvokeInsnSP(cu, info, trampoline, state, target_method, 0);
}
static int NextVCallInsnSP(CompilationUnit* cu, CallInfo* info, int state,
const MethodReference& target_method,
uint32_t method_idx, uintptr_t unused,
uintptr_t unused2, InvokeType unused3) {
int trampoline = QUICK_ENTRYPOINT_OFFSET(pInvokeVirtualTrampolineWithAccessCheck);
return NextInvokeInsnSP(cu, info, trampoline, state, target_method, 0);
}
static int NextInterfaceCallInsnWithAccessCheck(CompilationUnit* cu,
CallInfo* info, int state,
const MethodReference& target_method,
uint32_t unused,
uintptr_t unused2, uintptr_t unused3,
InvokeType unused4) {
int trampoline = QUICK_ENTRYPOINT_OFFSET(pInvokeInterfaceTrampolineWithAccessCheck);
return NextInvokeInsnSP(cu, info, trampoline, state, target_method, 0);
}
int Mir2Lir::LoadArgRegs(CallInfo* info, int call_state,
NextCallInsn next_call_insn,
const MethodReference& target_method,
uint32_t vtable_idx, uintptr_t direct_code,
uintptr_t direct_method, InvokeType type, bool skip_this) {
int last_arg_reg = TargetReg(kArg3);
int next_reg = TargetReg(kArg1);
int next_arg = 0;
if (skip_this) {
next_reg++;
next_arg++;
}
for (; (next_reg <= last_arg_reg) && (next_arg < info->num_arg_words); next_reg++) {
RegLocation rl_arg = info->args[next_arg++];
rl_arg = UpdateRawLoc(rl_arg);
if (rl_arg.wide && (next_reg <= TargetReg(kArg2))) {
LoadValueDirectWideFixed(rl_arg, next_reg, next_reg + 1);
next_reg++;
next_arg++;
} else {
if (rl_arg.wide) {
rl_arg.wide = false;
rl_arg.is_const = false;
}
LoadValueDirectFixed(rl_arg, next_reg);
}
call_state = next_call_insn(cu_, info, call_state, target_method, vtable_idx,
direct_code, direct_method, type);
}
return call_state;
}
/*
* Load up to 5 arguments, the first three of which will be in
* kArg1 .. kArg3. On entry kArg0 contains the current method pointer,
* and as part of the load sequence, it must be replaced with
* the target method pointer. Note, this may also be called
* for "range" variants if the number of arguments is 5 or fewer.
*/
int Mir2Lir::GenDalvikArgsNoRange(CallInfo* info,
int call_state, LIR** pcrLabel, NextCallInsn next_call_insn,
const MethodReference& target_method,
uint32_t vtable_idx, uintptr_t direct_code,
uintptr_t direct_method, InvokeType type, bool skip_this) {
RegLocation rl_arg;
/* If no arguments, just return */
if (info->num_arg_words == 0)
return call_state;
call_state = next_call_insn(cu_, info, call_state, target_method, vtable_idx,
direct_code, direct_method, type);
DCHECK_LE(info->num_arg_words, 5);
if (info->num_arg_words > 3) {
int32_t next_use = 3;
// Detect special case of wide arg spanning arg3/arg4
RegLocation rl_use0 = info->args[0];
RegLocation rl_use1 = info->args[1];
RegLocation rl_use2 = info->args[2];
if (((!rl_use0.wide && !rl_use1.wide) || rl_use0.wide) &&
rl_use2.wide) {
int reg = -1;
// Wide spans, we need the 2nd half of uses[2].
rl_arg = UpdateLocWide(rl_use2);
if (rl_arg.location == kLocPhysReg) {
reg = rl_arg.high_reg;
} else {
// kArg2 & rArg3 can safely be used here
reg = TargetReg(kArg3);
LoadWordDisp(TargetReg(kSp), SRegOffset(rl_arg.s_reg_low) + 4, reg);
call_state = next_call_insn(cu_, info, call_state, target_method,
vtable_idx, direct_code, direct_method, type);
}
StoreBaseDisp(TargetReg(kSp), (next_use + 1) * 4, reg, kWord);
StoreBaseDisp(TargetReg(kSp), 16 /* (3+1)*4 */, reg, kWord);
call_state = next_call_insn(cu_, info, call_state, target_method, vtable_idx,
direct_code, direct_method, type);
next_use++;
}
// Loop through the rest
while (next_use < info->num_arg_words) {
int low_reg;
int high_reg = -1;
rl_arg = info->args[next_use];
rl_arg = UpdateRawLoc(rl_arg);
if (rl_arg.location == kLocPhysReg) {
low_reg = rl_arg.low_reg;
high_reg = rl_arg.high_reg;
} else {
low_reg = TargetReg(kArg2);
if (rl_arg.wide) {
high_reg = TargetReg(kArg3);
LoadValueDirectWideFixed(rl_arg, low_reg, high_reg);
} else {
LoadValueDirectFixed(rl_arg, low_reg);
}
call_state = next_call_insn(cu_, info, call_state, target_method,
vtable_idx, direct_code, direct_method, type);
}
int outs_offset = (next_use + 1) * 4;
if (rl_arg.wide) {
StoreBaseDispWide(TargetReg(kSp), outs_offset, low_reg, high_reg);
next_use += 2;
} else {
StoreWordDisp(TargetReg(kSp), outs_offset, low_reg);
next_use++;
}
call_state = next_call_insn(cu_, info, call_state, target_method, vtable_idx,
direct_code, direct_method, type);
}
}
call_state = LoadArgRegs(info, call_state, next_call_insn,
target_method, vtable_idx, direct_code, direct_method,
type, skip_this);
if (pcrLabel) {
*pcrLabel = GenNullCheck(info->args[0].s_reg_low, TargetReg(kArg1), info->opt_flags);
}
return call_state;
}
/*
* May have 0+ arguments (also used for jumbo). Note that
* source virtual registers may be in physical registers, so may
* need to be flushed to home location before copying. This
* applies to arg3 and above (see below).
*
* Two general strategies:
* If < 20 arguments
* Pass args 3-18 using vldm/vstm block copy
* Pass arg0, arg1 & arg2 in kArg1-kArg3
* If 20+ arguments
* Pass args arg19+ using memcpy block copy
* Pass arg0, arg1 & arg2 in kArg1-kArg3
*
*/
int Mir2Lir::GenDalvikArgsRange(CallInfo* info, int call_state,
LIR** pcrLabel, NextCallInsn next_call_insn,
const MethodReference& target_method,
uint32_t vtable_idx, uintptr_t direct_code, uintptr_t direct_method,
InvokeType type, bool skip_this) {
// If we can treat it as non-range (Jumbo ops will use range form)
if (info->num_arg_words <= 5)
return GenDalvikArgsNoRange(info, call_state, pcrLabel,
next_call_insn, target_method, vtable_idx,
direct_code, direct_method, type, skip_this);
/*
* First load the non-register arguments. Both forms expect all
* of the source arguments to be in their home frame location, so
* scan the s_reg names and flush any that have been promoted to
* frame backing storage.
*/
// Scan the rest of the args - if in phys_reg flush to memory
for (int next_arg = 0; next_arg < info->num_arg_words;) {
RegLocation loc = info->args[next_arg];
if (loc.wide) {
loc = UpdateLocWide(loc);
if ((next_arg >= 2) && (loc.location == kLocPhysReg)) {
StoreBaseDispWide(TargetReg(kSp), SRegOffset(loc.s_reg_low),
loc.low_reg, loc.high_reg);
}
next_arg += 2;
} else {
loc = UpdateLoc(loc);
if ((next_arg >= 3) && (loc.location == kLocPhysReg)) {
StoreBaseDisp(TargetReg(kSp), SRegOffset(loc.s_reg_low),
loc.low_reg, kWord);
}
next_arg++;
}
}
int start_offset = SRegOffset(info->args[3].s_reg_low);
int outs_offset = 4 /* Method* */ + (3 * 4);
if (cu_->instruction_set != kThumb2) {
// Generate memcpy
OpRegRegImm(kOpAdd, TargetReg(kArg0), TargetReg(kSp), outs_offset);
OpRegRegImm(kOpAdd, TargetReg(kArg1), TargetReg(kSp), start_offset);
CallRuntimeHelperRegRegImm(QUICK_ENTRYPOINT_OFFSET(pMemcpy), TargetReg(kArg0),
TargetReg(kArg1), (info->num_arg_words - 3) * 4, false);
} else {
if (info->num_arg_words >= 20) {
// Generate memcpy
OpRegRegImm(kOpAdd, TargetReg(kArg0), TargetReg(kSp), outs_offset);
OpRegRegImm(kOpAdd, TargetReg(kArg1), TargetReg(kSp), start_offset);
CallRuntimeHelperRegRegImm(QUICK_ENTRYPOINT_OFFSET(pMemcpy), TargetReg(kArg0),
TargetReg(kArg1), (info->num_arg_words - 3) * 4, false);
} else {
// Use vldm/vstm pair using kArg3 as a temp
int regs_left = std::min(info->num_arg_words - 3, 16);
call_state = next_call_insn(cu_, info, call_state, target_method, vtable_idx,
direct_code, direct_method, type);
OpRegRegImm(kOpAdd, TargetReg(kArg3), TargetReg(kSp), start_offset);
LIR* ld = OpVldm(TargetReg(kArg3), regs_left);
// TUNING: loosen barrier
ld->def_mask = ENCODE_ALL;
SetMemRefType(ld, true /* is_load */, kDalvikReg);
call_state = next_call_insn(cu_, info, call_state, target_method, vtable_idx,
direct_code, direct_method, type);
OpRegRegImm(kOpAdd, TargetReg(kArg3), TargetReg(kSp), 4 /* Method* */ + (3 * 4));
call_state = next_call_insn(cu_, info, call_state, target_method, vtable_idx,
direct_code, direct_method, type);
LIR* st = OpVstm(TargetReg(kArg3), regs_left);
SetMemRefType(st, false /* is_load */, kDalvikReg);
st->def_mask = ENCODE_ALL;
call_state = next_call_insn(cu_, info, call_state, target_method, vtable_idx,
direct_code, direct_method, type);
}
}
call_state = LoadArgRegs(info, call_state, next_call_insn,
target_method, vtable_idx, direct_code, direct_method,
type, skip_this);
call_state = next_call_insn(cu_, info, call_state, target_method, vtable_idx,
direct_code, direct_method, type);
if (pcrLabel) {
*pcrLabel = GenNullCheck(info->args[0].s_reg_low, TargetReg(kArg1), info->opt_flags);
}
return call_state;
}
RegLocation Mir2Lir::InlineTarget(CallInfo* info) {
RegLocation res;
if (info->result.location == kLocInvalid) {
res = GetReturn(false);
} else {
res = info->result;
}
return res;
}
RegLocation Mir2Lir::InlineTargetWide(CallInfo* info) {
RegLocation res;
if (info->result.location == kLocInvalid) {
res = GetReturnWide(false);
} else {
res = info->result;
}
return res;
}
bool Mir2Lir::GenInlinedCharAt(CallInfo* info) {
if (cu_->instruction_set == kMips) {
// TODO - add Mips implementation
return false;
}
// Location of reference to data array
int value_offset = mirror::String::ValueOffset().Int32Value();
// Location of count
int count_offset = mirror::String::CountOffset().Int32Value();
// Starting offset within data array
int offset_offset = mirror::String::OffsetOffset().Int32Value();
// Start of char data with array_
int data_offset = mirror::Array::DataOffset(sizeof(uint16_t)).Int32Value();
RegLocation rl_obj = info->args[0];
RegLocation rl_idx = info->args[1];
rl_obj = LoadValue(rl_obj, kCoreReg);
rl_idx = LoadValue(rl_idx, kCoreReg);
int reg_max;
GenNullCheck(rl_obj.s_reg_low, rl_obj.low_reg, info->opt_flags);
bool range_check = (!(info->opt_flags & MIR_IGNORE_RANGE_CHECK));
LIR* launch_pad = NULL;
int reg_off = INVALID_REG;
int reg_ptr = INVALID_REG;
if (cu_->instruction_set != kX86) {
reg_off = AllocTemp();
reg_ptr = AllocTemp();
if (range_check) {
reg_max = AllocTemp();
LoadWordDisp(rl_obj.low_reg, count_offset, reg_max);
}
LoadWordDisp(rl_obj.low_reg, offset_offset, reg_off);
LoadWordDisp(rl_obj.low_reg, value_offset, reg_ptr);
if (range_check) {
// Set up a launch pad to allow retry in case of bounds violation */
launch_pad = RawLIR(0, kPseudoIntrinsicRetry, reinterpret_cast<uintptr_t>(info));
intrinsic_launchpads_.Insert(launch_pad);
OpRegReg(kOpCmp, rl_idx.low_reg, reg_max);
FreeTemp(reg_max);
OpCondBranch(kCondCs, launch_pad);
}
} else {
if (range_check) {
reg_max = AllocTemp();
LoadWordDisp(rl_obj.low_reg, count_offset, reg_max);
// Set up a launch pad to allow retry in case of bounds violation */
launch_pad = RawLIR(0, kPseudoIntrinsicRetry, reinterpret_cast<uintptr_t>(info));
intrinsic_launchpads_.Insert(launch_pad);
OpRegReg(kOpCmp, rl_idx.low_reg, reg_max);
FreeTemp(reg_max);
OpCondBranch(kCondCc, launch_pad);
}
reg_off = AllocTemp();
reg_ptr = AllocTemp();
LoadWordDisp(rl_obj.low_reg, offset_offset, reg_off);
LoadWordDisp(rl_obj.low_reg, value_offset, reg_ptr);
}
OpRegImm(kOpAdd, reg_ptr, data_offset);
OpRegReg(kOpAdd, reg_off, rl_idx.low_reg);
FreeTemp(rl_obj.low_reg);
FreeTemp(rl_idx.low_reg);
RegLocation rl_dest = InlineTarget(info);
RegLocation rl_result = EvalLoc(rl_dest, kCoreReg, true);
LoadBaseIndexed(reg_ptr, reg_off, rl_result.low_reg, 1, kUnsignedHalf);
FreeTemp(reg_off);
FreeTemp(reg_ptr);
StoreValue(rl_dest, rl_result);
if (range_check) {
launch_pad->operands[2] = 0; // no resumption
}
// Record that we've already inlined & null checked
info->opt_flags |= (MIR_INLINED | MIR_IGNORE_NULL_CHECK);
return true;
}
// Generates an inlined String.is_empty or String.length.
bool Mir2Lir::GenInlinedStringIsEmptyOrLength(CallInfo* info, bool is_empty) {
if (cu_->instruction_set == kMips) {
// TODO - add Mips implementation
return false;
}
// dst = src.length();
RegLocation rl_obj = info->args[0];
rl_obj = LoadValue(rl_obj, kCoreReg);
RegLocation rl_dest = InlineTarget(info);
RegLocation rl_result = EvalLoc(rl_dest, kCoreReg, true);
GenNullCheck(rl_obj.s_reg_low, rl_obj.low_reg, info->opt_flags);
LoadWordDisp(rl_obj.low_reg, mirror::String::CountOffset().Int32Value(), rl_result.low_reg);
if (is_empty) {
// dst = (dst == 0);
if (cu_->instruction_set == kThumb2) {
int t_reg = AllocTemp();
OpRegReg(kOpNeg, t_reg, rl_result.low_reg);
OpRegRegReg(kOpAdc, rl_result.low_reg, rl_result.low_reg, t_reg);
} else {
DCHECK_EQ(cu_->instruction_set, kX86);
OpRegImm(kOpSub, rl_result.low_reg, 1);
OpRegImm(kOpLsr, rl_result.low_reg, 31);
}
}
StoreValue(rl_dest, rl_result);
return true;
}
bool Mir2Lir::GenInlinedAbsInt(CallInfo* info) {
if (cu_->instruction_set == kMips) {
// TODO - add Mips implementation
return false;
}
RegLocation rl_src = info->args[0];
rl_src = LoadValue(rl_src, kCoreReg);
RegLocation rl_dest = InlineTarget(info);
RegLocation rl_result = EvalLoc(rl_dest, kCoreReg, true);
int sign_reg = AllocTemp();
// abs(x) = y<=x>>31, (x+y)^y.
OpRegRegImm(kOpAsr, sign_reg, rl_src.low_reg, 31);
OpRegRegReg(kOpAdd, rl_result.low_reg, rl_src.low_reg, sign_reg);
OpRegReg(kOpXor, rl_result.low_reg, sign_reg);
StoreValue(rl_dest, rl_result);
return true;
}
bool Mir2Lir::GenInlinedAbsLong(CallInfo* info) {
if (cu_->instruction_set == kMips) {
// TODO - add Mips implementation
return false;
}
if (cu_->instruction_set == kThumb2) {
RegLocation rl_src = info->args[0];
rl_src = LoadValueWide(rl_src, kCoreReg);
RegLocation rl_dest = InlineTargetWide(info);
RegLocation rl_result = EvalLoc(rl_dest, kCoreReg, true);
int sign_reg = AllocTemp();
// abs(x) = y<=x>>31, (x+y)^y.
OpRegRegImm(kOpAsr, sign_reg, rl_src.high_reg, 31);
OpRegRegReg(kOpAdd, rl_result.low_reg, rl_src.low_reg, sign_reg);
OpRegRegReg(kOpAdc, rl_result.high_reg, rl_src.high_reg, sign_reg);
OpRegReg(kOpXor, rl_result.low_reg, sign_reg);
OpRegReg(kOpXor, rl_result.high_reg, sign_reg);
StoreValueWide(rl_dest, rl_result);
return true;
} else {
DCHECK_EQ(cu_->instruction_set, kX86);
// Reuse source registers to avoid running out of temps
RegLocation rl_src = info->args[0];
rl_src = LoadValueWide(rl_src, kCoreReg);
RegLocation rl_dest = InlineTargetWide(info);
RegLocation rl_result = EvalLoc(rl_dest, kCoreReg, true);
OpRegCopyWide(rl_result.low_reg, rl_result.high_reg, rl_src.low_reg, rl_src.high_reg);
FreeTemp(rl_src.low_reg);
FreeTemp(rl_src.high_reg);
int sign_reg = AllocTemp();
// abs(x) = y<=x>>31, (x+y)^y.
OpRegRegImm(kOpAsr, sign_reg, rl_result.high_reg, 31);
OpRegReg(kOpAdd, rl_result.low_reg, sign_reg);
OpRegReg(kOpAdc, rl_result.high_reg, sign_reg);
OpRegReg(kOpXor, rl_result.low_reg, sign_reg);
OpRegReg(kOpXor, rl_result.high_reg, sign_reg);
StoreValueWide(rl_dest, rl_result);
return true;
}
}
bool Mir2Lir::GenInlinedFloatCvt(CallInfo* info) {
if (cu_->instruction_set == kMips) {
// TODO - add Mips implementation
return false;
}
RegLocation rl_src = info->args[0];
RegLocation rl_dest = InlineTarget(info);
StoreValue(rl_dest, rl_src);
return true;
}
bool Mir2Lir::GenInlinedDoubleCvt(CallInfo* info) {
if (cu_->instruction_set == kMips) {
// TODO - add Mips implementation
return false;
}
RegLocation rl_src = info->args[0];
RegLocation rl_dest = InlineTargetWide(info);
StoreValueWide(rl_dest, rl_src);
return true;
}
/*
* Fast string.index_of(I) & (II). Tests for simple case of char <= 0xffff,
* otherwise bails to standard library code.
*/
bool Mir2Lir::GenInlinedIndexOf(CallInfo* info, bool zero_based) {
if (cu_->instruction_set == kMips) {
// TODO - add Mips implementation
return false;
}
ClobberCalleeSave();
LockCallTemps(); // Using fixed registers
int reg_ptr = TargetReg(kArg0);
int reg_char = TargetReg(kArg1);
int reg_start = TargetReg(kArg2);
RegLocation rl_obj = info->args[0];
RegLocation rl_char = info->args[1];
RegLocation rl_start = info->args[2];
LoadValueDirectFixed(rl_obj, reg_ptr);
LoadValueDirectFixed(rl_char, reg_char);
if (zero_based) {
LoadConstant(reg_start, 0);
} else {
LoadValueDirectFixed(rl_start, reg_start);
}
int r_tgt = (cu_->instruction_set != kX86) ? LoadHelper(QUICK_ENTRYPOINT_OFFSET(pIndexOf)) : 0;
GenNullCheck(rl_obj.s_reg_low, reg_ptr, info->opt_flags);
LIR* launch_pad = RawLIR(0, kPseudoIntrinsicRetry, reinterpret_cast<uintptr_t>(info));
intrinsic_launchpads_.Insert(launch_pad);
OpCmpImmBranch(kCondGt, reg_char, 0xFFFF, launch_pad);
// NOTE: not a safepoint
if (cu_->instruction_set != kX86) {
OpReg(kOpBlx, r_tgt);
} else {
OpThreadMem(kOpBlx, QUICK_ENTRYPOINT_OFFSET(pIndexOf));
}
LIR* resume_tgt = NewLIR0(kPseudoTargetLabel);
launch_pad->operands[2] = reinterpret_cast<uintptr_t>(resume_tgt);
// Record that we've already inlined & null checked
info->opt_flags |= (MIR_INLINED | MIR_IGNORE_NULL_CHECK);
RegLocation rl_return = GetReturn(false);
RegLocation rl_dest = InlineTarget(info);
StoreValue(rl_dest, rl_return);
return true;
}
/* Fast string.compareTo(Ljava/lang/string;)I. */
bool Mir2Lir::GenInlinedStringCompareTo(CallInfo* info) {
if (cu_->instruction_set == kMips) {
// TODO - add Mips implementation
return false;
}
ClobberCalleeSave();
LockCallTemps(); // Using fixed registers
int reg_this = TargetReg(kArg0);
int reg_cmp = TargetReg(kArg1);
RegLocation rl_this = info->args[0];
RegLocation rl_cmp = info->args[1];
LoadValueDirectFixed(rl_this, reg_this);
LoadValueDirectFixed(rl_cmp, reg_cmp);
int r_tgt = (cu_->instruction_set != kX86) ?
LoadHelper(QUICK_ENTRYPOINT_OFFSET(pStringCompareTo)) : 0;
GenNullCheck(rl_this.s_reg_low, reg_this, info->opt_flags);
// TUNING: check if rl_cmp.s_reg_low is already null checked
LIR* launch_pad = RawLIR(0, kPseudoIntrinsicRetry, reinterpret_cast<uintptr_t>(info));
intrinsic_launchpads_.Insert(launch_pad);
OpCmpImmBranch(kCondEq, reg_cmp, 0, launch_pad);
// NOTE: not a safepoint
if (cu_->instruction_set != kX86) {
OpReg(kOpBlx, r_tgt);
} else {
OpThreadMem(kOpBlx, QUICK_ENTRYPOINT_OFFSET(pStringCompareTo));
}
launch_pad->operands[2] = 0; // No return possible
// Record that we've already inlined & null checked
info->opt_flags |= (MIR_INLINED | MIR_IGNORE_NULL_CHECK);
RegLocation rl_return = GetReturn(false);
RegLocation rl_dest = InlineTarget(info);
StoreValue(rl_dest, rl_return);
return true;
}
bool Mir2Lir::GenInlinedCurrentThread(CallInfo* info) {
RegLocation rl_dest = InlineTarget(info);
RegLocation rl_result = EvalLoc(rl_dest, kCoreReg, true);
int offset = Thread::PeerOffset().Int32Value();
if (cu_->instruction_set == kThumb2 || cu_->instruction_set == kMips) {
LoadWordDisp(TargetReg(kSelf), offset, rl_result.low_reg);
} else {
CHECK(cu_->instruction_set == kX86);
reinterpret_cast<X86Mir2Lir*>(this)->OpRegThreadMem(kOpMov, rl_result.low_reg, offset);
}
StoreValue(rl_dest, rl_result);
return true;
}
bool Mir2Lir::GenInlinedUnsafeGet(CallInfo* info,
bool is_long, bool is_volatile) {
if (cu_->instruction_set == kMips) {
// TODO - add Mips implementation
return false;
}
// Unused - RegLocation rl_src_unsafe = info->args[0];
RegLocation rl_src_obj = info->args[1]; // Object
RegLocation rl_src_offset = info->args[2]; // long low
rl_src_offset.wide = 0; // ignore high half in info->args[3]
RegLocation rl_dest = InlineTarget(info); // result reg
if (is_volatile) {
GenMemBarrier(kLoadLoad);
}
RegLocation rl_object = LoadValue(rl_src_obj, kCoreReg);
RegLocation rl_offset = LoadValue(rl_src_offset, kCoreReg);
RegLocation rl_result = EvalLoc(rl_dest, kCoreReg, true);
if (is_long) {
OpRegReg(kOpAdd, rl_object.low_reg, rl_offset.low_reg);
LoadBaseDispWide(rl_object.low_reg, 0, rl_result.low_reg, rl_result.high_reg, INVALID_SREG);
StoreValueWide(rl_dest, rl_result);
} else {
LoadBaseIndexed(rl_object.low_reg, rl_offset.low_reg, rl_result.low_reg, 0, kWord);
StoreValue(rl_dest, rl_result);
}
return true;
}
bool Mir2Lir::GenInlinedUnsafePut(CallInfo* info, bool is_long,
bool is_object, bool is_volatile, bool is_ordered) {
if (cu_->instruction_set == kMips) {
// TODO - add Mips implementation
return false;
}
if (cu_->instruction_set == kX86 && is_object) {
// TODO: fix X86, it exhausts registers for card marking.
return false;
}
// Unused - RegLocation rl_src_unsafe = info->args[0];
RegLocation rl_src_obj = info->args[1]; // Object
RegLocation rl_src_offset = info->args[2]; // long low
rl_src_offset.wide = 0; // ignore high half in info->args[3]
RegLocation rl_src_value = info->args[4]; // value to store
if (is_volatile || is_ordered) {
GenMemBarrier(kStoreStore);
}
RegLocation rl_object = LoadValue(rl_src_obj, kCoreReg);
RegLocation rl_offset = LoadValue(rl_src_offset, kCoreReg);
RegLocation rl_value;
if (is_long) {
rl_value = LoadValueWide(rl_src_value, kCoreReg);
OpRegReg(kOpAdd, rl_object.low_reg, rl_offset.low_reg);
StoreBaseDispWide(rl_object.low_reg, 0, rl_value.low_reg, rl_value.high_reg);
} else {
rl_value = LoadValue(rl_src_value, kCoreReg);
StoreBaseIndexed(rl_object.low_reg, rl_offset.low_reg, rl_value.low_reg, 0, kWord);
}
if (is_volatile) {
GenMemBarrier(kStoreLoad);
}
if (is_object) {
MarkGCCard(rl_value.low_reg, rl_object.low_reg);
}
return true;
}
bool Mir2Lir::GenIntrinsic(CallInfo* info) {
if (info->opt_flags & MIR_INLINED) {
return false;
}
/*
* TODO: move these to a target-specific structured constant array
* and use a generic match function. The list of intrinsics may be
* slightly different depending on target.
* TODO: Fold this into a matching function that runs during
* basic block building. This should be part of the action for
* small method inlining and recognition of the special object init
* method. By doing this during basic block construction, we can also
* take advantage of/generate new useful dataflow info.
*/
StringPiece tgt_methods_declaring_class(
cu_->dex_file->GetMethodDeclaringClassDescriptor(cu_->dex_file->GetMethodId(info->index)));
if (tgt_methods_declaring_class.starts_with("Ljava/lang/Double;")) {
std::string tgt_method(PrettyMethod(info->index, *cu_->dex_file));
if (tgt_method == "long java.lang.Double.doubleToRawLongBits(double)") {
return GenInlinedDoubleCvt(info);
}
if (tgt_method == "double java.lang.Double.longBitsToDouble(long)") {
return GenInlinedDoubleCvt(info);
}
} else if (tgt_methods_declaring_class.starts_with("Ljava/lang/Float;")) {
std::string tgt_method(PrettyMethod(info->index, *cu_->dex_file));
if (tgt_method == "int java.lang.Float.float_to_raw_int_bits(float)") {
return GenInlinedFloatCvt(info);
}
if (tgt_method == "float java.lang.Float.intBitsToFloat(int)") {
return GenInlinedFloatCvt(info);
}
} else if (tgt_methods_declaring_class.starts_with("Ljava/lang/Math;") ||
tgt_methods_declaring_class.starts_with("Ljava/lang/StrictMath;")) {
std::string tgt_method(PrettyMethod(info->index, *cu_->dex_file));
if (tgt_method == "int java.lang.Math.abs(int)" ||
tgt_method == "int java.lang.StrictMath.abs(int)") {
return GenInlinedAbsInt(info);
}
if (tgt_method == "long java.lang.Math.abs(long)" ||
tgt_method == "long java.lang.StrictMath.abs(long)") {
return GenInlinedAbsLong(info);
}
if (tgt_method == "int java.lang.Math.max(int, int)" ||
tgt_method == "int java.lang.StrictMath.max(int, int)") {
return GenInlinedMinMaxInt(info, false /* is_min */);
}
if (tgt_method == "int java.lang.Math.min(int, int)" ||
tgt_method == "int java.lang.StrictMath.min(int, int)") {
return GenInlinedMinMaxInt(info, true /* is_min */);
}
if (tgt_method == "double java.lang.Math.sqrt(double)" ||
tgt_method == "double java.lang.StrictMath.sqrt(double)") {
return GenInlinedSqrt(info);
}
} else if (tgt_methods_declaring_class.starts_with("Ljava/lang/String;")) {
std::string tgt_method(PrettyMethod(info->index, *cu_->dex_file));
if (tgt_method == "char java.lang.String.charAt(int)") {
return GenInlinedCharAt(info);
}
if (tgt_method == "int java.lang.String.compareTo(java.lang.String)") {
return GenInlinedStringCompareTo(info);
}
if (tgt_method == "boolean java.lang.String.is_empty()") {
return GenInlinedStringIsEmptyOrLength(info, true /* is_empty */);
}
if (tgt_method == "int java.lang.String.index_of(int, int)") {
return GenInlinedIndexOf(info, false /* base 0 */);
}
if (tgt_method == "int java.lang.String.index_of(int)") {
return GenInlinedIndexOf(info, true /* base 0 */);
}
if (tgt_method == "int java.lang.String.length()") {
return GenInlinedStringIsEmptyOrLength(info, false /* is_empty */);
}
} else if (tgt_methods_declaring_class.starts_with("Ljava/lang/Thread;")) {
std::string tgt_method(PrettyMethod(info->index, *cu_->dex_file));
if (tgt_method == "java.lang.Thread java.lang.Thread.currentThread()") {
return GenInlinedCurrentThread(info);
}
} else if (tgt_methods_declaring_class.starts_with("Lsun/misc/Unsafe;")) {
std::string tgt_method(PrettyMethod(info->index, *cu_->dex_file));
if (tgt_method == "boolean sun.misc.Unsafe.compareAndSwapInt(java.lang.Object, long, int, int)") {
return GenInlinedCas32(info, false);
}
if (tgt_method == "boolean sun.misc.Unsafe.compareAndSwapObject(java.lang.Object, long, java.lang.Object, java.lang.Object)") {
return GenInlinedCas32(info, true);
}
if (tgt_method == "int sun.misc.Unsafe.getInt(java.lang.Object, long)") {
return GenInlinedUnsafeGet(info, false /* is_long */, false /* is_volatile */);
}
if (tgt_method == "int sun.misc.Unsafe.getIntVolatile(java.lang.Object, long)") {
return GenInlinedUnsafeGet(info, false /* is_long */, true /* is_volatile */);
}
if (tgt_method == "void sun.misc.Unsafe.putInt(java.lang.Object, long, int)") {
return GenInlinedUnsafePut(info, false /* is_long */, false /* is_object */,
false /* is_volatile */, false /* is_ordered */);
}
if (tgt_method == "void sun.misc.Unsafe.putIntVolatile(java.lang.Object, long, int)") {
return GenInlinedUnsafePut(info, false /* is_long */, false /* is_object */,
true /* is_volatile */, false /* is_ordered */);
}
if (tgt_method == "void sun.misc.Unsafe.putOrderedInt(java.lang.Object, long, int)") {
return GenInlinedUnsafePut(info, false /* is_long */, false /* is_object */,
false /* is_volatile */, true /* is_ordered */);
}
if (tgt_method == "long sun.misc.Unsafe.getLong(java.lang.Object, long)") {
return GenInlinedUnsafeGet(info, true /* is_long */, false /* is_volatile */);
}
if (tgt_method == "long sun.misc.Unsafe.getLongVolatile(java.lang.Object, long)") {
return GenInlinedUnsafeGet(info, true /* is_long */, true /* is_volatile */);
}
if (tgt_method == "void sun.misc.Unsafe.putLong(java.lang.Object, long, long)") {
return GenInlinedUnsafePut(info, true /* is_long */, false /* is_object */,
false /* is_volatile */, false /* is_ordered */);
}
if (tgt_method == "void sun.misc.Unsafe.putLongVolatile(java.lang.Object, long, long)") {
return GenInlinedUnsafePut(info, true /* is_long */, false /* is_object */,
true /* is_volatile */, false /* is_ordered */);
}
if (tgt_method == "void sun.misc.Unsafe.putOrderedLong(java.lang.Object, long, long)") {
return GenInlinedUnsafePut(info, true /* is_long */, false /* is_object */,
false /* is_volatile */, true /* is_ordered */);
}
if (tgt_method == "java.lang.Object sun.misc.Unsafe.getObject(java.lang.Object, long)") {
return GenInlinedUnsafeGet(info, false /* is_long */, false /* is_volatile */);
}
if (tgt_method == "java.lang.Object sun.misc.Unsafe.getObjectVolatile(java.lang.Object, long)") {
return GenInlinedUnsafeGet(info, false /* is_long */, true /* is_volatile */);
}
if (tgt_method == "void sun.misc.Unsafe.putObject(java.lang.Object, long, java.lang.Object)") {
return GenInlinedUnsafePut(info, false /* is_long */, true /* is_object */,
false /* is_volatile */, false /* is_ordered */);
}
if (tgt_method == "void sun.misc.Unsafe.putObjectVolatile(java.lang.Object, long, java.lang.Object)") {
return GenInlinedUnsafePut(info, false /* is_long */, true /* is_object */,
true /* is_volatile */, false /* is_ordered */);
}
if (tgt_method == "void sun.misc.Unsafe.putOrderedObject(java.lang.Object, long, java.lang.Object)") {
return GenInlinedUnsafePut(info, false /* is_long */, true /* is_object */,
false /* is_volatile */, true /* is_ordered */);
}
}
return false;
}
void Mir2Lir::GenInvoke(CallInfo* info) {
if (GenIntrinsic(info)) {
return;
}
InvokeType original_type = info->type; // avoiding mutation by ComputeInvokeInfo
int call_state = 0;
LIR* null_ck;
LIR** p_null_ck = NULL;
NextCallInsn next_call_insn;
FlushAllRegs(); /* Everything to home location */
// Explicit register usage
LockCallTemps();
DexCompilationUnit* cUnit = mir_graph_->GetCurrentDexCompilationUnit();
MethodReference target_method(cUnit->GetDexFile(), info->index);
int vtable_idx;
uintptr_t direct_code;
uintptr_t direct_method;
bool skip_this;
bool fast_path =
cu_->compiler_driver->ComputeInvokeInfo(mir_graph_->GetCurrentDexCompilationUnit(),
current_dalvik_offset_,
info->type, target_method,
vtable_idx,
direct_code, direct_method,
true) && !SLOW_INVOKE_PATH;
if (info->type == kInterface) {
if (fast_path) {
p_null_ck = &null_ck;
}
next_call_insn = fast_path ? NextInterfaceCallInsn : NextInterfaceCallInsnWithAccessCheck;
skip_this = false;
} else if (info->type == kDirect) {
if (fast_path) {
p_null_ck = &null_ck;
}
next_call_insn = fast_path ? NextSDCallInsn : NextDirectCallInsnSP;
skip_this = false;
} else if (info->type == kStatic) {
next_call_insn = fast_path ? NextSDCallInsn : NextStaticCallInsnSP;
skip_this = false;
} else if (info->type == kSuper) {
DCHECK(!fast_path); // Fast path is a direct call.
next_call_insn = NextSuperCallInsnSP;
skip_this = false;
} else {
DCHECK_EQ(info->type, kVirtual);
next_call_insn = fast_path ? NextVCallInsn : NextVCallInsnSP;
skip_this = fast_path;
}
if (!info->is_range) {
call_state = GenDalvikArgsNoRange(info, call_state, p_null_ck,
next_call_insn, target_method,
vtable_idx, direct_code, direct_method,
original_type, skip_this);
} else {
call_state = GenDalvikArgsRange(info, call_state, p_null_ck,
next_call_insn, target_method, vtable_idx,
direct_code, direct_method, original_type,
skip_this);
}
// Finish up any of the call sequence not interleaved in arg loading
while (call_state >= 0) {
call_state = next_call_insn(cu_, info, call_state, target_method,
vtable_idx, direct_code, direct_method,
original_type);
}
LIR* call_inst;
if (cu_->instruction_set != kX86) {
call_inst = OpReg(kOpBlx, TargetReg(kInvokeTgt));
} else {
if (fast_path && info->type != kInterface) {
call_inst = OpMem(kOpBlx, TargetReg(kArg0),
mirror::AbstractMethod::GetEntryPointFromCompiledCodeOffset().Int32Value());
} else {
int trampoline = 0;
switch (info->type) {
case kInterface:
trampoline = fast_path ? QUICK_ENTRYPOINT_OFFSET(pInvokeInterfaceTrampoline)
: QUICK_ENTRYPOINT_OFFSET(pInvokeInterfaceTrampolineWithAccessCheck);
break;
case kDirect:
trampoline = QUICK_ENTRYPOINT_OFFSET(pInvokeDirectTrampolineWithAccessCheck);
break;
case kStatic:
trampoline = QUICK_ENTRYPOINT_OFFSET(pInvokeStaticTrampolineWithAccessCheck);
break;
case kSuper:
trampoline = QUICK_ENTRYPOINT_OFFSET(pInvokeSuperTrampolineWithAccessCheck);
break;
case kVirtual:
trampoline = QUICK_ENTRYPOINT_OFFSET(pInvokeVirtualTrampolineWithAccessCheck);
break;
default:
LOG(FATAL) << "Unexpected invoke type";
}
call_inst = OpThreadMem(kOpBlx, trampoline);
}
}
MarkSafepointPC(call_inst);
ClobberCalleeSave();
if (info->result.location != kLocInvalid) {
// We have a following MOVE_RESULT - do it now.
if (info->result.wide) {
RegLocation ret_loc = GetReturnWide(info->result.fp);
StoreValueWide(info->result, ret_loc);
} else {
RegLocation ret_loc = GetReturn(info->result.fp);
StoreValue(info->result, ret_loc);
}
}
}
} // namespace art
|