1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
|
/*
* Copyright (C) 2012 The Android Open Source Project
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
/* This file contains codegen for the X86 ISA */
#include "codegen_x86.h"
#include "dex/quick/mir_to_lir-inl.h"
#include "x86_lir.h"
namespace art {
/*
* The sparse table in the literal pool is an array of <key,displacement>
* pairs.
*/
void X86Mir2Lir::GenSparseSwitch(MIR* mir, DexOffset table_offset,
RegLocation rl_src) {
const uint16_t* table = cu_->insns + current_dalvik_offset_ + table_offset;
if (cu_->verbose) {
DumpSparseSwitchTable(table);
}
int entries = table[1];
const int32_t* keys = reinterpret_cast<const int32_t*>(&table[2]);
const int32_t* targets = &keys[entries];
rl_src = LoadValue(rl_src, kCoreReg);
for (int i = 0; i < entries; i++) {
int key = keys[i];
BasicBlock* case_block =
mir_graph_->FindBlock(current_dalvik_offset_ + targets[i]);
OpCmpImmBranch(kCondEq, rl_src.low_reg, key,
&block_label_list_[case_block->id]);
}
}
/*
* Code pattern will look something like:
*
* mov r_val, ..
* call 0
* pop r_start_of_method
* sub r_start_of_method, ..
* mov r_key_reg, r_val
* sub r_key_reg, low_key
* cmp r_key_reg, size-1 ; bound check
* ja done
* mov r_disp, [r_start_of_method + r_key_reg * 4 + table_offset]
* add r_start_of_method, r_disp
* jmp r_start_of_method
* done:
*/
void X86Mir2Lir::GenPackedSwitch(MIR* mir, DexOffset table_offset,
RegLocation rl_src) {
const uint16_t* table = cu_->insns + current_dalvik_offset_ + table_offset;
if (cu_->verbose) {
DumpPackedSwitchTable(table);
}
// Add the table to the list - we'll process it later
SwitchTable* tab_rec =
static_cast<SwitchTable*>(arena_->Alloc(sizeof(SwitchTable), ArenaAllocator::kAllocData));
tab_rec->table = table;
tab_rec->vaddr = current_dalvik_offset_;
int size = table[1];
tab_rec->targets = static_cast<LIR**>(arena_->Alloc(size * sizeof(LIR*),
ArenaAllocator::kAllocLIR));
switch_tables_.Insert(tab_rec);
// Get the switch value
rl_src = LoadValue(rl_src, kCoreReg);
// NewLIR0(kX86Bkpt);
// Materialize a pointer to the switch table
int start_of_method_reg;
if (base_of_code_ != nullptr) {
// We can use the saved value.
RegLocation rl_method = mir_graph_->GetRegLocation(base_of_code_->s_reg_low);
rl_method = LoadValue(rl_method, kCoreReg);
start_of_method_reg = rl_method.low_reg;
store_method_addr_used_ = true;
} else {
start_of_method_reg = AllocTemp();
NewLIR1(kX86StartOfMethod, start_of_method_reg);
}
int low_key = s4FromSwitchData(&table[2]);
int keyReg;
// Remove the bias, if necessary
if (low_key == 0) {
keyReg = rl_src.low_reg;
} else {
keyReg = AllocTemp();
OpRegRegImm(kOpSub, keyReg, rl_src.low_reg, low_key);
}
// Bounds check - if < 0 or >= size continue following switch
OpRegImm(kOpCmp, keyReg, size-1);
LIR* branch_over = OpCondBranch(kCondHi, NULL);
// Load the displacement from the switch table
int disp_reg = AllocTemp();
NewLIR5(kX86PcRelLoadRA, disp_reg, start_of_method_reg, keyReg, 2, WrapPointer(tab_rec));
// Add displacement to start of method
OpRegReg(kOpAdd, start_of_method_reg, disp_reg);
// ..and go!
LIR* switch_branch = NewLIR1(kX86JmpR, start_of_method_reg);
tab_rec->anchor = switch_branch;
/* branch_over target here */
LIR* target = NewLIR0(kPseudoTargetLabel);
branch_over->target = target;
}
/*
* Array data table format:
* ushort ident = 0x0300 magic value
* ushort width width of each element in the table
* uint size number of elements in the table
* ubyte data[size*width] table of data values (may contain a single-byte
* padding at the end)
*
* Total size is 4+(width * size + 1)/2 16-bit code units.
*/
void X86Mir2Lir::GenFillArrayData(DexOffset table_offset, RegLocation rl_src) {
const uint16_t* table = cu_->insns + current_dalvik_offset_ + table_offset;
// Add the table to the list - we'll process it later
FillArrayData* tab_rec =
static_cast<FillArrayData*>(arena_->Alloc(sizeof(FillArrayData), ArenaAllocator::kAllocData));
tab_rec->table = table;
tab_rec->vaddr = current_dalvik_offset_;
uint16_t width = tab_rec->table[1];
uint32_t size = tab_rec->table[2] | ((static_cast<uint32_t>(tab_rec->table[3])) << 16);
tab_rec->size = (size * width) + 8;
fill_array_data_.Insert(tab_rec);
// Making a call - use explicit registers
FlushAllRegs(); /* Everything to home location */
LoadValueDirectFixed(rl_src, rX86_ARG0);
// Materialize a pointer to the fill data image
if (base_of_code_ != nullptr) {
// We can use the saved value.
RegLocation rl_method = mir_graph_->GetRegLocation(base_of_code_->s_reg_low);
LoadValueDirect(rl_method, rX86_ARG2);
store_method_addr_used_ = true;
} else {
NewLIR1(kX86StartOfMethod, rX86_ARG2);
}
NewLIR2(kX86PcRelAdr, rX86_ARG1, WrapPointer(tab_rec));
NewLIR2(kX86Add32RR, rX86_ARG1, rX86_ARG2);
CallRuntimeHelperRegReg(QUICK_ENTRYPOINT_OFFSET(pHandleFillArrayData), rX86_ARG0,
rX86_ARG1, true);
}
void X86Mir2Lir::GenMoveException(RegLocation rl_dest) {
int ex_offset = Thread::ExceptionOffset().Int32Value();
RegLocation rl_result = EvalLoc(rl_dest, kCoreReg, true);
NewLIR2(kX86Mov32RT, rl_result.low_reg, ex_offset);
NewLIR2(kX86Mov32TI, ex_offset, 0);
StoreValue(rl_dest, rl_result);
}
/*
* Mark garbage collection card. Skip if the value we're storing is null.
*/
void X86Mir2Lir::MarkGCCard(int val_reg, int tgt_addr_reg) {
int reg_card_base = AllocTemp();
int reg_card_no = AllocTemp();
LIR* branch_over = OpCmpImmBranch(kCondEq, val_reg, 0, NULL);
NewLIR2(kX86Mov32RT, reg_card_base, Thread::CardTableOffset().Int32Value());
OpRegRegImm(kOpLsr, reg_card_no, tgt_addr_reg, gc::accounting::CardTable::kCardShift);
StoreBaseIndexed(reg_card_base, reg_card_no, reg_card_base, 0,
kUnsignedByte);
LIR* target = NewLIR0(kPseudoTargetLabel);
branch_over->target = target;
FreeTemp(reg_card_base);
FreeTemp(reg_card_no);
}
void X86Mir2Lir::GenEntrySequence(RegLocation* ArgLocs, RegLocation rl_method) {
/*
* On entry, rX86_ARG0, rX86_ARG1, rX86_ARG2 are live. Let the register
* allocation mechanism know so it doesn't try to use any of them when
* expanding the frame or flushing. This leaves the utility
* code with no spare temps.
*/
LockTemp(rX86_ARG0);
LockTemp(rX86_ARG1);
LockTemp(rX86_ARG2);
/* Build frame, return address already on stack */
stack_decrement_ = OpRegImm(kOpSub, rX86_SP, frame_size_ - 4);
/*
* We can safely skip the stack overflow check if we're
* a leaf *and* our frame size < fudge factor.
*/
bool skip_overflow_check = (mir_graph_->MethodIsLeaf() &&
(static_cast<size_t>(frame_size_) <
Thread::kStackOverflowReservedBytes));
NewLIR0(kPseudoMethodEntry);
/* Spill core callee saves */
SpillCoreRegs();
/* NOTE: promotion of FP regs currently unsupported, thus no FP spill */
DCHECK_EQ(num_fp_spills_, 0);
if (!skip_overflow_check) {
// cmp rX86_SP, fs:[stack_end_]; jcc throw_launchpad
LIR* tgt = RawLIR(0, kPseudoThrowTarget, kThrowStackOverflow, 0, 0, 0, 0);
OpRegThreadMem(kOpCmp, rX86_SP, Thread::StackEndOffset());
OpCondBranch(kCondUlt, tgt);
// Remember branch target - will process later
throw_launchpads_.Insert(tgt);
}
FlushIns(ArgLocs, rl_method);
if (base_of_code_ != nullptr) {
// We have been asked to save the address of the method start for later use.
setup_method_address_[0] = NewLIR1(kX86StartOfMethod, rX86_ARG0);
int displacement = SRegOffset(base_of_code_->s_reg_low);
setup_method_address_[1] = StoreBaseDisp(rX86_SP, displacement, rX86_ARG0, kWord);
}
FreeTemp(rX86_ARG0);
FreeTemp(rX86_ARG1);
FreeTemp(rX86_ARG2);
}
void X86Mir2Lir::GenExitSequence() {
/*
* In the exit path, rX86_RET0/rX86_RET1 are live - make sure they aren't
* allocated by the register utilities as temps.
*/
LockTemp(rX86_RET0);
LockTemp(rX86_RET1);
NewLIR0(kPseudoMethodExit);
UnSpillCoreRegs();
/* Remove frame except for return address */
stack_increment_ = OpRegImm(kOpAdd, rX86_SP, frame_size_ - 4);
NewLIR0(kX86Ret);
}
void X86Mir2Lir::GenSpecialExitSequence() {
NewLIR0(kX86Ret);
}
} // namespace art
|