summaryrefslogtreecommitdiffstats
path: root/compiler/driver/compiler_driver.cc
blob: 4b4d0d0d257fdca5a90b4ef0baeba2a37c48e307 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835
1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889
1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1940
1941
1942
1943
1944
1945
1946
1947
1948
1949
1950
1951
1952
1953
1954
1955
1956
1957
1958
1959
1960
1961
1962
1963
1964
1965
1966
1967
1968
1969
1970
1971
1972
1973
1974
1975
1976
1977
1978
1979
1980
1981
1982
1983
1984
1985
1986
1987
1988
1989
1990
1991
1992
1993
1994
1995
1996
1997
1998
1999
2000
2001
2002
2003
2004
2005
2006
2007
2008
2009
2010
2011
2012
2013
2014
2015
2016
2017
2018
2019
2020
2021
2022
2023
2024
2025
2026
2027
2028
2029
2030
2031
2032
2033
2034
2035
2036
2037
2038
2039
2040
2041
2042
2043
2044
2045
2046
2047
2048
2049
2050
2051
2052
2053
2054
2055
2056
2057
2058
2059
2060
2061
2062
2063
2064
2065
2066
2067
2068
2069
2070
2071
2072
2073
2074
2075
2076
2077
2078
2079
2080
2081
2082
2083
2084
2085
2086
2087
2088
2089
2090
2091
2092
/*
 * Copyright (C) 2011 The Android Open Source Project
 *
 * Licensed under the Apache License, Version 2.0 (the "License");
 * you may not use this file except in compliance with the License.
 * You may obtain a copy of the License at
 *
 *      http://www.apache.org/licenses/LICENSE-2.0
 *
 * Unless required by applicable law or agreed to in writing, software
 * distributed under the License is distributed on an "AS IS" BASIS,
 * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
 * See the License for the specific language governing permissions and
 * limitations under the License.
 */

#include "compiler_driver.h"

#define ATRACE_TAG ATRACE_TAG_DALVIK
#include <utils/Trace.h>

#include <vector>
#include <unistd.h>

#include "base/stl_util.h"
#include "base/timing_logger.h"
#include "class_linker.h"
#include "compiled_class.h"
#include "compiler.h"
#include "compiler_driver-inl.h"
#include "dex_compilation_unit.h"
#include "dex_file-inl.h"
#include "dex/verification_results.h"
#include "dex/verified_method.h"
#include "dex/quick/dex_file_method_inliner.h"
#include "driver/compiler_options.h"
#include "jni_internal.h"
#include "object_utils.h"
#include "profiler.h"
#include "runtime.h"
#include "gc/accounting/card_table-inl.h"
#include "gc/accounting/heap_bitmap.h"
#include "gc/space/space.h"
#include "mirror/art_field-inl.h"
#include "mirror/art_method-inl.h"
#include "mirror/class_loader.h"
#include "mirror/class-inl.h"
#include "mirror/dex_cache-inl.h"
#include "mirror/object-inl.h"
#include "mirror/object_array-inl.h"
#include "mirror/throwable.h"
#include "scoped_thread_state_change.h"
#include "ScopedLocalRef.h"
#include "handle_scope-inl.h"
#include "thread.h"
#include "thread_pool.h"
#include "trampolines/trampoline_compiler.h"
#include "transaction.h"
#include "verifier/method_verifier.h"
#include "verifier/method_verifier-inl.h"

namespace art {

static double Percentage(size_t x, size_t y) {
  return 100.0 * (static_cast<double>(x)) / (static_cast<double>(x + y));
}

static void DumpStat(size_t x, size_t y, const char* str) {
  if (x == 0 && y == 0) {
    return;
  }
  LOG(INFO) << Percentage(x, y) << "% of " << str << " for " << (x + y) << " cases";
}

class CompilerDriver::AOTCompilationStats {
 public:
  AOTCompilationStats()
      : stats_lock_("AOT compilation statistics lock"),
        types_in_dex_cache_(0), types_not_in_dex_cache_(0),
        strings_in_dex_cache_(0), strings_not_in_dex_cache_(0),
        resolved_types_(0), unresolved_types_(0),
        resolved_instance_fields_(0), unresolved_instance_fields_(0),
        resolved_local_static_fields_(0), resolved_static_fields_(0), unresolved_static_fields_(0),
        type_based_devirtualization_(0),
        safe_casts_(0), not_safe_casts_(0) {
    for (size_t i = 0; i <= kMaxInvokeType; i++) {
      resolved_methods_[i] = 0;
      unresolved_methods_[i] = 0;
      virtual_made_direct_[i] = 0;
      direct_calls_to_boot_[i] = 0;
      direct_methods_to_boot_[i] = 0;
    }
  }

  void Dump() {
    DumpStat(types_in_dex_cache_, types_not_in_dex_cache_, "types known to be in dex cache");
    DumpStat(strings_in_dex_cache_, strings_not_in_dex_cache_, "strings known to be in dex cache");
    DumpStat(resolved_types_, unresolved_types_, "types resolved");
    DumpStat(resolved_instance_fields_, unresolved_instance_fields_, "instance fields resolved");
    DumpStat(resolved_local_static_fields_ + resolved_static_fields_, unresolved_static_fields_,
             "static fields resolved");
    DumpStat(resolved_local_static_fields_, resolved_static_fields_ + unresolved_static_fields_,
             "static fields local to a class");
    DumpStat(safe_casts_, not_safe_casts_, "check-casts removed based on type information");
    // Note, the code below subtracts the stat value so that when added to the stat value we have
    // 100% of samples. TODO: clean this up.
    DumpStat(type_based_devirtualization_,
             resolved_methods_[kVirtual] + unresolved_methods_[kVirtual] +
             resolved_methods_[kInterface] + unresolved_methods_[kInterface] -
             type_based_devirtualization_,
             "virtual/interface calls made direct based on type information");

    for (size_t i = 0; i <= kMaxInvokeType; i++) {
      std::ostringstream oss;
      oss << static_cast<InvokeType>(i) << " methods were AOT resolved";
      DumpStat(resolved_methods_[i], unresolved_methods_[i], oss.str().c_str());
      if (virtual_made_direct_[i] > 0) {
        std::ostringstream oss2;
        oss2 << static_cast<InvokeType>(i) << " methods made direct";
        DumpStat(virtual_made_direct_[i],
                 resolved_methods_[i] + unresolved_methods_[i] - virtual_made_direct_[i],
                 oss2.str().c_str());
      }
      if (direct_calls_to_boot_[i] > 0) {
        std::ostringstream oss2;
        oss2 << static_cast<InvokeType>(i) << " method calls are direct into boot";
        DumpStat(direct_calls_to_boot_[i],
                 resolved_methods_[i] + unresolved_methods_[i] - direct_calls_to_boot_[i],
                 oss2.str().c_str());
      }
      if (direct_methods_to_boot_[i] > 0) {
        std::ostringstream oss2;
        oss2 << static_cast<InvokeType>(i) << " method calls have methods in boot";
        DumpStat(direct_methods_to_boot_[i],
                 resolved_methods_[i] + unresolved_methods_[i] - direct_methods_to_boot_[i],
                 oss2.str().c_str());
      }
    }
  }

// Allow lossy statistics in non-debug builds.
#ifndef NDEBUG
#define STATS_LOCK() MutexLock mu(Thread::Current(), stats_lock_)
#else
#define STATS_LOCK()
#endif

  void TypeInDexCache() {
    STATS_LOCK();
    types_in_dex_cache_++;
  }

  void TypeNotInDexCache() {
    STATS_LOCK();
    types_not_in_dex_cache_++;
  }

  void StringInDexCache() {
    STATS_LOCK();
    strings_in_dex_cache_++;
  }

  void StringNotInDexCache() {
    STATS_LOCK();
    strings_not_in_dex_cache_++;
  }

  void TypeDoesntNeedAccessCheck() {
    STATS_LOCK();
    resolved_types_++;
  }

  void TypeNeedsAccessCheck() {
    STATS_LOCK();
    unresolved_types_++;
  }

  void ResolvedInstanceField() {
    STATS_LOCK();
    resolved_instance_fields_++;
  }

  void UnresolvedInstanceField() {
    STATS_LOCK();
    unresolved_instance_fields_++;
  }

  void ResolvedLocalStaticField() {
    STATS_LOCK();
    resolved_local_static_fields_++;
  }

  void ResolvedStaticField() {
    STATS_LOCK();
    resolved_static_fields_++;
  }

  void UnresolvedStaticField() {
    STATS_LOCK();
    unresolved_static_fields_++;
  }

  // Indicate that type information from the verifier led to devirtualization.
  void PreciseTypeDevirtualization() {
    STATS_LOCK();
    type_based_devirtualization_++;
  }

  // Indicate that a method of the given type was resolved at compile time.
  void ResolvedMethod(InvokeType type) {
    DCHECK_LE(type, kMaxInvokeType);
    STATS_LOCK();
    resolved_methods_[type]++;
  }

  // Indicate that a method of the given type was unresolved at compile time as it was in an
  // unknown dex file.
  void UnresolvedMethod(InvokeType type) {
    DCHECK_LE(type, kMaxInvokeType);
    STATS_LOCK();
    unresolved_methods_[type]++;
  }

  // Indicate that a type of virtual method dispatch has been converted into a direct method
  // dispatch.
  void VirtualMadeDirect(InvokeType type) {
    DCHECK(type == kVirtual || type == kInterface || type == kSuper);
    STATS_LOCK();
    virtual_made_direct_[type]++;
  }

  // Indicate that a method of the given type was able to call directly into boot.
  void DirectCallsToBoot(InvokeType type) {
    DCHECK_LE(type, kMaxInvokeType);
    STATS_LOCK();
    direct_calls_to_boot_[type]++;
  }

  // Indicate that a method of the given type was able to be resolved directly from boot.
  void DirectMethodsToBoot(InvokeType type) {
    DCHECK_LE(type, kMaxInvokeType);
    STATS_LOCK();
    direct_methods_to_boot_[type]++;
  }

  void ProcessedInvoke(InvokeType type, int flags) {
    STATS_LOCK();
    if (flags == 0) {
      unresolved_methods_[type]++;
    } else {
      DCHECK_NE((flags & kFlagMethodResolved), 0);
      resolved_methods_[type]++;
      if ((flags & kFlagVirtualMadeDirect) != 0) {
        virtual_made_direct_[type]++;
        if ((flags & kFlagPreciseTypeDevirtualization) != 0) {
          type_based_devirtualization_++;
        }
      } else {
        DCHECK_EQ((flags & kFlagPreciseTypeDevirtualization), 0);
      }
      if ((flags & kFlagDirectCallToBoot) != 0) {
        direct_calls_to_boot_[type]++;
      }
      if ((flags & kFlagDirectMethodToBoot) != 0) {
        direct_methods_to_boot_[type]++;
      }
    }
  }

  // A check-cast could be eliminated due to verifier type analysis.
  void SafeCast() {
    STATS_LOCK();
    safe_casts_++;
  }

  // A check-cast couldn't be eliminated due to verifier type analysis.
  void NotASafeCast() {
    STATS_LOCK();
    not_safe_casts_++;
  }

 private:
  Mutex stats_lock_;

  size_t types_in_dex_cache_;
  size_t types_not_in_dex_cache_;

  size_t strings_in_dex_cache_;
  size_t strings_not_in_dex_cache_;

  size_t resolved_types_;
  size_t unresolved_types_;

  size_t resolved_instance_fields_;
  size_t unresolved_instance_fields_;

  size_t resolved_local_static_fields_;
  size_t resolved_static_fields_;
  size_t unresolved_static_fields_;
  // Type based devirtualization for invoke interface and virtual.
  size_t type_based_devirtualization_;

  size_t resolved_methods_[kMaxInvokeType + 1];
  size_t unresolved_methods_[kMaxInvokeType + 1];
  size_t virtual_made_direct_[kMaxInvokeType + 1];
  size_t direct_calls_to_boot_[kMaxInvokeType + 1];
  size_t direct_methods_to_boot_[kMaxInvokeType + 1];

  size_t safe_casts_;
  size_t not_safe_casts_;

  DISALLOW_COPY_AND_ASSIGN(AOTCompilationStats);
};


extern "C" art::CompiledMethod* ArtCompileDEX(art::CompilerDriver& compiler,
                                              const art::DexFile::CodeItem* code_item,
                                              uint32_t access_flags,
                                              art::InvokeType invoke_type,
                                              uint16_t class_def_idx,
                                              uint32_t method_idx,
                                              jobject class_loader,
                                              const art::DexFile& dex_file);

CompilerDriver::CompilerDriver(const CompilerOptions* compiler_options,
                               VerificationResults* verification_results,
                               DexFileToMethodInlinerMap* method_inliner_map,
                               Compiler::Kind compiler_kind,
                               InstructionSet instruction_set,
                               InstructionSetFeatures instruction_set_features,
                               bool image, DescriptorSet* image_classes, size_t thread_count,
                               bool dump_stats, bool dump_passes, CumulativeLogger* timer,
                               std::string profile_file)
    : profile_present_(false), compiler_options_(compiler_options),
      verification_results_(verification_results),
      method_inliner_map_(method_inliner_map),
      compiler_(Compiler::Create(this, compiler_kind)),
      instruction_set_(instruction_set),
      instruction_set_features_(instruction_set_features),
      freezing_constructor_lock_("freezing constructor lock"),
      compiled_classes_lock_("compiled classes lock"),
      compiled_methods_lock_("compiled method lock"),
      image_(image),
      image_classes_(image_classes),
      thread_count_(thread_count),
      start_ns_(0),
      stats_(new AOTCompilationStats),
      dump_stats_(dump_stats),
      dump_passes_(dump_passes),
      timings_logger_(timer),
      compiler_library_(NULL),
      compiler_context_(NULL),
      compiler_enable_auto_elf_loading_(NULL),
      compiler_get_method_code_addr_(NULL),
      support_boot_image_fixup_(instruction_set != kMips),
      cfi_info_(nullptr),
      dedupe_code_("dedupe code"),
      dedupe_mapping_table_("dedupe mapping table"),
      dedupe_vmap_table_("dedupe vmap table"),
      dedupe_gc_map_("dedupe gc map"),
      dedupe_cfi_info_("dedupe cfi info") {
  DCHECK(compiler_options_ != nullptr);
  DCHECK(verification_results_ != nullptr);
  DCHECK(method_inliner_map_ != nullptr);

  CHECK_PTHREAD_CALL(pthread_key_create, (&tls_key_, NULL), "compiler tls key");

  dex_to_dex_compiler_ = reinterpret_cast<DexToDexCompilerFn>(ArtCompileDEX);

  compiler_->Init();

  CHECK(!Runtime::Current()->IsStarted());
  if (image_) {
    CHECK(image_classes_.get() != nullptr);
  } else {
    CHECK(image_classes_.get() == nullptr);
  }

  // Are we generating CFI information?
  if (compiler_options->GetGenerateGDBInformation()) {
    cfi_info_.reset(compiler_->GetCallFrameInformationInitialization(*this));
  }

  // Read the profile file if one is provided.
  if (!profile_file.empty()) {
    profile_present_ = profile_file_.LoadFile(profile_file);
    if (profile_present_) {
      LOG(INFO) << "Using profile data form file " << profile_file;
    } else {
      LOG(INFO) << "Failed to load profile file " << profile_file;
    }
  }
}

std::vector<uint8_t>* CompilerDriver::DeduplicateCode(const std::vector<uint8_t>& code) {
  return dedupe_code_.Add(Thread::Current(), code);
}

std::vector<uint8_t>* CompilerDriver::DeduplicateMappingTable(const std::vector<uint8_t>& code) {
  return dedupe_mapping_table_.Add(Thread::Current(), code);
}

std::vector<uint8_t>* CompilerDriver::DeduplicateVMapTable(const std::vector<uint8_t>& code) {
  return dedupe_vmap_table_.Add(Thread::Current(), code);
}

std::vector<uint8_t>* CompilerDriver::DeduplicateGCMap(const std::vector<uint8_t>& code) {
  return dedupe_gc_map_.Add(Thread::Current(), code);
}

std::vector<uint8_t>* CompilerDriver::DeduplicateCFIInfo(const std::vector<uint8_t>* cfi_info) {
  if (cfi_info == nullptr) {
    return nullptr;
  }
  return dedupe_cfi_info_.Add(Thread::Current(), *cfi_info);
}

CompilerDriver::~CompilerDriver() {
  Thread* self = Thread::Current();
  {
    MutexLock mu(self, compiled_classes_lock_);
    STLDeleteValues(&compiled_classes_);
  }
  {
    MutexLock mu(self, compiled_methods_lock_);
    STLDeleteValues(&compiled_methods_);
  }
  {
    MutexLock mu(self, compiled_methods_lock_);
    STLDeleteElements(&code_to_patch_);
  }
  {
    MutexLock mu(self, compiled_methods_lock_);
    STLDeleteElements(&methods_to_patch_);
  }
  {
    MutexLock mu(self, compiled_methods_lock_);
    STLDeleteElements(&classes_to_patch_);
  }
  CHECK_PTHREAD_CALL(pthread_key_delete, (tls_key_), "delete tls key");
  compiler_->UnInit();
}

CompilerTls* CompilerDriver::GetTls() {
  // Lazily create thread-local storage
  CompilerTls* res = static_cast<CompilerTls*>(pthread_getspecific(tls_key_));
  if (res == NULL) {
    res = new CompilerTls();
    CHECK_PTHREAD_CALL(pthread_setspecific, (tls_key_, res), "compiler tls");
  }
  return res;
}

#define CREATE_TRAMPOLINE(type, abi, offset) \
    if (Is64BitInstructionSet(instruction_set_)) { \
      return CreateTrampoline64(instruction_set_, abi, \
                                type ## _ENTRYPOINT_OFFSET(8, offset)); \
    } else { \
      return CreateTrampoline32(instruction_set_, abi, \
                                type ## _ENTRYPOINT_OFFSET(4, offset)); \
    }

const std::vector<uint8_t>* CompilerDriver::CreateInterpreterToInterpreterBridge() const {
  CREATE_TRAMPOLINE(INTERPRETER, kInterpreterAbi, pInterpreterToInterpreterBridge)
}

const std::vector<uint8_t>* CompilerDriver::CreateInterpreterToCompiledCodeBridge() const {
  CREATE_TRAMPOLINE(INTERPRETER, kInterpreterAbi, pInterpreterToCompiledCodeBridge)
}

const std::vector<uint8_t>* CompilerDriver::CreateJniDlsymLookup() const {
  CREATE_TRAMPOLINE(JNI, kJniAbi, pDlsymLookup)
}

const std::vector<uint8_t>* CompilerDriver::CreatePortableImtConflictTrampoline() const {
  CREATE_TRAMPOLINE(PORTABLE, kPortableAbi, pPortableImtConflictTrampoline)
}

const std::vector<uint8_t>* CompilerDriver::CreatePortableResolutionTrampoline() const {
  CREATE_TRAMPOLINE(PORTABLE, kPortableAbi, pPortableResolutionTrampoline)
}

const std::vector<uint8_t>* CompilerDriver::CreatePortableToInterpreterBridge() const {
  CREATE_TRAMPOLINE(PORTABLE, kPortableAbi, pPortableToInterpreterBridge)
}

const std::vector<uint8_t>* CompilerDriver::CreateQuickGenericJniTrampoline() const {
  CREATE_TRAMPOLINE(QUICK, kQuickAbi, pQuickGenericJniTrampoline)
}

const std::vector<uint8_t>* CompilerDriver::CreateQuickImtConflictTrampoline() const {
  CREATE_TRAMPOLINE(QUICK, kQuickAbi, pQuickImtConflictTrampoline)
}

const std::vector<uint8_t>* CompilerDriver::CreateQuickResolutionTrampoline() const {
  CREATE_TRAMPOLINE(QUICK, kQuickAbi, pQuickResolutionTrampoline)
}

const std::vector<uint8_t>* CompilerDriver::CreateQuickToInterpreterBridge() const {
  CREATE_TRAMPOLINE(QUICK, kQuickAbi, pQuickToInterpreterBridge)
}
#undef CREATE_TRAMPOLINE

void CompilerDriver::CompileAll(jobject class_loader,
                                const std::vector<const DexFile*>& dex_files,
                                TimingLogger* timings) {
  DCHECK(!Runtime::Current()->IsStarted());
  std::unique_ptr<ThreadPool> thread_pool(new ThreadPool("Compiler driver thread pool", thread_count_ - 1));
  PreCompile(class_loader, dex_files, thread_pool.get(), timings);
  Compile(class_loader, dex_files, thread_pool.get(), timings);
  if (dump_stats_) {
    stats_->Dump();
  }
}

static DexToDexCompilationLevel GetDexToDexCompilationlevel(
    Thread* self, Handle<mirror::ClassLoader> class_loader, const DexFile& dex_file,
    const DexFile::ClassDef& class_def) SHARED_LOCKS_REQUIRED(Locks::mutator_lock_) {
  const char* descriptor = dex_file.GetClassDescriptor(class_def);
  ClassLinker* class_linker = Runtime::Current()->GetClassLinker();
  mirror::Class* klass = class_linker->FindClass(self, descriptor, class_loader);
  if (klass == NULL) {
    CHECK(self->IsExceptionPending());
    self->ClearException();
    return kDontDexToDexCompile;
  }
  // The verifier can only run on "quick" instructions at runtime (see usage of
  // FindAccessedFieldAtDexPc and FindInvokedMethodAtDexPc in ThrowNullPointerExceptionFromDexPC
  // function). Since image classes can be verified again while compiling an application,
  // we must prevent the DEX-to-DEX compiler from introducing them.
  // TODO: find a way to enable "quick" instructions for image classes and remove this check.
  bool compiling_image_classes = class_loader.Get() == nullptr;
  if (compiling_image_classes) {
    return kRequired;
  } else if (klass->IsVerified()) {
    // Class is verified so we can enable DEX-to-DEX compilation for performance.
    return kOptimize;
  } else if (klass->IsCompileTimeVerified()) {
    // Class verification has soft-failed. Anyway, ensure at least correctness.
    DCHECK_EQ(klass->GetStatus(), mirror::Class::kStatusRetryVerificationAtRuntime);
    return kRequired;
  } else {
    // Class verification has failed: do not run DEX-to-DEX compilation.
    return kDontDexToDexCompile;
  }
}

void CompilerDriver::CompileOne(mirror::ArtMethod* method, TimingLogger* timings) {
  DCHECK(!Runtime::Current()->IsStarted());
  Thread* self = Thread::Current();
  jobject jclass_loader;
  const DexFile* dex_file;
  uint16_t class_def_idx;
  uint32_t method_idx = method->GetDexMethodIndex();
  uint32_t access_flags = method->GetAccessFlags();
  InvokeType invoke_type = method->GetInvokeType();
  {
    ScopedObjectAccessUnchecked soa(self);
    ScopedLocalRef<jobject>
      local_class_loader(soa.Env(),
                    soa.AddLocalReference<jobject>(method->GetDeclaringClass()->GetClassLoader()));
    jclass_loader = soa.Env()->NewGlobalRef(local_class_loader.get());
    // Find the dex_file
    dex_file = method->GetDexFile();
    class_def_idx = method->GetClassDefIndex();
  }
  const DexFile::CodeItem* code_item = dex_file->GetCodeItem(method->GetCodeItemOffset());
  self->TransitionFromRunnableToSuspended(kNative);

  std::vector<const DexFile*> dex_files;
  dex_files.push_back(dex_file);

  std::unique_ptr<ThreadPool> thread_pool(new ThreadPool("Compiler driver thread pool", 0U));
  PreCompile(jclass_loader, dex_files, thread_pool.get(), timings);

  // Can we run DEX-to-DEX compiler on this class ?
  DexToDexCompilationLevel dex_to_dex_compilation_level = kDontDexToDexCompile;
  {
    ScopedObjectAccess soa(Thread::Current());
    const DexFile::ClassDef& class_def = dex_file->GetClassDef(class_def_idx);
    StackHandleScope<1> hs(soa.Self());
    Handle<mirror::ClassLoader> class_loader(
        hs.NewHandle(soa.Decode<mirror::ClassLoader*>(jclass_loader)));
    dex_to_dex_compilation_level = GetDexToDexCompilationlevel(self, class_loader, *dex_file,
                                                               class_def);
  }
  CompileMethod(code_item, access_flags, invoke_type, class_def_idx, method_idx, jclass_loader,
                *dex_file, dex_to_dex_compilation_level);

  self->GetJniEnv()->DeleteGlobalRef(jclass_loader);

  self->TransitionFromSuspendedToRunnable();
}

void CompilerDriver::Resolve(jobject class_loader, const std::vector<const DexFile*>& dex_files,
                             ThreadPool* thread_pool, TimingLogger* timings) {
  for (size_t i = 0; i != dex_files.size(); ++i) {
    const DexFile* dex_file = dex_files[i];
    CHECK(dex_file != nullptr);
    ResolveDexFile(class_loader, *dex_file, thread_pool, timings);
  }
}

void CompilerDriver::PreCompile(jobject class_loader, const std::vector<const DexFile*>& dex_files,
                                ThreadPool* thread_pool, TimingLogger* timings) {
  LoadImageClasses(timings);

  if (!compiler_options_->IsVerificationEnabled()) {
    VLOG(compiler) << "Verify none mode specified, skipping pre-compilation";
    return;
  }

  Resolve(class_loader, dex_files, thread_pool, timings);

  Verify(class_loader, dex_files, thread_pool, timings);

  InitializeClasses(class_loader, dex_files, thread_pool, timings);

  UpdateImageClasses(timings);
}

bool CompilerDriver::IsImageClass(const char* descriptor) const {
  if (!IsImage()) {
    return true;
  } else {
    return image_classes_->find(descriptor) != image_classes_->end();
  }
}

static void ResolveExceptionsForMethod(MethodHelper* mh,
    std::set<std::pair<uint16_t, const DexFile*>>& exceptions_to_resolve)
    SHARED_LOCKS_REQUIRED(Locks::mutator_lock_) {
  const DexFile::CodeItem* code_item = mh->GetMethod()->GetCodeItem();
  if (code_item == NULL) {
    return;  // native or abstract method
  }
  if (code_item->tries_size_ == 0) {
    return;  // nothing to process
  }
  const byte* encoded_catch_handler_list = DexFile::GetCatchHandlerData(*code_item, 0);
  size_t num_encoded_catch_handlers = DecodeUnsignedLeb128(&encoded_catch_handler_list);
  for (size_t i = 0; i < num_encoded_catch_handlers; i++) {
    int32_t encoded_catch_handler_size = DecodeSignedLeb128(&encoded_catch_handler_list);
    bool has_catch_all = false;
    if (encoded_catch_handler_size <= 0) {
      encoded_catch_handler_size = -encoded_catch_handler_size;
      has_catch_all = true;
    }
    for (int32_t j = 0; j < encoded_catch_handler_size; j++) {
      uint16_t encoded_catch_handler_handlers_type_idx =
          DecodeUnsignedLeb128(&encoded_catch_handler_list);
      // Add to set of types to resolve if not already in the dex cache resolved types
      if (!mh->GetMethod()->IsResolvedTypeIdx(encoded_catch_handler_handlers_type_idx)) {
        exceptions_to_resolve.insert(
            std::pair<uint16_t, const DexFile*>(encoded_catch_handler_handlers_type_idx,
                                                mh->GetMethod()->GetDexFile()));
      }
      // ignore address associated with catch handler
      DecodeUnsignedLeb128(&encoded_catch_handler_list);
    }
    if (has_catch_all) {
      // ignore catch all address
      DecodeUnsignedLeb128(&encoded_catch_handler_list);
    }
  }
}

static bool ResolveCatchBlockExceptionsClassVisitor(mirror::Class* c, void* arg)
    SHARED_LOCKS_REQUIRED(Locks::mutator_lock_) {
  std::set<std::pair<uint16_t, const DexFile*>>* exceptions_to_resolve =
      reinterpret_cast<std::set<std::pair<uint16_t, const DexFile*>>*>(arg);
  StackHandleScope<1> hs(Thread::Current());
  MethodHelper mh(hs.NewHandle<mirror::ArtMethod>(nullptr));
  for (size_t i = 0; i < c->NumVirtualMethods(); ++i) {
    mh.ChangeMethod(c->GetVirtualMethod(i));
    ResolveExceptionsForMethod(&mh, *exceptions_to_resolve);
  }
  for (size_t i = 0; i < c->NumDirectMethods(); ++i) {
    mh.ChangeMethod(c->GetDirectMethod(i));
    ResolveExceptionsForMethod(&mh, *exceptions_to_resolve);
  }
  return true;
}

static bool RecordImageClassesVisitor(mirror::Class* klass, void* arg)
    SHARED_LOCKS_REQUIRED(Locks::mutator_lock_) {
  CompilerDriver::DescriptorSet* image_classes =
      reinterpret_cast<CompilerDriver::DescriptorSet*>(arg);
  image_classes->insert(klass->GetDescriptor());
  return true;
}

// Make a list of descriptors for classes to include in the image
void CompilerDriver::LoadImageClasses(TimingLogger* timings)
      LOCKS_EXCLUDED(Locks::mutator_lock_) {
  CHECK(timings != nullptr);
  if (!IsImage()) {
    return;
  }

  TimingLogger::ScopedTiming t("LoadImageClasses", timings);
  // Make a first class to load all classes explicitly listed in the file
  Thread* self = Thread::Current();
  ScopedObjectAccess soa(self);
  ClassLinker* class_linker = Runtime::Current()->GetClassLinker();
  CHECK(image_classes_.get() != nullptr);
  for (auto it = image_classes_->begin(), end = image_classes_->end(); it != end;) {
    const std::string& descriptor(*it);
    StackHandleScope<1> hs(self);
    Handle<mirror::Class> klass(
        hs.NewHandle(class_linker->FindSystemClass(self, descriptor.c_str())));
    if (klass.Get() == NULL) {
      VLOG(compiler) << "Failed to find class " << descriptor;
      image_classes_->erase(it++);
      self->ClearException();
    } else {
      ++it;
    }
  }

  // Resolve exception classes referenced by the loaded classes. The catch logic assumes
  // exceptions are resolved by the verifier when there is a catch block in an interested method.
  // Do this here so that exception classes appear to have been specified image classes.
  std::set<std::pair<uint16_t, const DexFile*>> unresolved_exception_types;
  StackHandleScope<1> hs(self);
  Handle<mirror::Class> java_lang_Throwable(
      hs.NewHandle(class_linker->FindSystemClass(self, "Ljava/lang/Throwable;")));
  do {
    unresolved_exception_types.clear();
    class_linker->VisitClasses(ResolveCatchBlockExceptionsClassVisitor,
                               &unresolved_exception_types);
    for (const std::pair<uint16_t, const DexFile*>& exception_type : unresolved_exception_types) {
      uint16_t exception_type_idx = exception_type.first;
      const DexFile* dex_file = exception_type.second;
      StackHandleScope<2> hs(self);
      Handle<mirror::DexCache> dex_cache(hs.NewHandle(class_linker->FindDexCache(*dex_file)));
      Handle<mirror::Class> klass(hs.NewHandle(
          class_linker->ResolveType(*dex_file, exception_type_idx, dex_cache,
                                    NullHandle<mirror::ClassLoader>())));
      if (klass.Get() == NULL) {
        const DexFile::TypeId& type_id = dex_file->GetTypeId(exception_type_idx);
        const char* descriptor = dex_file->GetTypeDescriptor(type_id);
        LOG(FATAL) << "Failed to resolve class " << descriptor;
      }
      DCHECK(java_lang_Throwable->IsAssignableFrom(klass.Get()));
    }
    // Resolving exceptions may load classes that reference more exceptions, iterate until no
    // more are found
  } while (!unresolved_exception_types.empty());

  // We walk the roots looking for classes so that we'll pick up the
  // above classes plus any classes them depend on such super
  // classes, interfaces, and the required ClassLinker roots.
  class_linker->VisitClasses(RecordImageClassesVisitor, image_classes_.get());

  CHECK_NE(image_classes_->size(), 0U);
}

static void MaybeAddToImageClasses(Handle<mirror::Class> c,
                                   CompilerDriver::DescriptorSet* image_classes)
    SHARED_LOCKS_REQUIRED(Locks::mutator_lock_) {
  Thread* self = Thread::Current();
  StackHandleScope<1> hs(self);
  // Make a copy of the handle so that we don't clobber it doing Assign.
  Handle<mirror::Class> klass(hs.NewHandle(c.Get()));
  while (!klass->IsObjectClass()) {
    std::string descriptor(klass->GetDescriptor());
    std::pair<CompilerDriver::DescriptorSet::iterator, bool> result =
        image_classes->insert(descriptor);
    if (result.second) {
        VLOG(compiler) << "Adding " << descriptor << " to image classes";
    } else {
      return;
    }
    for (size_t i = 0; i < klass->NumDirectInterfaces(); ++i) {
      StackHandleScope<1> hs(self);
      MaybeAddToImageClasses(hs.NewHandle(mirror::Class::GetDirectInterface(self, klass, i)),
                             image_classes);
    }
    if (klass->IsArrayClass()) {
      StackHandleScope<1> hs(self);
      MaybeAddToImageClasses(hs.NewHandle(klass->GetComponentType()), image_classes);
    }
    klass.Assign(klass->GetSuperClass());
  }
}

void CompilerDriver::FindClinitImageClassesCallback(mirror::Object* object, void* arg) {
  DCHECK(object != NULL);
  DCHECK(arg != NULL);
  CompilerDriver* compiler_driver = reinterpret_cast<CompilerDriver*>(arg);
  StackHandleScope<1> hs(Thread::Current());
  MaybeAddToImageClasses(hs.NewHandle(object->GetClass()), compiler_driver->image_classes_.get());
}

void CompilerDriver::UpdateImageClasses(TimingLogger* timings) {
  if (IsImage()) {
    TimingLogger::ScopedTiming t("UpdateImageClasses", timings);
    // Update image_classes_ with classes for objects created by <clinit> methods.
    Thread* self = Thread::Current();
    const char* old_cause = self->StartAssertNoThreadSuspension("ImageWriter");
    gc::Heap* heap = Runtime::Current()->GetHeap();
    // TODO: Image spaces only?
    ScopedObjectAccess soa(Thread::Current());
    WriterMutexLock mu(self, *Locks::heap_bitmap_lock_);
    heap->VisitObjects(FindClinitImageClassesCallback, this);
    self->EndAssertNoThreadSuspension(old_cause);
  }
}

bool CompilerDriver::CanAssumeTypeIsPresentInDexCache(const DexFile& dex_file, uint32_t type_idx) {
  if (IsImage() &&
      IsImageClass(dex_file.StringDataByIdx(dex_file.GetTypeId(type_idx).descriptor_idx_))) {
    if (kIsDebugBuild) {
      ScopedObjectAccess soa(Thread::Current());
      mirror::DexCache* dex_cache = Runtime::Current()->GetClassLinker()->FindDexCache(dex_file);
      mirror::Class* resolved_class = dex_cache->GetResolvedType(type_idx);
      CHECK(resolved_class != NULL);
    }
    stats_->TypeInDexCache();
    return true;
  } else {
    stats_->TypeNotInDexCache();
    return false;
  }
}

bool CompilerDriver::CanAssumeStringIsPresentInDexCache(const DexFile& dex_file,
                                                        uint32_t string_idx) {
  // See also Compiler::ResolveDexFile

  bool result = false;
  if (IsImage()) {
    // We resolve all const-string strings when building for the image.
    ScopedObjectAccess soa(Thread::Current());
    StackHandleScope<1> hs(soa.Self());
    Handle<mirror::DexCache> dex_cache(
        hs.NewHandle(Runtime::Current()->GetClassLinker()->FindDexCache(dex_file)));
    Runtime::Current()->GetClassLinker()->ResolveString(dex_file, string_idx, dex_cache);
    result = true;
  }
  if (result) {
    stats_->StringInDexCache();
  } else {
    stats_->StringNotInDexCache();
  }
  return result;
}

bool CompilerDriver::CanAccessTypeWithoutChecks(uint32_t referrer_idx, const DexFile& dex_file,
                                                uint32_t type_idx,
                                                bool* type_known_final, bool* type_known_abstract,
                                                bool* equals_referrers_class) {
  if (type_known_final != NULL) {
    *type_known_final = false;
  }
  if (type_known_abstract != NULL) {
    *type_known_abstract = false;
  }
  if (equals_referrers_class != NULL) {
    *equals_referrers_class = false;
  }
  ScopedObjectAccess soa(Thread::Current());
  mirror::DexCache* dex_cache = Runtime::Current()->GetClassLinker()->FindDexCache(dex_file);
  // Get type from dex cache assuming it was populated by the verifier
  mirror::Class* resolved_class = dex_cache->GetResolvedType(type_idx);
  if (resolved_class == NULL) {
    stats_->TypeNeedsAccessCheck();
    return false;  // Unknown class needs access checks.
  }
  const DexFile::MethodId& method_id = dex_file.GetMethodId(referrer_idx);
  if (equals_referrers_class != NULL) {
    *equals_referrers_class = (method_id.class_idx_ == type_idx);
  }
  mirror::Class* referrer_class = dex_cache->GetResolvedType(method_id.class_idx_);
  if (referrer_class == NULL) {
    stats_->TypeNeedsAccessCheck();
    return false;  // Incomplete referrer knowledge needs access check.
  }
  // Perform access check, will return true if access is ok or false if we're going to have to
  // check this at runtime (for example for class loaders).
  bool result = referrer_class->CanAccess(resolved_class);
  if (result) {
    stats_->TypeDoesntNeedAccessCheck();
    if (type_known_final != NULL) {
      *type_known_final = resolved_class->IsFinal() && !resolved_class->IsArrayClass();
    }
    if (type_known_abstract != NULL) {
      *type_known_abstract = resolved_class->IsAbstract() && !resolved_class->IsArrayClass();
    }
  } else {
    stats_->TypeNeedsAccessCheck();
  }
  return result;
}

bool CompilerDriver::CanAccessInstantiableTypeWithoutChecks(uint32_t referrer_idx,
                                                            const DexFile& dex_file,
                                                            uint32_t type_idx) {
  ScopedObjectAccess soa(Thread::Current());
  mirror::DexCache* dex_cache = Runtime::Current()->GetClassLinker()->FindDexCache(dex_file);
  // Get type from dex cache assuming it was populated by the verifier.
  mirror::Class* resolved_class = dex_cache->GetResolvedType(type_idx);
  if (resolved_class == NULL) {
    stats_->TypeNeedsAccessCheck();
    return false;  // Unknown class needs access checks.
  }
  const DexFile::MethodId& method_id = dex_file.GetMethodId(referrer_idx);
  mirror::Class* referrer_class = dex_cache->GetResolvedType(method_id.class_idx_);
  if (referrer_class == NULL) {
    stats_->TypeNeedsAccessCheck();
    return false;  // Incomplete referrer knowledge needs access check.
  }
  // Perform access and instantiable checks, will return true if access is ok or false if we're
  // going to have to check this at runtime (for example for class loaders).
  bool result = referrer_class->CanAccess(resolved_class) && resolved_class->IsInstantiable();
  if (result) {
    stats_->TypeDoesntNeedAccessCheck();
  } else {
    stats_->TypeNeedsAccessCheck();
  }
  return result;
}

bool CompilerDriver::CanEmbedTypeInCode(const DexFile& dex_file, uint32_t type_idx,
                                        bool* is_type_initialized, bool* use_direct_type_ptr,
                                        uintptr_t* direct_type_ptr, bool* out_is_finalizable) {
  ScopedObjectAccess soa(Thread::Current());
  mirror::DexCache* dex_cache = Runtime::Current()->GetClassLinker()->FindDexCache(dex_file);
  mirror::Class* resolved_class = dex_cache->GetResolvedType(type_idx);
  if (resolved_class == nullptr) {
    return false;
  }
  *out_is_finalizable = resolved_class->IsFinalizable();
  const bool compiling_boot = Runtime::Current()->GetHeap()->IsCompilingBoot();
  if (compiling_boot) {
    // boot -> boot class pointers.
    // True if the class is in the image at boot compiling time.
    const bool is_image_class = IsImage() && IsImageClass(
        dex_file.StringDataByIdx(dex_file.GetTypeId(type_idx).descriptor_idx_));
    // True if pc relative load works.
    const bool support_boot_image_fixup = GetSupportBootImageFixup();
    if (is_image_class && support_boot_image_fixup) {
      *is_type_initialized = resolved_class->IsInitialized();
      *use_direct_type_ptr = false;
      *direct_type_ptr = 0;
      return true;
    } else {
      return false;
    }
  } else {
    // True if the class is in the image at app compiling time.
    const bool class_in_image =
        Runtime::Current()->GetHeap()->FindSpaceFromObject(resolved_class, false)->IsImageSpace();
    if (class_in_image) {
      // boot -> app class pointers.
      *is_type_initialized = resolved_class->IsInitialized();
      *use_direct_type_ptr = true;
      *direct_type_ptr = reinterpret_cast<uintptr_t>(resolved_class);
      return true;
    } else {
      // app -> app class pointers.
      // Give up because app does not have an image and class
      // isn't created at compile time.  TODO: implement this
      // if/when each app gets an image.
      return false;
    }
  }
}

void CompilerDriver::ProcessedInstanceField(bool resolved) {
  if (!resolved) {
    stats_->UnresolvedInstanceField();
  } else {
    stats_->ResolvedInstanceField();
  }
}

void CompilerDriver::ProcessedStaticField(bool resolved, bool local) {
  if (!resolved) {
    stats_->UnresolvedStaticField();
  } else if (local) {
    stats_->ResolvedLocalStaticField();
  } else {
    stats_->ResolvedStaticField();
  }
}

void CompilerDriver::ProcessedInvoke(InvokeType invoke_type, int flags) {
  stats_->ProcessedInvoke(invoke_type, flags);
}

bool CompilerDriver::ComputeInstanceFieldInfo(uint32_t field_idx, const DexCompilationUnit* mUnit,
                                              bool is_put, MemberOffset* field_offset,
                                              bool* is_volatile) {
  ScopedObjectAccess soa(Thread::Current());
  // Try to resolve the field and compiling method's class.
  mirror::ArtField* resolved_field;
  mirror::Class* referrer_class;
  mirror::DexCache* dex_cache;
  {
    StackHandleScope<3> hs(soa.Self());
    Handle<mirror::DexCache> dex_cache_handle(
        hs.NewHandle(mUnit->GetClassLinker()->FindDexCache(*mUnit->GetDexFile())));
    Handle<mirror::ClassLoader> class_loader_handle(
        hs.NewHandle(soa.Decode<mirror::ClassLoader*>(mUnit->GetClassLoader())));
    Handle<mirror::ArtField> resolved_field_handle(hs.NewHandle(
        ResolveField(soa, dex_cache_handle, class_loader_handle, mUnit, field_idx, false)));
    referrer_class = (resolved_field_handle.Get() != nullptr)
        ? ResolveCompilingMethodsClass(soa, dex_cache_handle, class_loader_handle, mUnit) : nullptr;
    resolved_field = resolved_field_handle.Get();
    dex_cache = dex_cache_handle.Get();
  }
  bool result = false;
  if (resolved_field != nullptr && referrer_class != nullptr) {
    *is_volatile = IsFieldVolatile(resolved_field);
    std::pair<bool, bool> fast_path = IsFastInstanceField(
        dex_cache, referrer_class, resolved_field, field_idx, field_offset);
    result = is_put ? fast_path.second : fast_path.first;
  }
  if (!result) {
    // Conservative defaults.
    *is_volatile = true;
    *field_offset = MemberOffset(static_cast<size_t>(-1));
  }
  ProcessedInstanceField(result);
  return result;
}

bool CompilerDriver::ComputeStaticFieldInfo(uint32_t field_idx, const DexCompilationUnit* mUnit,
                                            bool is_put, MemberOffset* field_offset,
                                            uint32_t* storage_index, bool* is_referrers_class,
                                            bool* is_volatile, bool* is_initialized) {
  ScopedObjectAccess soa(Thread::Current());
  // Try to resolve the field and compiling method's class.
  mirror::ArtField* resolved_field;
  mirror::Class* referrer_class;
  mirror::DexCache* dex_cache;
  {
    StackHandleScope<3> hs(soa.Self());
    Handle<mirror::DexCache> dex_cache_handle(
        hs.NewHandle(mUnit->GetClassLinker()->FindDexCache(*mUnit->GetDexFile())));
    Handle<mirror::ClassLoader> class_loader_handle(
        hs.NewHandle(soa.Decode<mirror::ClassLoader*>(mUnit->GetClassLoader())));
    Handle<mirror::ArtField> resolved_field_handle(hs.NewHandle(
        ResolveField(soa, dex_cache_handle, class_loader_handle, mUnit, field_idx, true)));
    referrer_class = (resolved_field_handle.Get() != nullptr)
        ? ResolveCompilingMethodsClass(soa, dex_cache_handle, class_loader_handle, mUnit) : nullptr;
    resolved_field = resolved_field_handle.Get();
    dex_cache = dex_cache_handle.Get();
  }
  bool result = false;
  if (resolved_field != nullptr && referrer_class != nullptr) {
    *is_volatile = IsFieldVolatile(resolved_field);
    std::pair<bool, bool> fast_path = IsFastStaticField(
        dex_cache, referrer_class, resolved_field, field_idx, field_offset,
        storage_index, is_referrers_class, is_initialized);
    result = is_put ? fast_path.second : fast_path.first;
  }
  if (!result) {
    // Conservative defaults.
    *is_volatile = true;
    *field_offset = MemberOffset(static_cast<size_t>(-1));
    *storage_index = -1;
    *is_referrers_class = false;
    *is_initialized = false;
  }
  ProcessedStaticField(result, *is_referrers_class);
  return result;
}

void CompilerDriver::GetCodeAndMethodForDirectCall(InvokeType* type, InvokeType sharp_type,
                                                   bool no_guarantee_of_dex_cache_entry,
                                                   mirror::Class* referrer_class,
                                                   mirror::ArtMethod* method,
                                                   int* stats_flags,
                                                   MethodReference* target_method,
                                                   uintptr_t* direct_code,
                                                   uintptr_t* direct_method) {
  // For direct and static methods compute possible direct_code and direct_method values, ie
  // an address for the Method* being invoked and an address of the code for that Method*.
  // For interface calls compute a value for direct_method that is the interface method being
  // invoked, so this can be passed to the out-of-line runtime support code.
  *direct_code = 0;
  *direct_method = 0;
  bool use_dex_cache = false;
  const bool compiling_boot = Runtime::Current()->GetHeap()->IsCompilingBoot();
  if (compiler_->IsPortable()) {
    if (sharp_type != kStatic && sharp_type != kDirect) {
      return;
    }
    use_dex_cache = true;
  } else {
    if (sharp_type != kStatic && sharp_type != kDirect) {
      return;
    }
    // TODO: support patching on all architectures.
    use_dex_cache = compiling_boot && !support_boot_image_fixup_;
  }
  bool method_code_in_boot = (method->GetDeclaringClass()->GetClassLoader() == nullptr);
  if (!use_dex_cache) {
    if (!method_code_in_boot) {
      use_dex_cache = true;
    } else {
      bool has_clinit_trampoline =
          method->IsStatic() && !method->GetDeclaringClass()->IsInitialized();
      if (has_clinit_trampoline && (method->GetDeclaringClass() != referrer_class)) {
        // Ensure we run the clinit trampoline unless we are invoking a static method in the same
        // class.
        use_dex_cache = true;
      }
    }
  }
  if (method_code_in_boot) {
    *stats_flags |= kFlagDirectCallToBoot | kFlagDirectMethodToBoot;
  }
  if (!use_dex_cache && compiling_boot) {
    if (!IsImageClass(method->GetDeclaringClassDescriptor())) {
      // We can only branch directly to Methods that are resolved in the DexCache.
      // Otherwise we won't invoke the resolution trampoline.
      use_dex_cache = true;
    }
  }
  // The method is defined not within this dex file. We need a dex cache slot within the current
  // dex file or direct pointers.
  bool must_use_direct_pointers = false;
  if (target_method->dex_file == method->GetDeclaringClass()->GetDexCache()->GetDexFile()) {
    target_method->dex_method_index = method->GetDexMethodIndex();
  } else {
    if (no_guarantee_of_dex_cache_entry) {
      StackHandleScope<1> hs(Thread::Current());
      MethodHelper mh(hs.NewHandle(method));
      // See if the method is also declared in this dex cache.
      uint32_t dex_method_idx = mh.FindDexMethodIndexInOtherDexFile(
          *target_method->dex_file, target_method->dex_method_index);
      if (dex_method_idx != DexFile::kDexNoIndex) {
        target_method->dex_method_index = dex_method_idx;
      } else {
        if (compiling_boot && !use_dex_cache) {
          target_method->dex_method_index = method->GetDexMethodIndex();
          target_method->dex_file = method->GetDeclaringClass()->GetDexCache()->GetDexFile();
        }
        must_use_direct_pointers = true;
      }
    }
  }
  if (use_dex_cache) {
    if (must_use_direct_pointers) {
      // Fail. Test above showed the only safe dispatch was via the dex cache, however, the direct
      // pointers are required as the dex cache lacks an appropriate entry.
      VLOG(compiler) << "Dex cache devirtualization failed for: " << PrettyMethod(method);
    } else {
      *type = sharp_type;
    }
  } else {
    bool method_in_image = compiling_boot ||
        Runtime::Current()->GetHeap()->FindSpaceFromObject(method, false)->IsImageSpace();
    if (method_in_image) {
      CHECK(!method->IsAbstract());
      *type = sharp_type;
      *direct_method = compiling_boot ? -1 : reinterpret_cast<uintptr_t>(method);
      *direct_code = compiling_boot ? -1 : compiler_->GetEntryPointOf(method);
      target_method->dex_file = method->GetDeclaringClass()->GetDexCache()->GetDexFile();
      target_method->dex_method_index = method->GetDexMethodIndex();
    } else if (!must_use_direct_pointers) {
      // Set the code and rely on the dex cache for the method.
      *type = sharp_type;
      *direct_code = compiler_->GetEntryPointOf(method);
    } else {
      // Direct pointers were required but none were available.
      VLOG(compiler) << "Dex cache devirtualization failed for: " << PrettyMethod(method);
    }
  }
}

bool CompilerDriver::ComputeInvokeInfo(const DexCompilationUnit* mUnit, const uint32_t dex_pc,
                                       bool update_stats, bool enable_devirtualization,
                                       InvokeType* invoke_type, MethodReference* target_method,
                                       int* vtable_idx, uintptr_t* direct_code,
                                       uintptr_t* direct_method) {
  InvokeType orig_invoke_type = *invoke_type;
  int stats_flags = 0;
  ScopedObjectAccess soa(Thread::Current());
  // Try to resolve the method and compiling method's class.
  mirror::ArtMethod* resolved_method;
  mirror::Class* referrer_class;
  StackHandleScope<3> hs(soa.Self());
  Handle<mirror::DexCache> dex_cache(
      hs.NewHandle(mUnit->GetClassLinker()->FindDexCache(*mUnit->GetDexFile())));
  Handle<mirror::ClassLoader> class_loader(hs.NewHandle(
      soa.Decode<mirror::ClassLoader*>(mUnit->GetClassLoader())));
  {
    uint32_t method_idx = target_method->dex_method_index;
    Handle<mirror::ArtMethod> resolved_method_handle(hs.NewHandle(
        ResolveMethod(soa, dex_cache, class_loader, mUnit, method_idx, orig_invoke_type)));
    referrer_class = (resolved_method_handle.Get() != nullptr)
        ? ResolveCompilingMethodsClass(soa, dex_cache, class_loader, mUnit) : nullptr;
    resolved_method = resolved_method_handle.Get();
  }
  bool result = false;
  if (resolved_method != nullptr) {
    *vtable_idx = GetResolvedMethodVTableIndex(resolved_method, orig_invoke_type);

    if (enable_devirtualization) {
      DCHECK(mUnit->GetVerifiedMethod() != nullptr);
      const MethodReference* devirt_target = mUnit->GetVerifiedMethod()->GetDevirtTarget(dex_pc);

      stats_flags = IsFastInvoke(
          soa, dex_cache, class_loader, mUnit, referrer_class, resolved_method,
          invoke_type, target_method, devirt_target, direct_code, direct_method);
      result = stats_flags != 0;
    } else {
      // Devirtualization not enabled. Inline IsFastInvoke(), dropping the devirtualization parts.
      if (UNLIKELY(referrer_class == nullptr) ||
          UNLIKELY(!referrer_class->CanAccessResolvedMethod(resolved_method->GetDeclaringClass(),
                                                            resolved_method, dex_cache.Get(),
                                                            target_method->dex_method_index)) ||
          *invoke_type == kSuper) {
        // Slow path. (Without devirtualization, all super calls go slow path as well.)
      } else {
        // Sharpening failed so generate a regular resolved method dispatch.
        stats_flags = kFlagMethodResolved;
        GetCodeAndMethodForDirectCall(invoke_type, *invoke_type, false, referrer_class, resolved_method,
                                      &stats_flags, target_method, direct_code, direct_method);
        result = true;
      }
    }
  }
  if (!result) {
    // Conservative defaults.
    *vtable_idx = -1;
    *direct_code = 0u;
    *direct_method = 0u;
  }
  if (update_stats) {
    ProcessedInvoke(orig_invoke_type, stats_flags);
  }
  return result;
}

const VerifiedMethod* CompilerDriver::GetVerifiedMethod(const DexFile* dex_file,
                                                        uint32_t method_idx) const {
  MethodReference ref(dex_file, method_idx);
  return verification_results_->GetVerifiedMethod(ref);
}

bool CompilerDriver::IsSafeCast(const DexCompilationUnit* mUnit, uint32_t dex_pc) {
  DCHECK(mUnit->GetVerifiedMethod() != nullptr);
  bool result = mUnit->GetVerifiedMethod()->IsSafeCast(dex_pc);
  if (result) {
    stats_->SafeCast();
  } else {
    stats_->NotASafeCast();
  }
  return result;
}

void CompilerDriver::AddCodePatch(const DexFile* dex_file,
                                  uint16_t referrer_class_def_idx,
                                  uint32_t referrer_method_idx,
                                  InvokeType referrer_invoke_type,
                                  uint32_t target_method_idx,
                                  const DexFile* target_dex_file,
                                  InvokeType target_invoke_type,
                                  size_t literal_offset) {
  MutexLock mu(Thread::Current(), compiled_methods_lock_);
  code_to_patch_.push_back(new CallPatchInformation(dex_file,
                                                    referrer_class_def_idx,
                                                    referrer_method_idx,
                                                    referrer_invoke_type,
                                                    target_method_idx,
                                                    target_dex_file,
                                                    target_invoke_type,
                                                    literal_offset));
}
void CompilerDriver::AddRelativeCodePatch(const DexFile* dex_file,
                                          uint16_t referrer_class_def_idx,
                                          uint32_t referrer_method_idx,
                                          InvokeType referrer_invoke_type,
                                          uint32_t target_method_idx,
                                          const DexFile* target_dex_file,
                                          InvokeType target_invoke_type,
                                          size_t literal_offset,
                                          int32_t pc_relative_offset) {
  MutexLock mu(Thread::Current(), compiled_methods_lock_);
  code_to_patch_.push_back(new RelativeCallPatchInformation(dex_file,
                                                            referrer_class_def_idx,
                                                            referrer_method_idx,
                                                            referrer_invoke_type,
                                                            target_method_idx,
                                                            target_dex_file,
                                                            target_invoke_type,
                                                            literal_offset,
                                                            pc_relative_offset));
}
void CompilerDriver::AddMethodPatch(const DexFile* dex_file,
                                    uint16_t referrer_class_def_idx,
                                    uint32_t referrer_method_idx,
                                    InvokeType referrer_invoke_type,
                                    uint32_t target_method_idx,
                                    const DexFile* target_dex_file,
                                    InvokeType target_invoke_type,
                                    size_t literal_offset) {
  MutexLock mu(Thread::Current(), compiled_methods_lock_);
  methods_to_patch_.push_back(new CallPatchInformation(dex_file,
                                                       referrer_class_def_idx,
                                                       referrer_method_idx,
                                                       referrer_invoke_type,
                                                       target_method_idx,
                                                       target_dex_file,
                                                       target_invoke_type,
                                                       literal_offset));
}
void CompilerDriver::AddClassPatch(const DexFile* dex_file,
                                    uint16_t referrer_class_def_idx,
                                    uint32_t referrer_method_idx,
                                    uint32_t target_type_idx,
                                    size_t literal_offset) {
  MutexLock mu(Thread::Current(), compiled_methods_lock_);
  classes_to_patch_.push_back(new TypePatchInformation(dex_file,
                                                       referrer_class_def_idx,
                                                       referrer_method_idx,
                                                       target_type_idx,
                                                       literal_offset));
}

class ParallelCompilationManager {
 public:
  typedef void Callback(const ParallelCompilationManager* manager, size_t index);

  ParallelCompilationManager(ClassLinker* class_linker,
                             jobject class_loader,
                             CompilerDriver* compiler,
                             const DexFile* dex_file,
                             ThreadPool* thread_pool)
    : index_(0),
      class_linker_(class_linker),
      class_loader_(class_loader),
      compiler_(compiler),
      dex_file_(dex_file),
      thread_pool_(thread_pool) {}

  ClassLinker* GetClassLinker() const {
    CHECK(class_linker_ != NULL);
    return class_linker_;
  }

  jobject GetClassLoader() const {
    return class_loader_;
  }

  CompilerDriver* GetCompiler() const {
    CHECK(compiler_ != NULL);
    return compiler_;
  }

  const DexFile* GetDexFile() const {
    CHECK(dex_file_ != NULL);
    return dex_file_;
  }

  void ForAll(size_t begin, size_t end, Callback callback, size_t work_units) {
    Thread* self = Thread::Current();
    self->AssertNoPendingException();
    CHECK_GT(work_units, 0U);

    index_.StoreRelaxed(begin);
    for (size_t i = 0; i < work_units; ++i) {
      thread_pool_->AddTask(self, new ForAllClosure(this, end, callback));
    }
    thread_pool_->StartWorkers(self);

    // Ensure we're suspended while we're blocked waiting for the other threads to finish (worker
    // thread destructor's called below perform join).
    CHECK_NE(self->GetState(), kRunnable);

    // Wait for all the worker threads to finish.
    thread_pool_->Wait(self, true, false);
  }

  size_t NextIndex() {
    return index_.FetchAndAddSequentiallyConsistent(1);
  }

 private:
  class ForAllClosure : public Task {
   public:
    ForAllClosure(ParallelCompilationManager* manager, size_t end, Callback* callback)
        : manager_(manager),
          end_(end),
          callback_(callback) {}

    virtual void Run(Thread* self) {
      while (true) {
        const size_t index = manager_->NextIndex();
        if (UNLIKELY(index >= end_)) {
          break;
        }
        callback_(manager_, index);
        self->AssertNoPendingException();
      }
    }

    virtual void Finalize() {
      delete this;
    }

   private:
    ParallelCompilationManager* const manager_;
    const size_t end_;
    Callback* const callback_;
  };

  AtomicInteger index_;
  ClassLinker* const class_linker_;
  const jobject class_loader_;
  CompilerDriver* const compiler_;
  const DexFile* const dex_file_;
  ThreadPool* const thread_pool_;

  DISALLOW_COPY_AND_ASSIGN(ParallelCompilationManager);
};

// Return true if the class should be skipped during compilation.
//
// The first case where we skip is for redundant class definitions in
// the boot classpath. We skip all but the first definition in that case.
//
// The second case where we skip is when an app bundles classes found
// in the boot classpath. Since at runtime we will select the class from
// the boot classpath, we ignore the one from the app.
static bool SkipClass(ClassLinker* class_linker, jobject class_loader, const DexFile& dex_file,
                      const DexFile::ClassDef& class_def) {
  const char* descriptor = dex_file.GetClassDescriptor(class_def);
  if (class_loader == NULL) {
    DexFile::ClassPathEntry pair = DexFile::FindInClassPath(descriptor, class_linker->GetBootClassPath());
    CHECK(pair.second != NULL);
    if (pair.first != &dex_file) {
      LOG(WARNING) << "Skipping class " << descriptor << " from " << dex_file.GetLocation()
                   << " previously found in " << pair.first->GetLocation();
      return true;
    }
    return false;
  }
  return class_linker->IsInBootClassPath(descriptor);
}

// A fast version of SkipClass above if the class pointer is available
// that avoids the expensive FindInClassPath search.
static bool SkipClass(jobject class_loader, const DexFile& dex_file, mirror::Class* klass)
    SHARED_LOCKS_REQUIRED(Locks::mutator_lock_) {
  DCHECK(klass != NULL);
  const DexFile& original_dex_file = *klass->GetDexCache()->GetDexFile();
  if (&dex_file != &original_dex_file) {
    if (class_loader == NULL) {
      LOG(WARNING) << "Skipping class " << PrettyDescriptor(klass) << " from "
                   << dex_file.GetLocation() << " previously found in "
                   << original_dex_file.GetLocation();
    }
    return true;
  }
  return false;
}

static void CheckAndClearResolveException(Thread* self)
    SHARED_LOCKS_REQUIRED(Locks::mutator_lock_) {
  CHECK(self->IsExceptionPending());
  mirror::Throwable* exception = self->GetException(nullptr);
  std::string descriptor = exception->GetClass()->GetDescriptor();
      if (descriptor != "Ljava/lang/IllegalAccessError;" &&
          descriptor != "Ljava/lang/IncompatibleClassChangeError;" &&
          descriptor != "Ljava/lang/InstantiationError;" &&
          descriptor != "Ljava/lang/NoClassDefFoundError;" &&
          descriptor != "Ljava/lang/NoSuchFieldError;" &&
          descriptor != "Ljava/lang/NoSuchMethodError;") {
    LOG(FATAL) << "Unexpected exeption " << exception->Dump();
  }
  self->ClearException();
}

static void ResolveClassFieldsAndMethods(const ParallelCompilationManager* manager,
                                         size_t class_def_index)
    LOCKS_EXCLUDED(Locks::mutator_lock_) {
  ATRACE_CALL();
  Thread* self = Thread::Current();
  jobject jclass_loader = manager->GetClassLoader();
  const DexFile& dex_file = *manager->GetDexFile();
  ClassLinker* class_linker = manager->GetClassLinker();

  // If an instance field is final then we need to have a barrier on the return, static final
  // fields are assigned within the lock held for class initialization. Conservatively assume
  // constructor barriers are always required.
  bool requires_constructor_barrier = true;

  // Method and Field are the worst. We can't resolve without either
  // context from the code use (to disambiguate virtual vs direct
  // method and instance vs static field) or from class
  // definitions. While the compiler will resolve what it can as it
  // needs it, here we try to resolve fields and methods used in class
  // definitions, since many of them many never be referenced by
  // generated code.
  const DexFile::ClassDef& class_def = dex_file.GetClassDef(class_def_index);
  if (!SkipClass(class_linker, jclass_loader, dex_file, class_def)) {
    ScopedObjectAccess soa(self);
    StackHandleScope<2> hs(soa.Self());
    Handle<mirror::ClassLoader> class_loader(
        hs.NewHandle(soa.Decode<mirror::ClassLoader*>(jclass_loader)));
    Handle<mirror::DexCache> dex_cache(hs.NewHandle(class_linker->FindDexCache(dex_file)));
    // Resolve the class.
    mirror::Class* klass = class_linker->ResolveType(dex_file, class_def.class_idx_, dex_cache,
                                                     class_loader);
    bool resolve_fields_and_methods;
    if (klass == NULL) {
      // Class couldn't be resolved, for example, super-class is in a different dex file. Don't
      // attempt to resolve methods and fields when there is no declaring class.
      CheckAndClearResolveException(soa.Self());
      resolve_fields_and_methods = false;
    } else {
      resolve_fields_and_methods = manager->GetCompiler()->IsImage();
    }
    // Note the class_data pointer advances through the headers,
    // static fields, instance fields, direct methods, and virtual
    // methods.
    const byte* class_data = dex_file.GetClassData(class_def);
    if (class_data == NULL) {
      // Empty class such as a marker interface.
      requires_constructor_barrier = false;
    } else {
      ClassDataItemIterator it(dex_file, class_data);
      while (it.HasNextStaticField()) {
        if (resolve_fields_and_methods) {
          mirror::ArtField* field = class_linker->ResolveField(dex_file, it.GetMemberIndex(),
                                                               dex_cache, class_loader, true);
          if (field == NULL) {
            CheckAndClearResolveException(soa.Self());
          }
        }
        it.Next();
      }
      // We require a constructor barrier if there are final instance fields.
      requires_constructor_barrier = false;
      while (it.HasNextInstanceField()) {
        if ((it.GetMemberAccessFlags() & kAccFinal) != 0) {
          requires_constructor_barrier = true;
        }
        if (resolve_fields_and_methods) {
          mirror::ArtField* field = class_linker->ResolveField(dex_file, it.GetMemberIndex(),
                                                               dex_cache, class_loader, false);
          if (field == NULL) {
            CheckAndClearResolveException(soa.Self());
          }
        }
        it.Next();
      }
      if (resolve_fields_and_methods) {
        while (it.HasNextDirectMethod()) {
          mirror::ArtMethod* method = class_linker->ResolveMethod(dex_file, it.GetMemberIndex(),
                                                                  dex_cache, class_loader,
                                                                  NullHandle<mirror::ArtMethod>(),
                                                                  it.GetMethodInvokeType(class_def));
          if (method == NULL) {
            CheckAndClearResolveException(soa.Self());
          }
          it.Next();
        }
        while (it.HasNextVirtualMethod()) {
          mirror::ArtMethod* method = class_linker->ResolveMethod(dex_file, it.GetMemberIndex(),
                                                                  dex_cache, class_loader,
                                                                  NullHandle<mirror::ArtMethod>(),
                                                                  it.GetMethodInvokeType(class_def));
          if (method == NULL) {
            CheckAndClearResolveException(soa.Self());
          }
          it.Next();
        }
        DCHECK(!it.HasNext());
      }
    }
  }
  if (requires_constructor_barrier) {
    manager->GetCompiler()->AddRequiresConstructorBarrier(self, &dex_file, class_def_index);
  }
}

static void ResolveType(const ParallelCompilationManager* manager, size_t type_idx)
    LOCKS_EXCLUDED(Locks::mutator_lock_) {
  // Class derived values are more complicated, they require the linker and loader.
  ScopedObjectAccess soa(Thread::Current());
  ClassLinker* class_linker = manager->GetClassLinker();
  const DexFile& dex_file = *manager->GetDexFile();
  StackHandleScope<2> hs(soa.Self());
  Handle<mirror::DexCache> dex_cache(hs.NewHandle(class_linker->FindDexCache(dex_file)));
  Handle<mirror::ClassLoader> class_loader(
      hs.NewHandle(soa.Decode<mirror::ClassLoader*>(manager->GetClassLoader())));
  mirror::Class* klass = class_linker->ResolveType(dex_file, type_idx, dex_cache, class_loader);

  if (klass == NULL) {
    CHECK(soa.Self()->IsExceptionPending());
    mirror::Throwable* exception = soa.Self()->GetException(NULL);
    VLOG(compiler) << "Exception during type resolution: " << exception->Dump();
    if (exception->GetClass()->DescriptorEquals("Ljava/lang/OutOfMemoryError;")) {
      // There's little point continuing compilation if the heap is exhausted.
      LOG(FATAL) << "Out of memory during type resolution for compilation";
    }
    soa.Self()->ClearException();
  }
}

void CompilerDriver::ResolveDexFile(jobject class_loader, const DexFile& dex_file,
                                    ThreadPool* thread_pool, TimingLogger* timings) {
  ClassLinker* class_linker = Runtime::Current()->GetClassLinker();

  // TODO: we could resolve strings here, although the string table is largely filled with class
  //       and method names.

  ParallelCompilationManager context(class_linker, class_loader, this, &dex_file, thread_pool);
  if (IsImage()) {
    // For images we resolve all types, such as array, whereas for applications just those with
    // classdefs are resolved by ResolveClassFieldsAndMethods.
    TimingLogger::ScopedTiming t("Resolve Types", timings);
    context.ForAll(0, dex_file.NumTypeIds(), ResolveType, thread_count_);
  }

  TimingLogger::ScopedTiming t("Resolve MethodsAndFields", timings);
  context.ForAll(0, dex_file.NumClassDefs(), ResolveClassFieldsAndMethods, thread_count_);
}

void CompilerDriver::Verify(jobject class_loader, const std::vector<const DexFile*>& dex_files,
                            ThreadPool* thread_pool, TimingLogger* timings) {
  for (size_t i = 0; i != dex_files.size(); ++i) {
    const DexFile* dex_file = dex_files[i];
    CHECK(dex_file != NULL);
    VerifyDexFile(class_loader, *dex_file, thread_pool, timings);
  }
}

static void VerifyClass(const ParallelCompilationManager* manager, size_t class_def_index)
    LOCKS_EXCLUDED(Locks::mutator_lock_) {
  ATRACE_CALL();
  ScopedObjectAccess soa(Thread::Current());
  const DexFile& dex_file = *manager->GetDexFile();
  const DexFile::ClassDef& class_def = dex_file.GetClassDef(class_def_index);
  const char* descriptor = dex_file.GetClassDescriptor(class_def);
  ClassLinker* class_linker = manager->GetClassLinker();
  jobject jclass_loader = manager->GetClassLoader();
  StackHandleScope<3> hs(soa.Self());
  Handle<mirror::ClassLoader> class_loader(
      hs.NewHandle(soa.Decode<mirror::ClassLoader*>(jclass_loader)));
  Handle<mirror::Class> klass(
      hs.NewHandle(class_linker->FindClass(soa.Self(), descriptor, class_loader)));
  if (klass.Get() == nullptr) {
    CHECK(soa.Self()->IsExceptionPending());
    soa.Self()->ClearException();

    /*
     * At compile time, we can still structurally verify the class even if FindClass fails.
     * This is to ensure the class is structurally sound for compilation. An unsound class
     * will be rejected by the verifier and later skipped during compilation in the compiler.
     */
    Handle<mirror::DexCache> dex_cache(hs.NewHandle(class_linker->FindDexCache(dex_file)));
    std::string error_msg;
    if (verifier::MethodVerifier::VerifyClass(&dex_file, dex_cache, class_loader, &class_def, true,
                                              &error_msg) ==
                                                  verifier::MethodVerifier::kHardFailure) {
      LOG(ERROR) << "Verification failed on class " << PrettyDescriptor(descriptor)
                 << " because: " << error_msg;
    }
  } else if (!SkipClass(jclass_loader, dex_file, klass.Get())) {
    CHECK(klass->IsResolved()) << PrettyClass(klass.Get());
    class_linker->VerifyClass(klass);

    if (klass->IsErroneous()) {
      // ClassLinker::VerifyClass throws, which isn't useful in the compiler.
      CHECK(soa.Self()->IsExceptionPending());
      soa.Self()->ClearException();
    }

    CHECK(klass->IsCompileTimeVerified() || klass->IsErroneous())
        << PrettyDescriptor(klass.Get()) << ": state=" << klass->GetStatus();
  }
  soa.Self()->AssertNoPendingException();
}

void CompilerDriver::VerifyDexFile(jobject class_loader, const DexFile& dex_file,
                                   ThreadPool* thread_pool, TimingLogger* timings) {
  TimingLogger::ScopedTiming t("Verify Dex File", timings);
  ClassLinker* class_linker = Runtime::Current()->GetClassLinker();
  ParallelCompilationManager context(class_linker, class_loader, this, &dex_file, thread_pool);
  context.ForAll(0, dex_file.NumClassDefs(), VerifyClass, thread_count_);
}

static void InitializeClass(const ParallelCompilationManager* manager, size_t class_def_index)
    LOCKS_EXCLUDED(Locks::mutator_lock_) {
  ATRACE_CALL();
  jobject jclass_loader = manager->GetClassLoader();
  const DexFile& dex_file = *manager->GetDexFile();
  const DexFile::ClassDef& class_def = dex_file.GetClassDef(class_def_index);
  const DexFile::TypeId& class_type_id = dex_file.GetTypeId(class_def.class_idx_);
  const char* descriptor = dex_file.StringDataByIdx(class_type_id.descriptor_idx_);

  ScopedObjectAccess soa(Thread::Current());
  StackHandleScope<3> hs(soa.Self());
  Handle<mirror::ClassLoader> class_loader(
      hs.NewHandle(soa.Decode<mirror::ClassLoader*>(jclass_loader)));
  Handle<mirror::Class> klass(
      hs.NewHandle(manager->GetClassLinker()->FindClass(soa.Self(), descriptor, class_loader)));

  if (klass.Get() != nullptr && !SkipClass(jclass_loader, dex_file, klass.Get())) {
    // Only try to initialize classes that were successfully verified.
    if (klass->IsVerified()) {
      // Attempt to initialize the class but bail if we either need to initialize the super-class
      // or static fields.
      manager->GetClassLinker()->EnsureInitialized(klass, false, false);
      if (!klass->IsInitialized()) {
        // We don't want non-trivial class initialization occurring on multiple threads due to
        // deadlock problems. For example, a parent class is initialized (holding its lock) that
        // refers to a sub-class in its static/class initializer causing it to try to acquire the
        // sub-class' lock. While on a second thread the sub-class is initialized (holding its lock)
        // after first initializing its parents, whose locks are acquired. This leads to a
        // parent-to-child and a child-to-parent lock ordering and consequent potential deadlock.
        // We need to use an ObjectLock due to potential suspension in the interpreting code. Rather
        // than use a special Object for the purpose we use the Class of java.lang.Class.
        Handle<mirror::Class> h_klass(hs.NewHandle(klass->GetClass()));
        ObjectLock<mirror::Class> lock(soa.Self(), h_klass);
        // Attempt to initialize allowing initialization of parent classes but still not static
        // fields.
        manager->GetClassLinker()->EnsureInitialized(klass, false, true);
        if (!klass->IsInitialized()) {
          // We need to initialize static fields, we only do this for image classes that aren't
          // marked with the $NoPreloadHolder (which implies this should not be initialized early).
          bool can_init_static_fields = manager->GetCompiler()->IsImage() &&
              manager->GetCompiler()->IsImageClass(descriptor) &&
              !StringPiece(descriptor).ends_with("$NoPreloadHolder;");
          if (can_init_static_fields) {
            VLOG(compiler) << "Initializing: " << descriptor;
            // TODO multithreading support. We should ensure the current compilation thread has
            // exclusive access to the runtime and the transaction. To achieve this, we could use
            // a ReaderWriterMutex but we're holding the mutator lock so we fail mutex sanity
            // checks in Thread::AssertThreadSuspensionIsAllowable.
            Runtime* const runtime = Runtime::Current();
            Transaction transaction;

            // Run the class initializer in transaction mode.
            runtime->EnterTransactionMode(&transaction);
            const mirror::Class::Status old_status = klass->GetStatus();
            bool success = manager->GetClassLinker()->EnsureInitialized(klass, true, true);
            // TODO we detach transaction from runtime to indicate we quit the transactional
            // mode which prevents the GC from visiting objects modified during the transaction.
            // Ensure GC is not run so don't access freed objects when aborting transaction.
            const char* old_casue = soa.Self()->StartAssertNoThreadSuspension("Transaction end");
            runtime->ExitTransactionMode();

            if (!success) {
              CHECK(soa.Self()->IsExceptionPending());
              ThrowLocation throw_location;
              mirror::Throwable* exception = soa.Self()->GetException(&throw_location);
              VLOG(compiler) << "Initialization of " << descriptor << " aborted because of "
                  << exception->Dump();
              soa.Self()->ClearException();
              transaction.Abort();
              CHECK_EQ(old_status, klass->GetStatus()) << "Previous class status not restored";
            }
            soa.Self()->EndAssertNoThreadSuspension(old_casue);
          }
        }
        soa.Self()->AssertNoPendingException();
      }
    }
    // Record the final class status if necessary.
    ClassReference ref(manager->GetDexFile(), class_def_index);
    manager->GetCompiler()->RecordClassStatus(ref, klass->GetStatus());
  }
  // Clear any class not found or verification exceptions.
  soa.Self()->ClearException();
}

void CompilerDriver::InitializeClasses(jobject jni_class_loader, const DexFile& dex_file,
                                       ThreadPool* thread_pool, TimingLogger* timings) {
  TimingLogger::ScopedTiming t("InitializeNoClinit", timings);
  ClassLinker* class_linker = Runtime::Current()->GetClassLinker();
  ParallelCompilationManager context(class_linker, jni_class_loader, this, &dex_file, thread_pool);
  size_t thread_count;
  if (IsImage()) {
    // TODO: remove this when transactional mode supports multithreading.
    thread_count = 1U;
  } else {
    thread_count = thread_count_;
  }
  context.ForAll(0, dex_file.NumClassDefs(), InitializeClass, thread_count);
  if (IsImage()) {
    // Prune garbage objects created during aborted transactions.
    Runtime::Current()->GetHeap()->CollectGarbage(true);
  }
}

void CompilerDriver::InitializeClasses(jobject class_loader,
                                       const std::vector<const DexFile*>& dex_files,
                                       ThreadPool* thread_pool, TimingLogger* timings) {
  for (size_t i = 0; i != dex_files.size(); ++i) {
    const DexFile* dex_file = dex_files[i];
    CHECK(dex_file != NULL);
    InitializeClasses(class_loader, *dex_file, thread_pool, timings);
  }
}

void CompilerDriver::Compile(jobject class_loader, const std::vector<const DexFile*>& dex_files,
                             ThreadPool* thread_pool, TimingLogger* timings) {
  for (size_t i = 0; i != dex_files.size(); ++i) {
    const DexFile* dex_file = dex_files[i];
    CHECK(dex_file != NULL);
    CompileDexFile(class_loader, *dex_file, thread_pool, timings);
  }
}

void CompilerDriver::CompileClass(const ParallelCompilationManager* manager, size_t class_def_index) {
  ATRACE_CALL();
  jobject jclass_loader = manager->GetClassLoader();
  const DexFile& dex_file = *manager->GetDexFile();
  const DexFile::ClassDef& class_def = dex_file.GetClassDef(class_def_index);
  ClassLinker* class_linker = manager->GetClassLinker();
  if (SkipClass(class_linker, jclass_loader, dex_file, class_def)) {
    return;
  }
  ClassReference ref(&dex_file, class_def_index);
  // Skip compiling classes with generic verifier failures since they will still fail at runtime
  if (manager->GetCompiler()->verification_results_->IsClassRejected(ref)) {
    return;
  }
  const byte* class_data = dex_file.GetClassData(class_def);
  if (class_data == NULL) {
    // empty class, probably a marker interface
    return;
  }

  // Can we run DEX-to-DEX compiler on this class ?
  DexToDexCompilationLevel dex_to_dex_compilation_level = kDontDexToDexCompile;
  {
    ScopedObjectAccess soa(Thread::Current());
    StackHandleScope<1> hs(soa.Self());
    Handle<mirror::ClassLoader> class_loader(
        hs.NewHandle(soa.Decode<mirror::ClassLoader*>(jclass_loader)));
    dex_to_dex_compilation_level = GetDexToDexCompilationlevel(soa.Self(), class_loader, dex_file,
                                                               class_def);
  }
  ClassDataItemIterator it(dex_file, class_data);
  // Skip fields
  while (it.HasNextStaticField()) {
    it.Next();
  }
  while (it.HasNextInstanceField()) {
    it.Next();
  }
  CompilerDriver* driver = manager->GetCompiler();
  // Compile direct methods
  int64_t previous_direct_method_idx = -1;
  while (it.HasNextDirectMethod()) {
    uint32_t method_idx = it.GetMemberIndex();
    if (method_idx == previous_direct_method_idx) {
      // smali can create dex files with two encoded_methods sharing the same method_idx
      // http://code.google.com/p/smali/issues/detail?id=119
      it.Next();
      continue;
    }
    previous_direct_method_idx = method_idx;
    driver->CompileMethod(it.GetMethodCodeItem(), it.GetMemberAccessFlags(),
                          it.GetMethodInvokeType(class_def), class_def_index,
                          method_idx, jclass_loader, dex_file, dex_to_dex_compilation_level);
    it.Next();
  }
  // Compile virtual methods
  int64_t previous_virtual_method_idx = -1;
  while (it.HasNextVirtualMethod()) {
    uint32_t method_idx = it.GetMemberIndex();
    if (method_idx == previous_virtual_method_idx) {
      // smali can create dex files with two encoded_methods sharing the same method_idx
      // http://code.google.com/p/smali/issues/detail?id=119
      it.Next();
      continue;
    }
    previous_virtual_method_idx = method_idx;
    driver->CompileMethod(it.GetMethodCodeItem(), it.GetMemberAccessFlags(),
                          it.GetMethodInvokeType(class_def), class_def_index,
                          method_idx, jclass_loader, dex_file, dex_to_dex_compilation_level);
    it.Next();
  }
  DCHECK(!it.HasNext());
}

void CompilerDriver::CompileDexFile(jobject class_loader, const DexFile& dex_file,
                                    ThreadPool* thread_pool, TimingLogger* timings) {
  TimingLogger::ScopedTiming t("Compile Dex File", timings);
  ParallelCompilationManager context(Runtime::Current()->GetClassLinker(), class_loader, this,
                                     &dex_file, thread_pool);
  context.ForAll(0, dex_file.NumClassDefs(), CompilerDriver::CompileClass, thread_count_);
}

void CompilerDriver::CompileMethod(const DexFile::CodeItem* code_item, uint32_t access_flags,
                                   InvokeType invoke_type, uint16_t class_def_idx,
                                   uint32_t method_idx, jobject class_loader,
                                   const DexFile& dex_file,
                                   DexToDexCompilationLevel dex_to_dex_compilation_level) {
  CompiledMethod* compiled_method = NULL;
  uint64_t start_ns = NanoTime();

  if ((access_flags & kAccNative) != 0) {
    // Are we interpreting only and have support for generic JNI down calls?
    if (!compiler_options_->IsCompilationEnabled() &&
        (instruction_set_ == kX86_64 || instruction_set_ == kArm64)) {
      // Leaving this empty will trigger the generic JNI version
    } else {
      compiled_method = compiler_->JniCompile(access_flags, method_idx, dex_file);
      CHECK(compiled_method != NULL);
    }
  } else if ((access_flags & kAccAbstract) != 0) {
  } else {
    MethodReference method_ref(&dex_file, method_idx);
    bool compile = verification_results_->IsCandidateForCompilation(method_ref, access_flags);
    if (compile) {
      // NOTE: if compiler declines to compile this method, it will return NULL.
      compiled_method = compiler_->Compile(code_item, access_flags, invoke_type, class_def_idx,
                                           method_idx, class_loader, dex_file);
    }
    if (compiled_method == nullptr && dex_to_dex_compilation_level != kDontDexToDexCompile) {
      // TODO: add a command-line option to disable DEX-to-DEX compilation ?
      (*dex_to_dex_compiler_)(*this, code_item, access_flags,
                              invoke_type, class_def_idx,
                              method_idx, class_loader, dex_file,
                              dex_to_dex_compilation_level);
    }
  }
  uint64_t duration_ns = NanoTime() - start_ns;
  if (duration_ns > MsToNs(compiler_->GetMaximumCompilationTimeBeforeWarning()) && !kIsDebugBuild) {
    LOG(WARNING) << "Compilation of " << PrettyMethod(method_idx, dex_file)
                 << " took " << PrettyDuration(duration_ns);
  }

  Thread* self = Thread::Current();
  if (compiled_method != NULL) {
    MethodReference ref(&dex_file, method_idx);
    DCHECK(GetCompiledMethod(ref) == NULL) << PrettyMethod(method_idx, dex_file);
    {
      MutexLock mu(self, compiled_methods_lock_);
      compiled_methods_.Put(ref, compiled_method);
    }
    DCHECK(GetCompiledMethod(ref) != NULL) << PrettyMethod(method_idx, dex_file);
  }

  if (self->IsExceptionPending()) {
    ScopedObjectAccess soa(self);
    LOG(FATAL) << "Unexpected exception compiling: " << PrettyMethod(method_idx, dex_file) << "\n"
        << self->GetException(NULL)->Dump();
  }
}

CompiledClass* CompilerDriver::GetCompiledClass(ClassReference ref) const {
  MutexLock mu(Thread::Current(), compiled_classes_lock_);
  ClassTable::const_iterator it = compiled_classes_.find(ref);
  if (it == compiled_classes_.end()) {
    return NULL;
  }
  CHECK(it->second != NULL);
  return it->second;
}

void CompilerDriver::RecordClassStatus(ClassReference ref, mirror::Class::Status status) {
  MutexLock mu(Thread::Current(), compiled_classes_lock_);
  auto it = compiled_classes_.find(ref);
  if (it == compiled_classes_.end() || it->second->GetStatus() != status) {
    // An entry doesn't exist or the status is lower than the new status.
    if (it != compiled_classes_.end()) {
      CHECK_GT(status, it->second->GetStatus());
      delete it->second;
    }
    switch (status) {
      case mirror::Class::kStatusNotReady:
      case mirror::Class::kStatusError:
      case mirror::Class::kStatusRetryVerificationAtRuntime:
      case mirror::Class::kStatusVerified:
      case mirror::Class::kStatusInitialized:
        break;  // Expected states.
      default:
        LOG(FATAL) << "Unexpected class status for class "
            << PrettyDescriptor(ref.first->GetClassDescriptor(ref.first->GetClassDef(ref.second)))
            << " of " << status;
    }
    CompiledClass* compiled_class = new CompiledClass(status);
    compiled_classes_.Overwrite(ref, compiled_class);
  }
}

CompiledMethod* CompilerDriver::GetCompiledMethod(MethodReference ref) const {
  MutexLock mu(Thread::Current(), compiled_methods_lock_);
  MethodTable::const_iterator it = compiled_methods_.find(ref);
  if (it == compiled_methods_.end()) {
    return NULL;
  }
  CHECK(it->second != NULL);
  return it->second;
}

void CompilerDriver::AddRequiresConstructorBarrier(Thread* self, const DexFile* dex_file,
                                                   uint16_t class_def_index) {
  WriterMutexLock mu(self, freezing_constructor_lock_);
  freezing_constructor_classes_.insert(ClassReference(dex_file, class_def_index));
}

bool CompilerDriver::RequiresConstructorBarrier(Thread* self, const DexFile* dex_file,
                                                uint16_t class_def_index) {
  ReaderMutexLock mu(self, freezing_constructor_lock_);
  return freezing_constructor_classes_.count(ClassReference(dex_file, class_def_index)) != 0;
}

bool CompilerDriver::WriteElf(const std::string& android_root,
                              bool is_host,
                              const std::vector<const art::DexFile*>& dex_files,
                              OatWriter* oat_writer,
                              art::File* file)
    SHARED_LOCKS_REQUIRED(Locks::mutator_lock_) {
  return compiler_->WriteElf(file, oat_writer, dex_files, android_root, is_host);
}
void CompilerDriver::InstructionSetToLLVMTarget(InstructionSet instruction_set,
                                                std::string* target_triple,
                                                std::string* target_cpu,
                                                std::string* target_attr) {
  switch (instruction_set) {
    case kThumb2:
      *target_triple = "thumb-none-linux-gnueabi";
      *target_cpu = "cortex-a9";
      *target_attr = "+thumb2,+neon,+neonfp,+vfp3,+db";
      break;

    case kArm:
      *target_triple = "armv7-none-linux-gnueabi";
      // TODO: Fix for Nexus S.
      *target_cpu = "cortex-a9";
      // TODO: Fix for Xoom.
      *target_attr = "+v7,+neon,+neonfp,+vfp3,+db";
      break;

    case kX86:
      *target_triple = "i386-pc-linux-gnu";
      *target_attr = "";
      break;

    case kX86_64:
      *target_triple = "x86_64-pc-linux-gnu";
      *target_attr = "";
      break;

    case kMips:
      *target_triple = "mipsel-unknown-linux";
      *target_attr = "mips32r2";
      break;

    default:
      LOG(FATAL) << "Unknown instruction set: " << instruction_set;
    }
  }

bool CompilerDriver::SkipCompilation(const std::string& method_name) {
  if (!profile_present_) {
    return false;
  }
  // First find the method in the profile file.
  ProfileFile::ProfileData data;
  if (!profile_file_.GetProfileData(&data, method_name)) {
    // Not in profile, no information can be determined.
    if (kIsDebugBuild) {
      VLOG(compiler) << "not compiling " << method_name << " because it's not in the profile";
    }
    return true;
  }

  // Methods that comprise top_k_threshold % of the total samples will be compiled.
  // Compare against the start of the topK percentage bucket just in case the threshold
  // falls inside a bucket.
  bool compile = data.GetTopKUsedPercentage() - data.GetUsedPercent()
                 <= compiler_options_->GetTopKProfileThreshold();
  if (kIsDebugBuild) {
    if (compile) {
      LOG(INFO) << "compiling method " << method_name << " because its usage is part of top "
          << data.GetTopKUsedPercentage() << "% with a percent of " << data.GetUsedPercent() << "%"
          << " (topKThreshold=" << compiler_options_->GetTopKProfileThreshold() << ")";
    } else {
      VLOG(compiler) << "not compiling method " << method_name
          << " because it's not part of leading " << compiler_options_->GetTopKProfileThreshold()
          << "% samples)";
    }
  }
  return !compile;
}
}  // namespace art