summaryrefslogtreecommitdiffstats
path: root/compiler/dwarf/debug_frame_opcode_writer.h
blob: 4112c84027a1d44225b883e8739f84ca9eb535fd (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
/*
 * Copyright (C) 2015 The Android Open Source Project
 *
 * Licensed under the Apache License, Version 2.0 (the "License");
 * you may not use this file except in compliance with the License.
 * You may obtain a copy of the License at
 *
 *      http://www.apache.org/licenses/LICENSE-2.0
 *
 * Unless required by applicable law or agreed to in writing, software
 * distributed under the License is distributed on an "AS IS" BASIS,
 * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
 * See the License for the specific language governing permissions and
 * limitations under the License.
 */

#ifndef ART_COMPILER_DWARF_DEBUG_FRAME_OPCODE_WRITER_H_
#define ART_COMPILER_DWARF_DEBUG_FRAME_OPCODE_WRITER_H_

#include "dwarf/dwarf_constants.h"
#include "dwarf/register.h"
#include "dwarf/writer.h"
#include "utils.h"

namespace art {
namespace dwarf {

// Writer for .debug_frame opcodes (DWARF-3).
// See the DWARF specification for the precise meaning of the opcodes.
// The writer is very light-weight, however it will do the following for you:
//  * Choose the most compact encoding of a given opcode.
//  * Keep track of current state and convert absolute values to deltas.
//  * Divide by header-defined factors as appropriate.
template<typename Allocator = std::allocator<uint8_t> >
class DebugFrameOpCodeWriter : private Writer<Allocator> {
 public:
  // To save space, DWARF divides most offsets by header-defined factors.
  // They are used in integer divisions, so we make them constants.
  // We usually subtract from stack base pointer, so making the factor
  // negative makes the encoded values positive and thus easier to encode.
  static constexpr int kDataAlignmentFactor = -4;
  static constexpr int kCodeAlignmentFactor = 1;

  // Explicitely advance the program counter to given location.
  void ALWAYS_INLINE AdvancePC(int absolute_pc) {
    DCHECK_GE(absolute_pc, current_pc_);
    if (UNLIKELY(enabled_)) {
      int delta = FactorCodeOffset(absolute_pc - current_pc_);
      if (delta != 0) {
        if (delta <= 0x3F) {
          this->PushUint8(DW_CFA_advance_loc | delta);
        } else if (delta <= UINT8_MAX) {
          this->PushUint8(DW_CFA_advance_loc1);
          this->PushUint8(delta);
        } else if (delta <= UINT16_MAX) {
          this->PushUint8(DW_CFA_advance_loc2);
          this->PushUint16(delta);
        } else {
          this->PushUint8(DW_CFA_advance_loc4);
          this->PushUint32(delta);
        }
      }
      current_pc_ = absolute_pc;
    }
  }

  // Override this method to automatically advance the PC before each opcode.
  virtual void ImplicitlyAdvancePC() { }

  // Common alias in assemblers - spill relative to current stack pointer.
  void ALWAYS_INLINE RelOffset(Reg reg, int offset) {
    Offset(reg, offset - current_cfa_offset_);
  }

  // Common alias in assemblers - increase stack frame size.
  void ALWAYS_INLINE AdjustCFAOffset(int delta) {
    DefCFAOffset(current_cfa_offset_ + delta);
  }

  // Custom alias - spill many registers based on bitmask.
  void ALWAYS_INLINE RelOffsetForMany(Reg reg_base, int offset,
                                      uint32_t reg_mask, int reg_size) {
    DCHECK(reg_size == 4 || reg_size == 8);
    if (UNLIKELY(enabled_)) {
      for (int i = 0; reg_mask != 0u; reg_mask >>= 1, i++) {
        // Skip zero bits and go to the set bit.
        int num_zeros = CTZ(reg_mask);
        i += num_zeros;
        reg_mask >>= num_zeros;
        RelOffset(Reg(reg_base.num() + i), offset);
        offset += reg_size;
      }
    }
  }

  // Custom alias - unspill many registers based on bitmask.
  void ALWAYS_INLINE RestoreMany(Reg reg_base, uint32_t reg_mask) {
    if (UNLIKELY(enabled_)) {
      for (int i = 0; reg_mask != 0u; reg_mask >>= 1, i++) {
        // Skip zero bits and go to the set bit.
        int num_zeros = CTZ(reg_mask);
        i += num_zeros;
        reg_mask >>= num_zeros;
        Restore(Reg(reg_base.num() + i));
      }
    }
  }

  void ALWAYS_INLINE Nop() {
    if (UNLIKELY(enabled_)) {
      this->PushUint8(DW_CFA_nop);
    }
  }

  void ALWAYS_INLINE Offset(Reg reg, int offset) {
    if (UNLIKELY(enabled_)) {
      ImplicitlyAdvancePC();
      int factored_offset = FactorDataOffset(offset);  // May change sign.
      if (factored_offset >= 0) {
        if (0 <= reg.num() && reg.num() <= 0x3F) {
          this->PushUint8(DW_CFA_offset | reg.num());
          this->PushUleb128(factored_offset);
        } else {
          this->PushUint8(DW_CFA_offset_extended);
          this->PushUleb128(reg.num());
          this->PushUleb128(factored_offset);
        }
      } else {
        uses_dwarf3_features_ = true;
        this->PushUint8(DW_CFA_offset_extended_sf);
        this->PushUleb128(reg.num());
        this->PushSleb128(factored_offset);
      }
    }
  }

  void ALWAYS_INLINE Restore(Reg reg) {
    if (UNLIKELY(enabled_)) {
      ImplicitlyAdvancePC();
      if (0 <= reg.num() && reg.num() <= 0x3F) {
        this->PushUint8(DW_CFA_restore | reg.num());
      } else {
        this->PushUint8(DW_CFA_restore_extended);
        this->PushUleb128(reg.num());
      }
    }
  }

  void ALWAYS_INLINE Undefined(Reg reg) {
    if (UNLIKELY(enabled_)) {
      ImplicitlyAdvancePC();
      this->PushUint8(DW_CFA_undefined);
      this->PushUleb128(reg.num());
    }
  }

  void ALWAYS_INLINE SameValue(Reg reg) {
    if (UNLIKELY(enabled_)) {
      ImplicitlyAdvancePC();
      this->PushUint8(DW_CFA_same_value);
      this->PushUleb128(reg.num());
    }
  }

  // The previous value of "reg" is stored in register "new_reg".
  void ALWAYS_INLINE Register(Reg reg, Reg new_reg) {
    if (UNLIKELY(enabled_)) {
      ImplicitlyAdvancePC();
      this->PushUint8(DW_CFA_register);
      this->PushUleb128(reg.num());
      this->PushUleb128(new_reg.num());
    }
  }

  void ALWAYS_INLINE RememberState() {
    if (UNLIKELY(enabled_)) {
      ImplicitlyAdvancePC();
      this->PushUint8(DW_CFA_remember_state);
    }
  }

  void ALWAYS_INLINE RestoreState() {
    if (UNLIKELY(enabled_)) {
      ImplicitlyAdvancePC();
      this->PushUint8(DW_CFA_restore_state);
    }
  }

  void ALWAYS_INLINE DefCFA(Reg reg, int offset) {
    if (UNLIKELY(enabled_)) {
      ImplicitlyAdvancePC();
      if (offset >= 0) {
        this->PushUint8(DW_CFA_def_cfa);
        this->PushUleb128(reg.num());
        this->PushUleb128(offset);  // Non-factored.
      } else {
        uses_dwarf3_features_ = true;
        this->PushUint8(DW_CFA_def_cfa_sf);
        this->PushUleb128(reg.num());
        this->PushSleb128(FactorDataOffset(offset));
      }
    }
    current_cfa_offset_ = offset;
  }

  void ALWAYS_INLINE DefCFARegister(Reg reg) {
    if (UNLIKELY(enabled_)) {
      ImplicitlyAdvancePC();
      this->PushUint8(DW_CFA_def_cfa_register);
      this->PushUleb128(reg.num());
    }
  }

  void ALWAYS_INLINE DefCFAOffset(int offset) {
    if (UNLIKELY(enabled_)) {
      if (current_cfa_offset_ != offset) {
        ImplicitlyAdvancePC();
        if (offset >= 0) {
          this->PushUint8(DW_CFA_def_cfa_offset);
          this->PushUleb128(offset);  // Non-factored.
        } else {
          uses_dwarf3_features_ = true;
          this->PushUint8(DW_CFA_def_cfa_offset_sf);
          this->PushSleb128(FactorDataOffset(offset));
        }
      }
    }
    // Uncoditional so that the user can still get and check the value.
    current_cfa_offset_ = offset;
  }

  void ALWAYS_INLINE ValOffset(Reg reg, int offset) {
    if (UNLIKELY(enabled_)) {
      ImplicitlyAdvancePC();
      uses_dwarf3_features_ = true;
      int factored_offset = FactorDataOffset(offset);  // May change sign.
      if (factored_offset >= 0) {
        this->PushUint8(DW_CFA_val_offset);
        this->PushUleb128(reg.num());
        this->PushUleb128(factored_offset);
      } else {
        this->PushUint8(DW_CFA_val_offset_sf);
        this->PushUleb128(reg.num());
        this->PushSleb128(factored_offset);
      }
    }
  }

  void ALWAYS_INLINE DefCFAExpression(void * expr, int expr_size) {
    if (UNLIKELY(enabled_)) {
      ImplicitlyAdvancePC();
      uses_dwarf3_features_ = true;
      this->PushUint8(DW_CFA_def_cfa_expression);
      this->PushUleb128(expr_size);
      this->PushData(expr, expr_size);
    }
  }

  void ALWAYS_INLINE Expression(Reg reg, void * expr, int expr_size) {
    if (UNLIKELY(enabled_)) {
      ImplicitlyAdvancePC();
      uses_dwarf3_features_ = true;
      this->PushUint8(DW_CFA_expression);
      this->PushUleb128(reg.num());
      this->PushUleb128(expr_size);
      this->PushData(expr, expr_size);
    }
  }

  void ALWAYS_INLINE ValExpression(Reg reg, void * expr, int expr_size) {
    if (UNLIKELY(enabled_)) {
      ImplicitlyAdvancePC();
      uses_dwarf3_features_ = true;
      this->PushUint8(DW_CFA_val_expression);
      this->PushUleb128(reg.num());
      this->PushUleb128(expr_size);
      this->PushData(expr, expr_size);
    }
  }

  bool IsEnabled() const { return enabled_; }

  void SetEnabled(bool value) { enabled_ = value; }

  int GetCurrentPC() const { return current_pc_; }

  int GetCurrentCFAOffset() const { return current_cfa_offset_; }

  void SetCurrentCFAOffset(int offset) { current_cfa_offset_ = offset; }

  using Writer<Allocator>::data;

  DebugFrameOpCodeWriter(bool enabled = true,
                         const Allocator& alloc = Allocator())
      : Writer<Allocator>(&opcodes_),
        enabled_(enabled),
        opcodes_(alloc),
        current_cfa_offset_(0),
        current_pc_(0),
        uses_dwarf3_features_(false) {
    if (enabled) {
      // Best guess based on couple of observed outputs.
      opcodes_.reserve(16);
    }
  }

  virtual ~DebugFrameOpCodeWriter() { }

 protected:
  int FactorDataOffset(int offset) const {
    DCHECK_EQ(offset % kDataAlignmentFactor, 0);
    return offset / kDataAlignmentFactor;
  }

  int FactorCodeOffset(int offset) const {
    DCHECK_EQ(offset % kCodeAlignmentFactor, 0);
    return offset / kCodeAlignmentFactor;
  }

  bool enabled_;  // If disabled all writes are no-ops.
  std::vector<uint8_t, Allocator> opcodes_;
  int current_cfa_offset_;
  int current_pc_;
  bool uses_dwarf3_features_;

 private:
  DISALLOW_COPY_AND_ASSIGN(DebugFrameOpCodeWriter);
};

}  // namespace dwarf
}  // namespace art

#endif  // ART_COMPILER_DWARF_DEBUG_FRAME_OPCODE_WRITER_H_