1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
|
/*
* Copyright (C) 2014 The Android Open Source Project
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
#include "elf_patcher.h"
#include <vector>
#include <set>
#include "class_linker.h"
#include "elf_file.h"
#include "elf_utils.h"
#include "mirror/art_field-inl.h"
#include "mirror/art_method-inl.h"
#include "mirror/array-inl.h"
#include "mirror/class-inl.h"
#include "mirror/class_loader.h"
#include "mirror/dex_cache-inl.h"
#include "mirror/object-inl.h"
#include "mirror/object_array-inl.h"
#include "mirror/string-inl.h"
#include "oat.h"
#include "os.h"
#include "utils.h"
namespace art {
bool ElfPatcher::Patch(const CompilerDriver* driver, ElfFile* elf_file,
const std::string& oat_location,
ImageAddressCallback cb, void* cb_data,
std::string* error_msg) {
ClassLinker* class_linker = Runtime::Current()->GetClassLinker();
const OatFile* oat_file = class_linker->FindOpenedOatFileFromOatLocation(oat_location);
if (oat_file == nullptr) {
CHECK(Runtime::Current()->IsCompiler());
oat_file = OatFile::Open(oat_location, oat_location, NULL, false, error_msg);
if (oat_file == nullptr) {
*error_msg = StringPrintf("Unable to find or open oat file at '%s': %s", oat_location.c_str(),
error_msg->c_str());
return false;
}
CHECK_EQ(class_linker->RegisterOatFile(oat_file), oat_file);
}
return ElfPatcher::Patch(driver, elf_file, oat_file,
reinterpret_cast<uintptr_t>(oat_file->Begin()), cb, cb_data, error_msg);
}
bool ElfPatcher::Patch(const CompilerDriver* driver, ElfFile* elf, const OatFile* oat_file,
uintptr_t oat_data_start, ImageAddressCallback cb, void* cb_data,
std::string* error_msg) {
Elf32_Shdr* data_sec = elf->FindSectionByName(".rodata");
if (data_sec == nullptr) {
*error_msg = "Unable to find .rodata section and oat header";
return false;
}
OatHeader* oat_header = reinterpret_cast<OatHeader*>(elf->Begin() + data_sec->sh_offset);
if (!oat_header->IsValid()) {
*error_msg = "Oat header was not valid";
return false;
}
ElfPatcher p(driver, elf, oat_file, oat_header, oat_data_start, cb, cb_data, error_msg);
return p.PatchElf();
}
mirror::ArtMethod* ElfPatcher::GetTargetMethod(const CompilerDriver::CallPatchInformation* patch) {
ClassLinker* class_linker = Runtime::Current()->GetClassLinker();
StackHandleScope<1> hs(Thread::Current());
Handle<mirror::DexCache> dex_cache(
hs.NewHandle(class_linker->FindDexCache(*patch->GetTargetDexFile())));
mirror::ArtMethod* method = class_linker->ResolveMethod(*patch->GetTargetDexFile(),
patch->GetTargetMethodIdx(),
dex_cache,
NullHandle<mirror::ClassLoader>(),
NullHandle<mirror::ArtMethod>(),
patch->GetTargetInvokeType());
CHECK(method != NULL)
<< patch->GetTargetDexFile()->GetLocation() << " " << patch->GetTargetMethodIdx();
CHECK(!method->IsRuntimeMethod())
<< patch->GetTargetDexFile()->GetLocation() << " " << patch->GetTargetMethodIdx();
CHECK(dex_cache->GetResolvedMethods()->Get(patch->GetTargetMethodIdx()) == method)
<< patch->GetTargetDexFile()->GetLocation() << " " << patch->GetReferrerMethodIdx() << " "
<< PrettyMethod(dex_cache->GetResolvedMethods()->Get(patch->GetTargetMethodIdx())) << " "
<< PrettyMethod(method);
return method;
}
mirror::Class* ElfPatcher::GetTargetType(const CompilerDriver::TypePatchInformation* patch) {
ClassLinker* class_linker = Runtime::Current()->GetClassLinker();
StackHandleScope<2> hs(Thread::Current());
Handle<mirror::DexCache> dex_cache(hs.NewHandle(class_linker->FindDexCache(
patch->GetTargetTypeDexFile())));
mirror::Class* klass = class_linker->ResolveType(patch->GetTargetTypeDexFile(),
patch->GetTargetTypeIdx(),
dex_cache, NullHandle<mirror::ClassLoader>());
CHECK(klass != NULL)
<< patch->GetTargetTypeDexFile().GetLocation() << " " << patch->GetTargetTypeIdx();
CHECK(dex_cache->GetResolvedTypes()->Get(patch->GetTargetTypeIdx()) == klass)
<< patch->GetDexFile().GetLocation() << " " << patch->GetReferrerMethodIdx() << " "
<< PrettyClass(dex_cache->GetResolvedTypes()->Get(patch->GetTargetTypeIdx())) << " "
<< PrettyClass(klass);
return klass;
}
void ElfPatcher::AddPatch(uintptr_t p) {
if (write_patches_ && patches_set_.find(p) == patches_set_.end()) {
patches_set_.insert(p);
patches_.push_back(p);
}
}
uint32_t* ElfPatcher::GetPatchLocation(uintptr_t patch_ptr) {
CHECK_GE(patch_ptr, reinterpret_cast<uintptr_t>(oat_file_->Begin()));
CHECK_LE(patch_ptr, reinterpret_cast<uintptr_t>(oat_file_->End()));
uintptr_t off = patch_ptr - reinterpret_cast<uintptr_t>(oat_file_->Begin());
uintptr_t ret = reinterpret_cast<uintptr_t>(oat_header_) + off;
CHECK_GE(ret, reinterpret_cast<uintptr_t>(elf_file_->Begin()));
CHECK_LT(ret, reinterpret_cast<uintptr_t>(elf_file_->End()));
return reinterpret_cast<uint32_t*>(ret);
}
void ElfPatcher::SetPatchLocation(const CompilerDriver::PatchInformation* patch, uint32_t value) {
ClassLinker* class_linker = Runtime::Current()->GetClassLinker();
const void* quick_oat_code = class_linker->GetQuickOatCodeFor(patch->GetDexFile(),
patch->GetReferrerClassDefIdx(),
patch->GetReferrerMethodIdx());
// TODO: make this Thumb2 specific
uint8_t* base = reinterpret_cast<uint8_t*>(reinterpret_cast<uintptr_t>(quick_oat_code) & ~0x1);
uintptr_t patch_ptr = reinterpret_cast<uintptr_t>(base + patch->GetLiteralOffset());
uint32_t* patch_location = GetPatchLocation(patch_ptr);
if (kIsDebugBuild) {
if (patch->IsCall()) {
const CompilerDriver::CallPatchInformation* cpatch = patch->AsCall();
const DexFile::MethodId& id =
cpatch->GetTargetDexFile()->GetMethodId(cpatch->GetTargetMethodIdx());
uint32_t expected = reinterpret_cast<uintptr_t>(&id) & 0xFFFFFFFF;
uint32_t actual = *patch_location;
CHECK(actual == expected || actual == value) << "Patching call failed: " << std::hex
<< " actual=" << actual
<< " expected=" << expected
<< " value=" << value;
}
if (patch->IsType()) {
const CompilerDriver::TypePatchInformation* tpatch = patch->AsType();
const DexFile::TypeId& id = tpatch->GetTargetTypeDexFile().GetTypeId(tpatch->GetTargetTypeIdx());
uint32_t expected = reinterpret_cast<uintptr_t>(&id) & 0xFFFFFFFF;
uint32_t actual = *patch_location;
CHECK(actual == expected || actual == value) << "Patching type failed: " << std::hex
<< " actual=" << actual
<< " expected=" << expected
<< " value=" << value;
}
}
*patch_location = value;
oat_header_->UpdateChecksum(patch_location, sizeof(value));
if (patch->IsCall() && patch->AsCall()->IsRelative()) {
// We never record relative patches.
return;
}
uintptr_t loc = patch_ptr - (reinterpret_cast<uintptr_t>(oat_file_->Begin()) +
oat_header_->GetExecutableOffset());
CHECK_GT(patch_ptr, reinterpret_cast<uintptr_t>(oat_file_->Begin()) +
oat_header_->GetExecutableOffset());
CHECK_LT(loc, oat_file_->Size() - oat_header_->GetExecutableOffset());
AddPatch(loc);
}
bool ElfPatcher::PatchElf() {
// TODO if we are adding patches the resulting ELF file might have a
// potentially rather large amount of free space where patches might have been
// placed. We should adjust the ELF file to get rid of this excess space.
if (write_patches_) {
patches_.reserve(compiler_driver_->GetCodeToPatch().size() +
compiler_driver_->GetMethodsToPatch().size() +
compiler_driver_->GetClassesToPatch().size());
}
ClassLinker* class_linker = Runtime::Current()->GetClassLinker();
ScopedAssertNoThreadSuspension ants(Thread::Current(), "ElfPatcher");
typedef std::vector<const CompilerDriver::CallPatchInformation*> CallPatches;
const CallPatches& code_to_patch = compiler_driver_->GetCodeToPatch();
for (size_t i = 0; i < code_to_patch.size(); i++) {
const CompilerDriver::CallPatchInformation* patch = code_to_patch[i];
mirror::ArtMethod* target = GetTargetMethod(patch);
uintptr_t quick_code = reinterpret_cast<uintptr_t>(class_linker->GetQuickOatCodeFor(target));
DCHECK_NE(quick_code, 0U) << PrettyMethod(target);
const OatFile* target_oat =
class_linker->FindOpenedOatDexFileForDexFile(*patch->GetTargetDexFile())->GetOatFile();
// Get where the data actually starts. if target is this oat_file_ it is oat_data_start_,
// otherwise it is wherever target_oat is loaded.
uintptr_t oat_data_addr = GetBaseAddressFor(target_oat);
uintptr_t code_base = reinterpret_cast<uintptr_t>(target_oat->Begin());
uintptr_t code_offset = quick_code - code_base;
bool is_quick_offset = false;
if (quick_code == reinterpret_cast<uintptr_t>(GetQuickToInterpreterBridge())) {
is_quick_offset = true;
code_offset = oat_header_->GetQuickToInterpreterBridgeOffset();
} else if (quick_code ==
reinterpret_cast<uintptr_t>(class_linker->GetQuickGenericJniTrampoline())) {
CHECK(target->IsNative());
is_quick_offset = true;
code_offset = oat_header_->GetQuickGenericJniTrampolineOffset();
}
uintptr_t value;
if (patch->IsRelative()) {
// value to patch is relative to the location being patched
const void* quick_oat_code =
class_linker->GetQuickOatCodeFor(patch->GetDexFile(),
patch->GetReferrerClassDefIdx(),
patch->GetReferrerMethodIdx());
if (is_quick_offset) {
// If its a quick offset it means that we are doing a relative patch from the class linker
// oat_file to the elf_patcher oat_file so we need to adjust the quick oat code to be the
// one in the output oat_file (ie where it is actually going to be loaded).
quick_code = PointerToLowMemUInt32(reinterpret_cast<void*>(oat_data_addr + code_offset));
quick_oat_code =
reinterpret_cast<const void*>(reinterpret_cast<uintptr_t>(quick_oat_code) +
oat_data_addr - code_base);
}
uintptr_t base = reinterpret_cast<uintptr_t>(quick_oat_code);
uintptr_t patch_location = base + patch->GetLiteralOffset();
value = quick_code - patch_location + patch->RelativeOffset();
} else if (code_offset != 0) {
value = PointerToLowMemUInt32(reinterpret_cast<void*>(oat_data_addr + code_offset));
} else {
value = 0;
}
SetPatchLocation(patch, value);
}
const CallPatches& methods_to_patch = compiler_driver_->GetMethodsToPatch();
for (size_t i = 0; i < methods_to_patch.size(); i++) {
const CompilerDriver::CallPatchInformation* patch = methods_to_patch[i];
mirror::ArtMethod* target = GetTargetMethod(patch);
SetPatchLocation(patch, PointerToLowMemUInt32(get_image_address_(cb_data_, target)));
}
const std::vector<const CompilerDriver::TypePatchInformation*>& classes_to_patch =
compiler_driver_->GetClassesToPatch();
for (size_t i = 0; i < classes_to_patch.size(); i++) {
const CompilerDriver::TypePatchInformation* patch = classes_to_patch[i];
mirror::Class* target = GetTargetType(patch);
SetPatchLocation(patch, PointerToLowMemUInt32(get_image_address_(cb_data_, target)));
}
if (write_patches_) {
return WriteOutPatchData();
}
return true;
}
bool ElfPatcher::WriteOutPatchData() {
Elf32_Shdr* shdr = elf_file_->FindSectionByName(".oat_patches");
if (shdr != nullptr) {
CHECK_EQ(shdr, elf_file_->FindSectionByType(SHT_OAT_PATCH))
<< "Incorrect type for .oat_patches section";
CHECK_LE(patches_.size() * sizeof(uintptr_t), shdr->sh_size)
<< "We got more patches than anticipated";
CHECK_LE(reinterpret_cast<uintptr_t>(elf_file_->Begin()) + shdr->sh_offset + shdr->sh_size,
reinterpret_cast<uintptr_t>(elf_file_->End())) << "section is too large";
CHECK(shdr == elf_file_->GetSectionHeader(elf_file_->GetSectionHeaderNum() - 1) ||
shdr->sh_offset + shdr->sh_size <= (shdr + 1)->sh_offset)
<< "Section overlaps onto next section";
// It's mmap'd so we can just memcpy.
memcpy(elf_file_->Begin() + shdr->sh_offset, patches_.data(),
patches_.size() * sizeof(uintptr_t));
// TODO We should fill in the newly empty space between the last patch and
// the start of the next section by moving the following sections down if
// possible.
shdr->sh_size = patches_.size() * sizeof(uintptr_t);
return true;
} else {
LOG(ERROR) << "Unable to find section header for SHT_OAT_PATCH";
*error_msg_ = "Unable to find section to write patch information to in ";
*error_msg_ += elf_file_->GetFile().GetPath();
return false;
}
}
} // namespace art
|