1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
|
/*
* Copyright (C) 2015 The Android Open Source Project
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
#include "elf_writer_debug.h"
#include <unordered_set>
#include "base/casts.h"
#include "compiled_method.h"
#include "driver/compiler_driver.h"
#include "dex_file-inl.h"
#include "dwarf/headers.h"
#include "dwarf/register.h"
#include "oat_writer.h"
namespace art {
namespace dwarf {
static void WriteEhFrameCIE(InstructionSet isa,
ExceptionHeaderValueApplication addr_type,
std::vector<uint8_t>* eh_frame) {
// Scratch registers should be marked as undefined. This tells the
// debugger that its value in the previous frame is not recoverable.
bool is64bit = Is64BitInstructionSet(isa);
switch (isa) {
case kArm:
case kThumb2: {
DebugFrameOpCodeWriter<> opcodes;
opcodes.DefCFA(Reg::ArmCore(13), 0); // R13(SP).
// core registers.
for (int reg = 0; reg < 13; reg++) {
if (reg < 4 || reg == 12) {
opcodes.Undefined(Reg::ArmCore(reg));
} else {
opcodes.SameValue(Reg::ArmCore(reg));
}
}
// fp registers.
for (int reg = 0; reg < 32; reg++) {
if (reg < 16) {
opcodes.Undefined(Reg::ArmFp(reg));
} else {
opcodes.SameValue(Reg::ArmFp(reg));
}
}
auto return_reg = Reg::ArmCore(14); // R14(LR).
WriteEhFrameCIE(is64bit, addr_type, return_reg, opcodes, eh_frame);
return;
}
case kArm64: {
DebugFrameOpCodeWriter<> opcodes;
opcodes.DefCFA(Reg::Arm64Core(31), 0); // R31(SP).
// core registers.
for (int reg = 0; reg < 30; reg++) {
if (reg < 8 || reg == 16 || reg == 17) {
opcodes.Undefined(Reg::Arm64Core(reg));
} else {
opcodes.SameValue(Reg::Arm64Core(reg));
}
}
// fp registers.
for (int reg = 0; reg < 32; reg++) {
if (reg < 8 || reg >= 16) {
opcodes.Undefined(Reg::Arm64Fp(reg));
} else {
opcodes.SameValue(Reg::Arm64Fp(reg));
}
}
auto return_reg = Reg::Arm64Core(30); // R30(LR).
WriteEhFrameCIE(is64bit, addr_type, return_reg, opcodes, eh_frame);
return;
}
case kMips:
case kMips64: {
DebugFrameOpCodeWriter<> opcodes;
opcodes.DefCFA(Reg::MipsCore(29), 0); // R29(SP).
// core registers.
for (int reg = 1; reg < 26; reg++) {
if (reg < 16 || reg == 24 || reg == 25) { // AT, V*, A*, T*.
opcodes.Undefined(Reg::MipsCore(reg));
} else {
opcodes.SameValue(Reg::MipsCore(reg));
}
}
auto return_reg = Reg::MipsCore(31); // R31(RA).
WriteEhFrameCIE(is64bit, addr_type, return_reg, opcodes, eh_frame);
return;
}
case kX86: {
// FIXME: Add fp registers once libunwind adds support for them. Bug: 20491296
constexpr bool generate_opcodes_for_x86_fp = false;
DebugFrameOpCodeWriter<> opcodes;
opcodes.DefCFA(Reg::X86Core(4), 4); // R4(ESP).
opcodes.Offset(Reg::X86Core(8), -4); // R8(EIP).
// core registers.
for (int reg = 0; reg < 8; reg++) {
if (reg <= 3) {
opcodes.Undefined(Reg::X86Core(reg));
} else if (reg == 4) {
// Stack pointer.
} else {
opcodes.SameValue(Reg::X86Core(reg));
}
}
// fp registers.
if (generate_opcodes_for_x86_fp) {
for (int reg = 0; reg < 8; reg++) {
opcodes.Undefined(Reg::X86Fp(reg));
}
}
auto return_reg = Reg::X86Core(8); // R8(EIP).
WriteEhFrameCIE(is64bit, addr_type, return_reg, opcodes, eh_frame);
return;
}
case kX86_64: {
DebugFrameOpCodeWriter<> opcodes;
opcodes.DefCFA(Reg::X86_64Core(4), 8); // R4(RSP).
opcodes.Offset(Reg::X86_64Core(16), -8); // R16(RIP).
// core registers.
for (int reg = 0; reg < 16; reg++) {
if (reg == 4) {
// Stack pointer.
} else if (reg < 12 && reg != 3 && reg != 5) { // except EBX and EBP.
opcodes.Undefined(Reg::X86_64Core(reg));
} else {
opcodes.SameValue(Reg::X86_64Core(reg));
}
}
// fp registers.
for (int reg = 0; reg < 16; reg++) {
if (reg < 12) {
opcodes.Undefined(Reg::X86_64Fp(reg));
} else {
opcodes.SameValue(Reg::X86_64Fp(reg));
}
}
auto return_reg = Reg::X86_64Core(16); // R16(RIP).
WriteEhFrameCIE(is64bit, addr_type, return_reg, opcodes, eh_frame);
return;
}
case kNone:
break;
}
LOG(FATAL) << "Can not write CIE frame for ISA " << isa;
UNREACHABLE();
}
void WriteEhFrame(const CompilerDriver* compiler,
const OatWriter* oat_writer,
ExceptionHeaderValueApplication address_type,
std::vector<uint8_t>* eh_frame,
std::vector<uintptr_t>* eh_frame_patches,
std::vector<uint8_t>* eh_frame_hdr,
std::vector<uintptr_t>* eh_frame_hdr_patches) {
const auto& method_infos = oat_writer->GetMethodDebugInfo();
const InstructionSet isa = compiler->GetInstructionSet();
// Write .eh_frame section.
std::map<uint32_t, size_t> address_to_fde_offset_map;
size_t cie_offset = eh_frame->size();
WriteEhFrameCIE(isa, address_type, eh_frame);
for (const OatWriter::DebugInfo& mi : method_infos) {
if (!mi.deduped_) { // Only one FDE per unique address.
const SwapVector<uint8_t>* opcodes = mi.compiled_method_->GetCFIInfo();
if (opcodes != nullptr) {
address_to_fde_offset_map.emplace(mi.low_pc_, eh_frame->size());
WriteEhFrameFDE(Is64BitInstructionSet(isa), cie_offset,
mi.low_pc_, mi.high_pc_ - mi.low_pc_,
opcodes, eh_frame, eh_frame_patches);
}
}
}
// Write .eh_frame_hdr section.
Writer<> header(eh_frame_hdr);
header.PushUint8(1); // Version.
// Encoding of .eh_frame pointer - libunwind does not honor datarel here,
// so we have to use pcrel which means relative to the pointer's location.
header.PushUint8(DW_EH_PE_pcrel | DW_EH_PE_sdata4);
// Encoding of binary search table size.
header.PushUint8(DW_EH_PE_udata4);
// Encoding of binary search table addresses - libunwind supports only this
// specific combination, which means relative to the start of .eh_frame_hdr.
header.PushUint8(DW_EH_PE_datarel | DW_EH_PE_sdata4);
// .eh_frame pointer - .eh_frame_hdr section is after .eh_frame section
const int32_t relative_eh_frame_begin = -static_cast<int32_t>(eh_frame->size());
header.PushInt32(relative_eh_frame_begin - 4U);
// Binary search table size (number of entries).
header.PushUint32(dchecked_integral_cast<uint32_t>(address_to_fde_offset_map.size()));
// Binary search table.
for (const auto& address_to_fde_offset : address_to_fde_offset_map) {
u_int32_t code_address = address_to_fde_offset.first;
int32_t fde_address = dchecked_integral_cast<int32_t>(address_to_fde_offset.second);
eh_frame_hdr_patches->push_back(header.data()->size());
header.PushUint32(code_address);
// We know the exact layout (eh_frame is immediately before eh_frame_hdr)
// and the data is relative to the start of the eh_frame_hdr,
// so patching isn't necessary (in contrast to the code address above).
header.PushInt32(relative_eh_frame_begin + fde_address);
}
}
/*
* @brief Generate the DWARF sections.
* @param oat_writer The Oat file Writer.
* @param eh_frame Call Frame Information.
* @param debug_info Compilation unit information.
* @param debug_info_patches Address locations to be patched.
* @param debug_abbrev Abbreviations used to generate dbg_info.
* @param debug_str Debug strings.
* @param debug_line Line number table.
* @param debug_line_patches Address locations to be patched.
*/
void WriteDebugSections(const CompilerDriver* compiler,
const OatWriter* oat_writer,
std::vector<uint8_t>* debug_info,
std::vector<uintptr_t>* debug_info_patches,
std::vector<uint8_t>* debug_abbrev,
std::vector<uint8_t>* debug_str,
std::vector<uint8_t>* debug_line,
std::vector<uintptr_t>* debug_line_patches) {
const std::vector<OatWriter::DebugInfo>& method_infos = oat_writer->GetMethodDebugInfo();
const InstructionSet isa = compiler->GetInstructionSet();
// Find all addresses (low_pc) which contain deduped methods.
// The first instance of method is not marked deduped_, but the rest is.
std::unordered_set<uint32_t> deduped_addresses;
for (auto it = method_infos.begin(); it != method_infos.end(); ++it) {
if (it->deduped_) {
deduped_addresses.insert(it->low_pc_);
}
}
// Group the methods into compilation units based on source file.
std::vector<std::vector<const OatWriter::DebugInfo*>> compilation_units;
const char* last_source_file = nullptr;
for (const auto& mi : method_infos) {
// Attribute given instruction range only to single method.
// Otherwise the debugger might get really confused.
if (!mi.deduped_) {
auto& dex_class_def = mi.dex_file_->GetClassDef(mi.class_def_index_);
const char* source_file = mi.dex_file_->GetSourceFile(dex_class_def);
if (compilation_units.empty() || source_file != last_source_file) {
compilation_units.push_back(std::vector<const OatWriter::DebugInfo*>());
}
compilation_units.back().push_back(&mi);
last_source_file = source_file;
}
}
// Write .debug_info section.
for (const auto& compilation_unit : compilation_units) {
uint32_t cunit_low_pc = 0xFFFFFFFFU;
uint32_t cunit_high_pc = 0;
for (auto method_info : compilation_unit) {
cunit_low_pc = std::min(cunit_low_pc, method_info->low_pc_);
cunit_high_pc = std::max(cunit_high_pc, method_info->high_pc_);
}
size_t debug_abbrev_offset = debug_abbrev->size();
DebugInfoEntryWriter<> info(false /* 32 bit */, debug_abbrev);
info.StartTag(DW_TAG_compile_unit, DW_CHILDREN_yes);
info.WriteStrp(DW_AT_producer, "Android dex2oat", debug_str);
info.WriteData1(DW_AT_language, DW_LANG_Java);
info.WriteAddr(DW_AT_low_pc, cunit_low_pc);
info.WriteAddr(DW_AT_high_pc, cunit_high_pc);
info.WriteData4(DW_AT_stmt_list, debug_line->size());
for (auto method_info : compilation_unit) {
std::string method_name = PrettyMethod(method_info->dex_method_index_,
*method_info->dex_file_, true);
if (deduped_addresses.find(method_info->low_pc_) != deduped_addresses.end()) {
method_name += " [DEDUPED]";
}
info.StartTag(DW_TAG_subprogram, DW_CHILDREN_no);
info.WriteStrp(DW_AT_name, method_name.data(), debug_str);
info.WriteAddr(DW_AT_low_pc, method_info->low_pc_);
info.WriteAddr(DW_AT_high_pc, method_info->high_pc_);
info.EndTag(); // DW_TAG_subprogram
}
info.EndTag(); // DW_TAG_compile_unit
WriteDebugInfoCU(debug_abbrev_offset, info, debug_info, debug_info_patches);
// Write .debug_line section.
std::vector<FileEntry> files;
std::unordered_map<std::string, size_t> files_map;
std::vector<std::string> directories;
std::unordered_map<std::string, size_t> directories_map;
int code_factor_bits_ = 0;
int dwarf_isa = -1;
switch (isa) {
case kArm: // arm actually means thumb2.
case kThumb2:
code_factor_bits_ = 1; // 16-bit instuctions
dwarf_isa = 1; // DW_ISA_ARM_thumb.
break;
case kArm64:
case kMips:
case kMips64:
code_factor_bits_ = 2; // 32-bit instructions
break;
case kNone:
case kX86:
case kX86_64:
break;
}
DebugLineOpCodeWriter<> opcodes(false /* 32bit */, code_factor_bits_);
opcodes.SetAddress(cunit_low_pc);
if (dwarf_isa != -1) {
opcodes.SetISA(dwarf_isa);
}
for (const OatWriter::DebugInfo* mi : compilation_unit) {
struct DebugInfoCallbacks {
static bool NewPosition(void* ctx, uint32_t address, uint32_t line) {
auto* context = reinterpret_cast<DebugInfoCallbacks*>(ctx);
context->dex2line_.push_back({address, static_cast<int32_t>(line)});
return false;
}
DefaultSrcMap dex2line_;
} debug_info_callbacks;
const DexFile* dex = mi->dex_file_;
if (mi->code_item_ != nullptr) {
dex->DecodeDebugInfo(mi->code_item_,
(mi->access_flags_ & kAccStatic) != 0,
mi->dex_method_index_,
DebugInfoCallbacks::NewPosition,
nullptr,
&debug_info_callbacks);
}
// Get and deduplicate directory and filename.
int file_index = 0; // 0 - primary source file of the compilation.
auto& dex_class_def = dex->GetClassDef(mi->class_def_index_);
const char* source_file = dex->GetSourceFile(dex_class_def);
if (source_file != nullptr) {
std::string file_name(source_file);
size_t file_name_slash = file_name.find_last_of('/');
std::string class_name(dex->GetClassDescriptor(dex_class_def));
size_t class_name_slash = class_name.find_last_of('/');
std::string full_path(file_name);
// Guess directory from package name.
int directory_index = 0; // 0 - current directory of the compilation.
if (file_name_slash == std::string::npos && // Just filename.
class_name.front() == 'L' && // Type descriptor for a class.
class_name_slash != std::string::npos) { // Has package name.
std::string package_name = class_name.substr(1, class_name_slash - 1);
auto it = directories_map.find(package_name);
if (it == directories_map.end()) {
directory_index = 1 + directories.size();
directories_map.emplace(package_name, directory_index);
directories.push_back(package_name);
} else {
directory_index = it->second;
}
full_path = package_name + "/" + file_name;
}
// Add file entry.
auto it2 = files_map.find(full_path);
if (it2 == files_map.end()) {
file_index = 1 + files.size();
files_map.emplace(full_path, file_index);
files.push_back(FileEntry {
file_name,
directory_index,
0, // Modification time - NA.
0, // File size - NA.
});
} else {
file_index = it2->second;
}
}
opcodes.SetFile(file_index);
// Generate mapping opcodes from PC to Java lines.
const DefaultSrcMap& dex2line_map = debug_info_callbacks.dex2line_;
if (file_index != 0 && !dex2line_map.empty()) {
bool first = true;
for (SrcMapElem pc2dex : mi->compiled_method_->GetSrcMappingTable()) {
uint32_t pc = pc2dex.from_;
int dex_pc = pc2dex.to_;
auto dex2line = dex2line_map.Find(static_cast<uint32_t>(dex_pc));
if (dex2line.first) {
int line = dex2line.second;
if (first) {
first = false;
if (pc > 0) {
// Assume that any preceding code is prologue.
int first_line = dex2line_map.front().to_;
// Prologue is not a sensible place for a breakpoint.
opcodes.NegateStmt();
opcodes.AddRow(mi->low_pc_, first_line);
opcodes.NegateStmt();
opcodes.SetPrologueEnd();
}
opcodes.AddRow(mi->low_pc_ + pc, line);
} else if (line != opcodes.CurrentLine()) {
opcodes.AddRow(mi->low_pc_ + pc, line);
}
}
}
} else {
// line 0 - instruction cannot be attributed to any source line.
opcodes.AddRow(mi->low_pc_, 0);
}
}
opcodes.AdvancePC(cunit_high_pc);
opcodes.EndSequence();
WriteDebugLineTable(directories, files, opcodes, debug_line, debug_line_patches);
}
}
} // namespace dwarf
} // namespace art
|