1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
|
/*
* Copyright (C) 2011 The Android Open Source Project
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
#include "image_writer.h"
#include <sys/stat.h>
#include <vector>
#include "base/logging.h"
#include "base/unix_file/fd_file.h"
#include "class_linker.h"
#include "compiled_method.h"
#include "dex_file-inl.h"
#include "driver/compiler_driver.h"
#include "elf_writer.h"
#include "gc/accounting/card_table-inl.h"
#include "gc/accounting/heap_bitmap.h"
#include "gc/accounting/space_bitmap-inl.h"
#include "gc/heap.h"
#include "gc/space/large_object_space.h"
#include "gc/space/space-inl.h"
#include "globals.h"
#include "image.h"
#include "intern_table.h"
#include "lock_word.h"
#include "mirror/art_field-inl.h"
#include "mirror/art_method-inl.h"
#include "mirror/array-inl.h"
#include "mirror/class-inl.h"
#include "mirror/class_loader.h"
#include "mirror/dex_cache-inl.h"
#include "mirror/object-inl.h"
#include "mirror/object_array-inl.h"
#include "oat.h"
#include "oat_file.h"
#include "object_utils.h"
#include "runtime.h"
#include "scoped_thread_state_change.h"
#include "sirt_ref-inl.h"
#include "UniquePtr.h"
#include "utils.h"
using ::art::mirror::ArtField;
using ::art::mirror::ArtMethod;
using ::art::mirror::Class;
using ::art::mirror::DexCache;
using ::art::mirror::EntryPointFromInterpreter;
using ::art::mirror::Object;
using ::art::mirror::ObjectArray;
using ::art::mirror::String;
namespace art {
bool ImageWriter::Write(const std::string& image_filename,
uintptr_t image_begin,
const std::string& oat_filename,
const std::string& oat_location) {
CHECK(!image_filename.empty());
CHECK_NE(image_begin, 0U);
image_begin_ = reinterpret_cast<byte*>(image_begin);
ClassLinker* class_linker = Runtime::Current()->GetClassLinker();
UniquePtr<File> oat_file(OS::OpenFileReadWrite(oat_filename.c_str()));
if (oat_file.get() == NULL) {
LOG(ERROR) << "Failed to open oat file " << oat_filename << " for " << oat_location;
return false;
}
std::string error_msg;
oat_file_ = OatFile::OpenWritable(oat_file.get(), oat_location, &error_msg);
if (oat_file_ == nullptr) {
LOG(ERROR) << "Failed to open writable oat file " << oat_filename << " for " << oat_location
<< ": " << error_msg;
return false;
}
CHECK_EQ(class_linker->RegisterOatFile(oat_file_), oat_file_);
interpreter_to_interpreter_bridge_offset_ =
oat_file_->GetOatHeader().GetInterpreterToInterpreterBridgeOffset();
interpreter_to_compiled_code_bridge_offset_ =
oat_file_->GetOatHeader().GetInterpreterToCompiledCodeBridgeOffset();
jni_dlsym_lookup_offset_ = oat_file_->GetOatHeader().GetJniDlsymLookupOffset();
portable_imt_conflict_trampoline_offset_ =
oat_file_->GetOatHeader().GetPortableImtConflictTrampolineOffset();
portable_resolution_trampoline_offset_ =
oat_file_->GetOatHeader().GetPortableResolutionTrampolineOffset();
portable_to_interpreter_bridge_offset_ =
oat_file_->GetOatHeader().GetPortableToInterpreterBridgeOffset();
quick_generic_jni_trampoline_offset_ =
oat_file_->GetOatHeader().GetQuickGenericJniTrampolineOffset();
quick_imt_conflict_trampoline_offset_ =
oat_file_->GetOatHeader().GetQuickImtConflictTrampolineOffset();
quick_resolution_trampoline_offset_ =
oat_file_->GetOatHeader().GetQuickResolutionTrampolineOffset();
quick_to_interpreter_bridge_offset_ =
oat_file_->GetOatHeader().GetQuickToInterpreterBridgeOffset();
{
Thread::Current()->TransitionFromSuspendedToRunnable();
PruneNonImageClasses(); // Remove junk
ComputeLazyFieldsForImageClasses(); // Add useful information
ComputeEagerResolvedStrings();
Thread::Current()->TransitionFromRunnableToSuspended(kNative);
}
gc::Heap* heap = Runtime::Current()->GetHeap();
heap->CollectGarbage(false); // Remove garbage.
if (!AllocMemory()) {
return false;
}
if (kIsDebugBuild) {
ScopedObjectAccess soa(Thread::Current());
CheckNonImageClassesRemoved();
}
Thread::Current()->TransitionFromSuspendedToRunnable();
size_t oat_loaded_size = 0;
size_t oat_data_offset = 0;
ElfWriter::GetOatElfInformation(oat_file.get(), oat_loaded_size, oat_data_offset);
CalculateNewObjectOffsets(oat_loaded_size, oat_data_offset);
CopyAndFixupObjects();
PatchOatCodeAndMethods();
Thread::Current()->TransitionFromRunnableToSuspended(kNative);
UniquePtr<File> image_file(OS::CreateEmptyFile(image_filename.c_str()));
ImageHeader* image_header = reinterpret_cast<ImageHeader*>(image_->Begin());
if (image_file.get() == NULL) {
LOG(ERROR) << "Failed to open image file " << image_filename;
return false;
}
if (fchmod(image_file->Fd(), 0644) != 0) {
PLOG(ERROR) << "Failed to make image file world readable: " << image_filename;
return EXIT_FAILURE;
}
// Write out the image.
CHECK_EQ(image_end_, image_header->GetImageSize());
if (!image_file->WriteFully(image_->Begin(), image_end_)) {
PLOG(ERROR) << "Failed to write image file " << image_filename;
return false;
}
// Write out the image bitmap at the page aligned start of the image end.
CHECK_ALIGNED(image_header->GetImageBitmapOffset(), kPageSize);
if (!image_file->Write(reinterpret_cast<char*>(image_bitmap_->Begin()),
image_header->GetImageBitmapSize(),
image_header->GetImageBitmapOffset())) {
PLOG(ERROR) << "Failed to write image file " << image_filename;
return false;
}
return true;
}
void ImageWriter::SetImageOffset(mirror::Object* object, size_t offset) {
DCHECK(object != nullptr);
DCHECK_NE(offset, 0U);
DCHECK(!IsImageOffsetAssigned(object));
mirror::Object* obj = reinterpret_cast<mirror::Object*>(image_->Begin() + offset);
DCHECK_ALIGNED(obj, kObjectAlignment);
image_bitmap_->Set(obj);
// Before we stomp over the lock word, save the hash code for later.
Monitor::Deflate(Thread::Current(), object);;
LockWord lw(object->GetLockWord());
switch (lw.GetState()) {
case LockWord::kFatLocked: {
LOG(FATAL) << "Fat locked object " << obj << " found during object copy";
break;
}
case LockWord::kThinLocked: {
LOG(FATAL) << "Thin locked object " << obj << " found during object copy";
break;
}
case LockWord::kUnlocked:
// No hash, don't need to save it.
break;
case LockWord::kHashCode:
saved_hashes_.push_back(std::make_pair(obj, lw.GetHashCode()));
break;
default:
LOG(FATAL) << "Unreachable.";
break;
}
object->SetLockWord(LockWord::FromForwardingAddress(offset));
DCHECK(IsImageOffsetAssigned(object));
}
void ImageWriter::AssignImageOffset(mirror::Object* object) {
DCHECK(object != nullptr);
SetImageOffset(object, image_end_);
image_end_ += RoundUp(object->SizeOf(), 8); // 64-bit alignment
DCHECK_LT(image_end_, image_->Size());
}
bool ImageWriter::IsImageOffsetAssigned(mirror::Object* object) const {
DCHECK(object != nullptr);
return object->GetLockWord().GetState() == LockWord::kForwardingAddress;
}
size_t ImageWriter::GetImageOffset(mirror::Object* object) const {
DCHECK(object != nullptr);
DCHECK(IsImageOffsetAssigned(object));
LockWord lock_word = object->GetLockWord();
size_t offset = lock_word.ForwardingAddress();
DCHECK_LT(offset, image_end_);
return offset;
}
bool ImageWriter::AllocMemory() {
size_t length = RoundUp(Runtime::Current()->GetHeap()->GetTotalMemory(), kPageSize);
std::string error_msg;
image_.reset(MemMap::MapAnonymous("image writer image", NULL, length, PROT_READ | PROT_WRITE,
true, &error_msg));
if (UNLIKELY(image_.get() == nullptr)) {
LOG(ERROR) << "Failed to allocate memory for image file generation: " << error_msg;
return false;
}
// Create the image bitmap.
image_bitmap_.reset(gc::accounting::ContinuousSpaceBitmap::Create("image bitmap", image_->Begin(),
length));
if (image_bitmap_.get() == nullptr) {
LOG(ERROR) << "Failed to allocate memory for image bitmap";
return false;
}
return true;
}
void ImageWriter::ComputeLazyFieldsForImageClasses() {
ClassLinker* class_linker = Runtime::Current()->GetClassLinker();
class_linker->VisitClassesWithoutClassesLock(ComputeLazyFieldsForClassesVisitor, NULL);
}
bool ImageWriter::ComputeLazyFieldsForClassesVisitor(Class* c, void* /*arg*/) {
c->ComputeName();
return true;
}
void ImageWriter::ComputeEagerResolvedStringsCallback(Object* obj, void* arg) {
if (!obj->GetClass()->IsStringClass()) {
return;
}
mirror::String* string = obj->AsString();
const uint16_t* utf16_string = string->GetCharArray()->GetData() + string->GetOffset();
for (DexCache* dex_cache : Runtime::Current()->GetClassLinker()->GetDexCaches()) {
const DexFile& dex_file = *dex_cache->GetDexFile();
const DexFile::StringId* string_id;
if (UNLIKELY(string->GetLength() == 0)) {
string_id = dex_file.FindStringId("");
} else {
string_id = dex_file.FindStringId(utf16_string);
}
if (string_id != nullptr) {
// This string occurs in this dex file, assign the dex cache entry.
uint32_t string_idx = dex_file.GetIndexForStringId(*string_id);
if (dex_cache->GetResolvedString(string_idx) == NULL) {
dex_cache->SetResolvedString(string_idx, string);
}
}
}
}
void ImageWriter::ComputeEagerResolvedStrings() SHARED_LOCKS_REQUIRED(Locks::mutator_lock_) {
ReaderMutexLock mu(Thread::Current(), *Locks::heap_bitmap_lock_);
Runtime::Current()->GetHeap()->VisitObjects(ComputeEagerResolvedStringsCallback, this);
}
bool ImageWriter::IsImageClass(Class* klass) {
return compiler_driver_.IsImageClass(ClassHelper(klass).GetDescriptor());
}
struct NonImageClasses {
ImageWriter* image_writer;
std::set<std::string>* non_image_classes;
};
void ImageWriter::PruneNonImageClasses() {
if (compiler_driver_.GetImageClasses() == NULL) {
return;
}
Runtime* runtime = Runtime::Current();
ClassLinker* class_linker = runtime->GetClassLinker();
// Make a list of classes we would like to prune.
std::set<std::string> non_image_classes;
NonImageClasses context;
context.image_writer = this;
context.non_image_classes = &non_image_classes;
class_linker->VisitClasses(NonImageClassesVisitor, &context);
// Remove the undesired classes from the class roots.
for (const std::string& it : non_image_classes) {
class_linker->RemoveClass(it.c_str(), NULL);
}
// Clear references to removed classes from the DexCaches.
ArtMethod* resolution_method = runtime->GetResolutionMethod();
for (DexCache* dex_cache : class_linker->GetDexCaches()) {
for (size_t i = 0; i < dex_cache->NumResolvedTypes(); i++) {
Class* klass = dex_cache->GetResolvedType(i);
if (klass != NULL && !IsImageClass(klass)) {
dex_cache->SetResolvedType(i, NULL);
}
}
for (size_t i = 0; i < dex_cache->NumResolvedMethods(); i++) {
ArtMethod* method = dex_cache->GetResolvedMethod(i);
if (method != NULL && !IsImageClass(method->GetDeclaringClass())) {
dex_cache->SetResolvedMethod(i, resolution_method);
}
}
for (size_t i = 0; i < dex_cache->NumResolvedFields(); i++) {
ArtField* field = dex_cache->GetResolvedField(i);
if (field != NULL && !IsImageClass(field->GetDeclaringClass())) {
dex_cache->SetResolvedField(i, NULL);
}
}
}
}
bool ImageWriter::NonImageClassesVisitor(Class* klass, void* arg) {
NonImageClasses* context = reinterpret_cast<NonImageClasses*>(arg);
if (!context->image_writer->IsImageClass(klass)) {
context->non_image_classes->insert(ClassHelper(klass).GetDescriptor());
}
return true;
}
void ImageWriter::CheckNonImageClassesRemoved()
SHARED_LOCKS_REQUIRED(Locks::mutator_lock_) {
if (compiler_driver_.GetImageClasses() != nullptr) {
gc::Heap* heap = Runtime::Current()->GetHeap();
ReaderMutexLock mu(Thread::Current(), *Locks::heap_bitmap_lock_);
heap->VisitObjects(CheckNonImageClassesRemovedCallback, this);
}
}
void ImageWriter::CheckNonImageClassesRemovedCallback(Object* obj, void* arg) {
ImageWriter* image_writer = reinterpret_cast<ImageWriter*>(arg);
if (obj->IsClass()) {
Class* klass = obj->AsClass();
if (!image_writer->IsImageClass(klass)) {
image_writer->DumpImageClasses();
CHECK(image_writer->IsImageClass(klass)) << ClassHelper(klass).GetDescriptor()
<< " " << PrettyDescriptor(klass);
}
}
}
void ImageWriter::DumpImageClasses() {
CompilerDriver::DescriptorSet* image_classes = compiler_driver_.GetImageClasses();
CHECK(image_classes != NULL);
for (const std::string& image_class : *image_classes) {
LOG(INFO) << " " << image_class;
}
}
void ImageWriter::CalculateObjectOffsets(Object* obj) {
DCHECK(obj != NULL);
// if it is a string, we want to intern it if its not interned.
if (obj->GetClass()->IsStringClass()) {
// we must be an interned string that was forward referenced and already assigned
if (IsImageOffsetAssigned(obj)) {
DCHECK_EQ(obj, obj->AsString()->Intern());
return;
}
Thread* self = Thread::Current();
SirtRef<Object> sirt_obj(self, obj);
mirror::String* interned = obj->AsString()->Intern();
if (sirt_obj.get() != interned) {
if (!IsImageOffsetAssigned(interned)) {
// interned obj is after us, allocate its location early
AssignImageOffset(interned);
}
// point those looking for this object to the interned version.
SetImageOffset(sirt_obj.get(), GetImageOffset(interned));
return;
}
// else (obj == interned), nothing to do but fall through to the normal case
}
AssignImageOffset(obj);
}
ObjectArray<Object>* ImageWriter::CreateImageRoots() const {
Runtime* runtime = Runtime::Current();
ClassLinker* class_linker = runtime->GetClassLinker();
Thread* self = Thread::Current();
SirtRef<Class> object_array_class(self, class_linker->FindSystemClass(self,
"[Ljava/lang/Object;"));
// build an Object[] of all the DexCaches used in the source_space_
ObjectArray<Object>* dex_caches = ObjectArray<Object>::Alloc(self, object_array_class.get(),
class_linker->GetDexCaches().size());
int i = 0;
for (DexCache* dex_cache : class_linker->GetDexCaches()) {
dex_caches->Set<false>(i++, dex_cache);
}
// build an Object[] of the roots needed to restore the runtime
SirtRef<ObjectArray<Object> > image_roots(
self, ObjectArray<Object>::Alloc(self, object_array_class.get(), ImageHeader::kImageRootsMax));
image_roots->Set<false>(ImageHeader::kResolutionMethod, runtime->GetResolutionMethod());
image_roots->Set<false>(ImageHeader::kImtConflictMethod, runtime->GetImtConflictMethod());
image_roots->Set<false>(ImageHeader::kDefaultImt, runtime->GetDefaultImt());
image_roots->Set<false>(ImageHeader::kCalleeSaveMethod,
runtime->GetCalleeSaveMethod(Runtime::kSaveAll));
image_roots->Set<false>(ImageHeader::kRefsOnlySaveMethod,
runtime->GetCalleeSaveMethod(Runtime::kRefsOnly));
image_roots->Set<false>(ImageHeader::kRefsAndArgsSaveMethod,
runtime->GetCalleeSaveMethod(Runtime::kRefsAndArgs));
image_roots->Set<false>(ImageHeader::kDexCaches, dex_caches);
image_roots->Set<false>(ImageHeader::kClassRoots, class_linker->GetClassRoots());
for (int i = 0; i < ImageHeader::kImageRootsMax; i++) {
CHECK(image_roots->Get(i) != NULL);
}
return image_roots.get();
}
// Walk instance fields of the given Class. Separate function to allow recursion on the super
// class.
void ImageWriter::WalkInstanceFields(mirror::Object* obj, mirror::Class* klass) {
// Visit fields of parent classes first.
SirtRef<mirror::Class> sirt_class(Thread::Current(), klass);
mirror::Class* super = sirt_class->GetSuperClass();
if (super != nullptr) {
WalkInstanceFields(obj, super);
}
//
size_t num_reference_fields = sirt_class->NumReferenceInstanceFields();
for (size_t i = 0; i < num_reference_fields; ++i) {
mirror::ArtField* field = sirt_class->GetInstanceField(i);
MemberOffset field_offset = field->GetOffset();
mirror::Object* value = obj->GetFieldObject<mirror::Object>(field_offset, false);
if (value != nullptr) {
WalkFieldsInOrder(value);
}
}
}
// For an unvisited object, visit it then all its children found via fields.
void ImageWriter::WalkFieldsInOrder(mirror::Object* obj) {
if (!IsImageOffsetAssigned(obj)) {
// Walk instance fields of all objects
Thread* self = Thread::Current();
SirtRef<mirror::Object> sirt_obj(self, obj);
SirtRef<mirror::Class> klass(self, obj->GetClass());
// visit the object itself.
CalculateObjectOffsets(sirt_obj.get());
WalkInstanceFields(sirt_obj.get(), klass.get());
// Walk static fields of a Class.
if (sirt_obj->IsClass()) {
size_t num_static_fields = klass->NumReferenceStaticFields();
for (size_t i = 0; i < num_static_fields; ++i) {
mirror::ArtField* field = klass->GetStaticField(i);
MemberOffset field_offset = field->GetOffset();
mirror::Object* value = sirt_obj->GetFieldObject<mirror::Object>(field_offset, false);
if (value != nullptr) {
WalkFieldsInOrder(value);
}
}
} else if (sirt_obj->IsObjectArray()) {
// Walk elements of an object array.
int32_t length = sirt_obj->AsObjectArray<mirror::Object>()->GetLength();
for (int32_t i = 0; i < length; i++) {
mirror::ObjectArray<mirror::Object>* obj_array = sirt_obj->AsObjectArray<mirror::Object>();
mirror::Object* value = obj_array->Get(i);
if (value != nullptr) {
WalkFieldsInOrder(value);
}
}
}
}
}
void ImageWriter::WalkFieldsCallback(mirror::Object* obj, void* arg) {
ImageWriter* writer = reinterpret_cast<ImageWriter*>(arg);
DCHECK(writer != nullptr);
writer->WalkFieldsInOrder(obj);
}
void ImageWriter::CalculateNewObjectOffsets(size_t oat_loaded_size, size_t oat_data_offset) {
CHECK_NE(0U, oat_loaded_size);
Thread* self = Thread::Current();
SirtRef<ObjectArray<Object> > image_roots(self, CreateImageRoots());
gc::Heap* heap = Runtime::Current()->GetHeap();
DCHECK_EQ(0U, image_end_);
// Leave space for the header, but do not write it yet, we need to
// know where image_roots is going to end up
image_end_ += RoundUp(sizeof(ImageHeader), 8); // 64-bit-alignment
{
WriterMutexLock mu(self, *Locks::heap_bitmap_lock_);
// TODO: Image spaces only?
const char* old = self->StartAssertNoThreadSuspension("ImageWriter");
DCHECK_LT(image_end_, image_->Size());
// Clear any pre-existing monitors which may have been in the monitor words.
heap->VisitObjects(WalkFieldsCallback, this);
self->EndAssertNoThreadSuspension(old);
}
const byte* oat_file_begin = image_begin_ + RoundUp(image_end_, kPageSize);
const byte* oat_file_end = oat_file_begin + oat_loaded_size;
oat_data_begin_ = oat_file_begin + oat_data_offset;
const byte* oat_data_end = oat_data_begin_ + oat_file_->Size();
// Return to write header at start of image with future location of image_roots. At this point,
// image_end_ is the size of the image (excluding bitmaps).
const size_t heap_bytes_per_bitmap_byte = kBitsPerByte * kObjectAlignment;
const size_t bitmap_bytes = RoundUp(image_end_, heap_bytes_per_bitmap_byte) /
heap_bytes_per_bitmap_byte;
ImageHeader image_header(PointerToLowMemUInt32(image_begin_),
static_cast<uint32_t>(image_end_),
RoundUp(image_end_, kPageSize),
RoundUp(bitmap_bytes, kPageSize),
PointerToLowMemUInt32(GetImageAddress(image_roots.get())),
oat_file_->GetOatHeader().GetChecksum(),
PointerToLowMemUInt32(oat_file_begin),
PointerToLowMemUInt32(oat_data_begin_),
PointerToLowMemUInt32(oat_data_end),
PointerToLowMemUInt32(oat_file_end));
memcpy(image_->Begin(), &image_header, sizeof(image_header));
// Note that image_end_ is left at end of used space
}
void ImageWriter::CopyAndFixupObjects()
SHARED_LOCKS_REQUIRED(Locks::mutator_lock_) {
Thread* self = Thread::Current();
const char* old_cause = self->StartAssertNoThreadSuspension("ImageWriter");
gc::Heap* heap = Runtime::Current()->GetHeap();
// TODO: heap validation can't handle this fix up pass
heap->DisableObjectValidation();
// TODO: Image spaces only?
WriterMutexLock mu(self, *Locks::heap_bitmap_lock_);
heap->VisitObjects(CopyAndFixupObjectsCallback, this);
// Fix up the object previously had hash codes.
for (const std::pair<mirror::Object*, uint32_t>& hash_pair : saved_hashes_) {
hash_pair.first->SetLockWord(LockWord::FromHashCode(hash_pair.second));
}
saved_hashes_.clear();
self->EndAssertNoThreadSuspension(old_cause);
}
void ImageWriter::CopyAndFixupObjectsCallback(Object* obj, void* arg) {
DCHECK(obj != NULL);
DCHECK(arg != NULL);
ImageWriter* image_writer = reinterpret_cast<ImageWriter*>(arg);
// see GetLocalAddress for similar computation
size_t offset = image_writer->GetImageOffset(obj);
byte* dst = image_writer->image_->Begin() + offset;
const byte* src = reinterpret_cast<const byte*>(obj);
size_t n = obj->SizeOf();
DCHECK_LT(offset + n, image_writer->image_->Size());
memcpy(dst, src, n);
Object* copy = reinterpret_cast<Object*>(dst);
// Write in a hash code of objects which have inflated monitors or a hash code in their monitor
// word.
copy->SetLockWord(LockWord());
image_writer->FixupObject(obj, copy);
}
class FixupVisitor {
public:
FixupVisitor(ImageWriter* image_writer, Object* copy) : image_writer_(image_writer), copy_(copy) {
}
void operator()(Object* obj, MemberOffset offset, bool /*is_static*/) const
EXCLUSIVE_LOCKS_REQUIRED(Locks::mutator_lock_, Locks::heap_bitmap_lock_) {
Object* ref = obj->GetFieldObject<Object, kVerifyNone>(offset, false);
// Use SetFieldObjectWithoutWriteBarrier to avoid card marking since we are writing to the
// image.
copy_->SetFieldObjectWithoutWriteBarrier<false, true, kVerifyNone>(
offset, image_writer_->GetImageAddress(ref), false);
}
// java.lang.ref.Reference visitor.
void operator()(mirror::Class* /*klass*/, mirror::Reference* ref) const
SHARED_LOCKS_REQUIRED(Locks::mutator_lock_)
EXCLUSIVE_LOCKS_REQUIRED(Locks::heap_bitmap_lock_) {
copy_->SetFieldObjectWithoutWriteBarrier<false, true, kVerifyNone>(
mirror::Reference::ReferentOffset(), image_writer_->GetImageAddress(ref->GetReferent()),
false);
}
private:
ImageWriter* const image_writer_;
mirror::Object* const copy_;
};
void ImageWriter::FixupObject(Object* orig, Object* copy) {
DCHECK(orig != nullptr);
DCHECK(copy != nullptr);
if (kUseBakerOrBrooksReadBarrier) {
orig->AssertReadBarrierPointer();
if (kUseBrooksReadBarrier) {
// Note the address 'copy' isn't the same as the image address of 'orig'.
copy->SetReadBarrierPointer(GetImageAddress(orig));
DCHECK_EQ(copy->GetReadBarrierPointer(), GetImageAddress(orig));
}
}
FixupVisitor visitor(this, copy);
orig->VisitReferences<true /*visit class*/>(visitor, visitor);
if (orig->IsArtMethod<kVerifyNone>()) {
FixupMethod(orig->AsArtMethod<kVerifyNone>(), down_cast<ArtMethod*>(copy));
}
}
void ImageWriter::FixupMethod(ArtMethod* orig, ArtMethod* copy) {
// OatWriter replaces the code_ with an offset value. Here we re-adjust to a pointer relative to
// oat_begin_
// The resolution method has a special trampoline to call.
if (UNLIKELY(orig == Runtime::Current()->GetResolutionMethod())) {
copy->SetEntryPointFromPortableCompiledCode<kVerifyNone>(GetOatAddress(portable_resolution_trampoline_offset_));
copy->SetEntryPointFromQuickCompiledCode<kVerifyNone>(GetOatAddress(quick_resolution_trampoline_offset_));
} else if (UNLIKELY(orig == Runtime::Current()->GetImtConflictMethod())) {
copy->SetEntryPointFromPortableCompiledCode<kVerifyNone>(GetOatAddress(portable_imt_conflict_trampoline_offset_));
copy->SetEntryPointFromQuickCompiledCode<kVerifyNone>(GetOatAddress(quick_imt_conflict_trampoline_offset_));
} else {
// We assume all methods have code. If they don't currently then we set them to the use the
// resolution trampoline. Abstract methods never have code and so we need to make sure their
// use results in an AbstractMethodError. We use the interpreter to achieve this.
if (UNLIKELY(orig->IsAbstract())) {
copy->SetEntryPointFromPortableCompiledCode<kVerifyNone>(GetOatAddress(portable_to_interpreter_bridge_offset_));
copy->SetEntryPointFromQuickCompiledCode<kVerifyNone>(GetOatAddress(quick_to_interpreter_bridge_offset_));
copy->SetEntryPointFromInterpreter<kVerifyNone>(reinterpret_cast<EntryPointFromInterpreter*>
(const_cast<byte*>(GetOatAddress(interpreter_to_interpreter_bridge_offset_))));
} else {
copy->SetEntryPointFromInterpreter<kVerifyNone>(reinterpret_cast<EntryPointFromInterpreter*>
(const_cast<byte*>(GetOatAddress(interpreter_to_compiled_code_bridge_offset_))));
// Use original code if it exists. Otherwise, set the code pointer to the resolution
// trampoline.
const byte* quick_code = GetOatAddress(orig->GetQuickOatCodeOffset());
if (quick_code != nullptr &&
(!orig->IsStatic() || orig->IsConstructor() || orig->GetDeclaringClass()->IsInitialized())) {
// We have code for a non-static or initialized method, just use the code.
copy->SetEntryPointFromQuickCompiledCode<kVerifyNone>(quick_code);
} else if (quick_code == nullptr && orig->IsNative() &&
(!orig->IsStatic() || orig->GetDeclaringClass()->IsInitialized())) {
// Non-static or initialized native method missing compiled code, use generic JNI version.
copy->SetEntryPointFromQuickCompiledCode<kVerifyNone>(GetOatAddress(quick_generic_jni_trampoline_offset_));
} else if (quick_code == nullptr && !orig->IsNative()) {
// We don't have code at all for a non-native method, use the interpreter.
copy->SetEntryPointFromQuickCompiledCode<kVerifyNone>(GetOatAddress(quick_to_interpreter_bridge_offset_));
} else {
CHECK(!orig->GetDeclaringClass()->IsInitialized());
// We have code for a static method, but need to go through the resolution stub for class
// initialization.
copy->SetEntryPointFromQuickCompiledCode<kVerifyNone>(GetOatAddress(quick_resolution_trampoline_offset_));
}
const byte* portable_code = GetOatAddress(orig->GetPortableOatCodeOffset());
if (portable_code != nullptr) {
copy->SetEntryPointFromPortableCompiledCode<kVerifyNone>(portable_code);
} else {
copy->SetEntryPointFromPortableCompiledCode<kVerifyNone>(GetOatAddress(portable_resolution_trampoline_offset_));
}
if (orig->IsNative()) {
// The native method's pointer is set to a stub to lookup via dlsym.
// Note this is not the code_ pointer, that is handled above.
copy->SetNativeMethod<kVerifyNone>(GetOatAddress(jni_dlsym_lookup_offset_));
} else {
// Normal (non-abstract non-native) methods have various tables to relocate.
uint32_t mapping_table_off = orig->GetOatMappingTableOffset();
const byte* mapping_table = GetOatAddress(mapping_table_off);
copy->SetMappingTable<kVerifyNone>(mapping_table);
uint32_t vmap_table_offset = orig->GetOatVmapTableOffset();
const byte* vmap_table = GetOatAddress(vmap_table_offset);
copy->SetVmapTable<kVerifyNone>(vmap_table);
uint32_t native_gc_map_offset = orig->GetOatNativeGcMapOffset();
const byte* native_gc_map = GetOatAddress(native_gc_map_offset);
copy->SetNativeGcMap<kVerifyNone>(reinterpret_cast<const uint8_t*>(native_gc_map));
}
}
}
}
static ArtMethod* GetTargetMethod(const CompilerDriver::CallPatchInformation* patch)
SHARED_LOCKS_REQUIRED(Locks::mutator_lock_) {
ClassLinker* class_linker = Runtime::Current()->GetClassLinker();
Thread* self = Thread::Current();
SirtRef<mirror::DexCache> dex_cache(self, class_linker->FindDexCache(*patch->GetTargetDexFile()));
SirtRef<mirror::ClassLoader> class_loader(self, nullptr);
ArtMethod* method = class_linker->ResolveMethod(*patch->GetTargetDexFile(),
patch->GetTargetMethodIdx(),
dex_cache,
class_loader,
NULL,
patch->GetTargetInvokeType());
CHECK(method != NULL)
<< patch->GetTargetDexFile()->GetLocation() << " " << patch->GetTargetMethodIdx();
CHECK(!method->IsRuntimeMethod())
<< patch->GetTargetDexFile()->GetLocation() << " " << patch->GetTargetMethodIdx();
CHECK(dex_cache->GetResolvedMethods()->Get(patch->GetTargetMethodIdx()) == method)
<< patch->GetTargetDexFile()->GetLocation() << " " << patch->GetReferrerMethodIdx() << " "
<< PrettyMethod(dex_cache->GetResolvedMethods()->Get(patch->GetTargetMethodIdx())) << " "
<< PrettyMethod(method);
return method;
}
static Class* GetTargetType(const CompilerDriver::TypePatchInformation* patch)
SHARED_LOCKS_REQUIRED(Locks::mutator_lock_) {
ClassLinker* class_linker = Runtime::Current()->GetClassLinker();
Thread* self = Thread::Current();
SirtRef<mirror::DexCache> dex_cache(self, class_linker->FindDexCache(patch->GetDexFile()));
SirtRef<mirror::ClassLoader> class_loader(self, nullptr);
Class* klass = class_linker->ResolveType(patch->GetDexFile(),
patch->GetTargetTypeIdx(),
dex_cache,
class_loader);
CHECK(klass != NULL)
<< patch->GetDexFile().GetLocation() << " " << patch->GetTargetTypeIdx();
CHECK(dex_cache->GetResolvedTypes()->Get(patch->GetTargetTypeIdx()) == klass)
<< patch->GetDexFile().GetLocation() << " " << patch->GetReferrerMethodIdx() << " "
<< PrettyClass(dex_cache->GetResolvedTypes()->Get(patch->GetTargetTypeIdx())) << " "
<< PrettyClass(klass);
return klass;
}
void ImageWriter::PatchOatCodeAndMethods() {
Thread* self = Thread::Current();
ClassLinker* class_linker = Runtime::Current()->GetClassLinker();
const char* old_cause = self->StartAssertNoThreadSuspension("ImageWriter");
typedef std::vector<const CompilerDriver::CallPatchInformation*> CallPatches;
const CallPatches& code_to_patch = compiler_driver_.GetCodeToPatch();
for (size_t i = 0; i < code_to_patch.size(); i++) {
const CompilerDriver::CallPatchInformation* patch = code_to_patch[i];
ArtMethod* target = GetTargetMethod(patch);
uintptr_t quick_code = reinterpret_cast<uintptr_t>(class_linker->GetQuickOatCodeFor(target));
uintptr_t code_base = reinterpret_cast<uintptr_t>(&oat_file_->GetOatHeader());
uintptr_t code_offset = quick_code - code_base;
if (patch->IsRelative()) {
// value to patch is relative to the location being patched
const void* quick_oat_code =
class_linker->GetQuickOatCodeFor(patch->GetDexFile(),
patch->GetReferrerClassDefIdx(),
patch->GetReferrerMethodIdx());
uintptr_t base = reinterpret_cast<uintptr_t>(quick_oat_code);
uintptr_t patch_location = base + patch->GetLiteralOffset();
uintptr_t value = quick_code - patch_location + patch->RelativeOffset();
SetPatchLocation(patch, value);
} else {
if (quick_code == reinterpret_cast<uintptr_t>(GetQuickToInterpreterBridge())) {
if (target->IsNative()) {
// generic JNI, not interpreter bridge from GetQuickOatCodeFor().
code_offset = quick_generic_jni_trampoline_offset_;
} else {
code_offset = quick_to_interpreter_bridge_offset_;
}
}
SetPatchLocation(patch, PointerToLowMemUInt32(GetOatAddress(code_offset)));
}
}
const CallPatches& methods_to_patch = compiler_driver_.GetMethodsToPatch();
for (size_t i = 0; i < methods_to_patch.size(); i++) {
const CompilerDriver::CallPatchInformation* patch = methods_to_patch[i];
ArtMethod* target = GetTargetMethod(patch);
SetPatchLocation(patch, PointerToLowMemUInt32(GetImageAddress(target)));
}
const std::vector<const CompilerDriver::TypePatchInformation*>& classes_to_patch =
compiler_driver_.GetClassesToPatch();
for (size_t i = 0; i < classes_to_patch.size(); i++) {
const CompilerDriver::TypePatchInformation* patch = classes_to_patch[i];
Class* target = GetTargetType(patch);
SetPatchLocation(patch, PointerToLowMemUInt32(GetImageAddress(target)));
}
// Update the image header with the new checksum after patching
ImageHeader* image_header = reinterpret_cast<ImageHeader*>(image_->Begin());
image_header->SetOatChecksum(oat_file_->GetOatHeader().GetChecksum());
self->EndAssertNoThreadSuspension(old_cause);
}
void ImageWriter::SetPatchLocation(const CompilerDriver::PatchInformation* patch, uint32_t value) {
ClassLinker* class_linker = Runtime::Current()->GetClassLinker();
const void* quick_oat_code = class_linker->GetQuickOatCodeFor(patch->GetDexFile(),
patch->GetReferrerClassDefIdx(),
patch->GetReferrerMethodIdx());
OatHeader& oat_header = const_cast<OatHeader&>(oat_file_->GetOatHeader());
// TODO: make this Thumb2 specific
uint8_t* base = reinterpret_cast<uint8_t*>(reinterpret_cast<uintptr_t>(quick_oat_code) & ~0x1);
uint32_t* patch_location = reinterpret_cast<uint32_t*>(base + patch->GetLiteralOffset());
if (kIsDebugBuild) {
if (patch->IsCall()) {
const CompilerDriver::CallPatchInformation* cpatch = patch->AsCall();
const DexFile::MethodId& id = cpatch->GetTargetDexFile()->GetMethodId(cpatch->GetTargetMethodIdx());
uint32_t expected = reinterpret_cast<uintptr_t>(&id) & 0xFFFFFFFF;
uint32_t actual = *patch_location;
CHECK(actual == expected || actual == value) << std::hex
<< "actual=" << actual
<< "expected=" << expected
<< "value=" << value;
}
if (patch->IsType()) {
const CompilerDriver::TypePatchInformation* tpatch = patch->AsType();
const DexFile::TypeId& id = tpatch->GetDexFile().GetTypeId(tpatch->GetTargetTypeIdx());
uint32_t expected = reinterpret_cast<uintptr_t>(&id) & 0xFFFFFFFF;
uint32_t actual = *patch_location;
CHECK(actual == expected || actual == value) << std::hex
<< "actual=" << actual
<< "expected=" << expected
<< "value=" << value;
}
}
*patch_location = value;
oat_header.UpdateChecksum(patch_location, sizeof(value));
}
} // namespace art
|