1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835
1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889
1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1940
1941
1942
1943
1944
1945
1946
1947
1948
1949
1950
1951
1952
1953
1954
1955
1956
1957
1958
1959
1960
1961
1962
1963
1964
1965
1966
1967
1968
1969
1970
1971
1972
1973
1974
1975
1976
1977
1978
1979
1980
1981
1982
1983
1984
1985
1986
1987
1988
1989
1990
1991
1992
1993
1994
1995
1996
1997
1998
1999
2000
2001
2002
2003
2004
2005
2006
2007
2008
2009
2010
2011
2012
2013
2014
2015
2016
2017
2018
2019
2020
2021
2022
2023
2024
2025
2026
2027
2028
2029
2030
2031
2032
2033
2034
2035
2036
2037
2038
2039
2040
2041
2042
2043
2044
2045
2046
2047
2048
2049
2050
2051
2052
2053
2054
2055
2056
2057
2058
2059
2060
2061
2062
2063
2064
2065
2066
2067
2068
2069
2070
2071
2072
2073
2074
2075
2076
2077
2078
2079
2080
2081
2082
2083
2084
2085
2086
2087
2088
2089
2090
2091
2092
2093
2094
2095
2096
2097
2098
2099
2100
2101
2102
2103
2104
2105
2106
2107
2108
2109
2110
2111
2112
2113
2114
2115
2116
2117
2118
2119
2120
2121
2122
2123
2124
2125
2126
2127
2128
2129
2130
2131
2132
2133
2134
2135
2136
2137
2138
2139
2140
2141
2142
2143
2144
2145
2146
2147
2148
2149
2150
2151
2152
2153
2154
2155
2156
2157
2158
2159
2160
2161
2162
2163
2164
2165
2166
2167
2168
2169
2170
2171
2172
2173
2174
2175
2176
2177
2178
2179
2180
2181
2182
2183
2184
2185
2186
2187
2188
2189
2190
2191
2192
2193
2194
2195
2196
2197
2198
2199
2200
2201
2202
2203
2204
2205
2206
2207
2208
2209
2210
2211
2212
2213
2214
2215
2216
2217
2218
2219
2220
2221
2222
2223
2224
2225
2226
2227
2228
2229
2230
2231
2232
2233
2234
2235
2236
2237
2238
2239
2240
2241
2242
2243
2244
2245
2246
2247
2248
2249
2250
2251
2252
2253
2254
2255
2256
2257
2258
2259
2260
2261
2262
2263
2264
2265
2266
2267
2268
2269
2270
2271
2272
2273
2274
2275
2276
2277
2278
2279
2280
2281
2282
2283
2284
2285
2286
2287
2288
2289
2290
2291
2292
2293
2294
2295
2296
2297
2298
2299
2300
2301
2302
2303
2304
2305
2306
2307
2308
2309
2310
2311
2312
2313
2314
2315
2316
2317
2318
2319
2320
2321
2322
2323
2324
2325
2326
2327
2328
2329
2330
2331
2332
2333
2334
2335
2336
2337
2338
2339
2340
2341
2342
2343
2344
2345
2346
2347
2348
2349
2350
2351
2352
2353
2354
2355
2356
2357
2358
2359
2360
2361
2362
2363
2364
2365
2366
2367
2368
2369
2370
2371
2372
2373
2374
2375
2376
2377
2378
2379
2380
2381
2382
2383
2384
2385
2386
2387
2388
2389
2390
2391
2392
2393
2394
2395
2396
2397
2398
2399
2400
2401
2402
2403
2404
2405
2406
2407
2408
2409
2410
2411
2412
2413
2414
2415
2416
2417
2418
2419
2420
2421
2422
2423
2424
2425
2426
2427
2428
2429
2430
2431
2432
2433
2434
2435
2436
2437
2438
2439
2440
2441
2442
2443
2444
2445
2446
2447
2448
2449
2450
2451
2452
2453
2454
2455
2456
2457
2458
2459
2460
2461
2462
2463
2464
2465
2466
2467
2468
2469
2470
2471
2472
2473
2474
2475
2476
2477
2478
2479
2480
2481
2482
2483
2484
2485
2486
2487
2488
2489
2490
2491
2492
2493
2494
2495
2496
2497
2498
2499
2500
2501
2502
2503
2504
2505
2506
2507
2508
2509
2510
2511
2512
2513
2514
2515
2516
2517
2518
2519
2520
2521
2522
2523
2524
2525
2526
2527
2528
2529
2530
2531
2532
2533
2534
2535
2536
2537
2538
2539
2540
2541
2542
2543
2544
2545
2546
2547
2548
2549
2550
2551
2552
2553
2554
2555
2556
2557
2558
2559
2560
2561
2562
2563
2564
2565
2566
2567
2568
2569
2570
2571
2572
2573
2574
2575
2576
2577
2578
2579
2580
2581
2582
2583
2584
2585
2586
2587
2588
2589
2590
2591
2592
2593
2594
2595
2596
2597
2598
2599
2600
2601
2602
2603
2604
2605
2606
2607
2608
2609
2610
2611
2612
2613
2614
2615
2616
2617
2618
2619
2620
2621
2622
2623
2624
2625
2626
2627
2628
2629
2630
2631
2632
2633
2634
2635
2636
2637
2638
2639
2640
2641
2642
2643
2644
2645
2646
2647
2648
2649
2650
2651
2652
2653
2654
2655
2656
2657
2658
2659
2660
2661
2662
2663
2664
2665
2666
2667
2668
2669
2670
2671
2672
2673
2674
2675
2676
2677
2678
2679
2680
2681
2682
2683
2684
2685
2686
2687
2688
2689
2690
2691
2692
2693
2694
2695
2696
2697
2698
2699
2700
2701
2702
2703
2704
2705
2706
2707
2708
2709
2710
2711
2712
2713
2714
2715
2716
2717
2718
2719
2720
2721
2722
2723
2724
2725
2726
2727
2728
2729
2730
2731
2732
2733
2734
2735
2736
2737
2738
2739
2740
2741
2742
2743
2744
2745
2746
2747
2748
2749
2750
2751
2752
2753
2754
2755
2756
2757
2758
2759
2760
2761
2762
2763
2764
2765
2766
2767
2768
2769
2770
2771
2772
2773
2774
2775
2776
2777
2778
2779
2780
2781
2782
2783
2784
2785
2786
2787
2788
2789
2790
2791
2792
2793
2794
2795
2796
2797
2798
2799
2800
2801
2802
2803
2804
2805
2806
2807
2808
2809
2810
2811
2812
2813
2814
2815
2816
2817
2818
2819
2820
2821
2822
2823
2824
2825
2826
2827
2828
2829
2830
2831
2832
2833
2834
2835
2836
2837
2838
2839
2840
2841
2842
2843
2844
2845
2846
2847
2848
2849
2850
2851
2852
2853
2854
2855
2856
2857
2858
2859
2860
2861
2862
2863
2864
2865
2866
2867
2868
2869
2870
2871
2872
2873
2874
2875
2876
2877
2878
2879
2880
2881
2882
2883
2884
2885
2886
2887
2888
2889
2890
2891
2892
2893
2894
2895
2896
2897
2898
2899
2900
2901
2902
2903
2904
2905
2906
2907
2908
2909
2910
2911
2912
2913
2914
2915
2916
2917
|
/*
* Copyright (C) 2014 The Android Open Source Project
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
#ifndef ART_COMPILER_OPTIMIZING_NODES_H_
#define ART_COMPILER_OPTIMIZING_NODES_H_
#include "invoke_type.h"
#include "locations.h"
#include "offsets.h"
#include "primitive.h"
#include "utils/arena_object.h"
#include "utils/arena_bit_vector.h"
#include "utils/growable_array.h"
namespace art {
class HBasicBlock;
class HEnvironment;
class HInstruction;
class HIntConstant;
class HInvoke;
class HGraphVisitor;
class HPhi;
class HSuspendCheck;
class LiveInterval;
class LocationSummary;
static const int kDefaultNumberOfBlocks = 8;
static const int kDefaultNumberOfSuccessors = 2;
static const int kDefaultNumberOfPredecessors = 2;
static const int kDefaultNumberOfDominatedBlocks = 1;
static const int kDefaultNumberOfBackEdges = 1;
static constexpr uint32_t kMaxIntShiftValue = 0x1f;
static constexpr uint64_t kMaxLongShiftValue = 0x3f;
enum IfCondition {
kCondEQ,
kCondNE,
kCondLT,
kCondLE,
kCondGT,
kCondGE,
};
class HInstructionList {
public:
HInstructionList() : first_instruction_(nullptr), last_instruction_(nullptr) {}
void AddInstruction(HInstruction* instruction);
void RemoveInstruction(HInstruction* instruction);
// Return true if this list contains `instruction`.
bool Contains(HInstruction* instruction) const;
// Return true if `instruction1` is found before `instruction2` in
// this instruction list and false otherwise. Abort if none
// of these instructions is found.
bool FoundBefore(const HInstruction* instruction1,
const HInstruction* instruction2) const;
private:
HInstruction* first_instruction_;
HInstruction* last_instruction_;
friend class HBasicBlock;
friend class HGraph;
friend class HInstruction;
friend class HInstructionIterator;
friend class HBackwardInstructionIterator;
DISALLOW_COPY_AND_ASSIGN(HInstructionList);
};
// Control-flow graph of a method. Contains a list of basic blocks.
class HGraph : public ArenaObject<kArenaAllocMisc> {
public:
HGraph(ArenaAllocator* arena, int start_instruction_id = 0)
: arena_(arena),
blocks_(arena, kDefaultNumberOfBlocks),
reverse_post_order_(arena, kDefaultNumberOfBlocks),
entry_block_(nullptr),
exit_block_(nullptr),
maximum_number_of_out_vregs_(0),
number_of_vregs_(0),
number_of_in_vregs_(0),
temporaries_vreg_slots_(0),
current_instruction_id_(start_instruction_id) {}
ArenaAllocator* GetArena() const { return arena_; }
const GrowableArray<HBasicBlock*>& GetBlocks() const { return blocks_; }
HBasicBlock* GetBlock(size_t id) const { return blocks_.Get(id); }
HBasicBlock* GetEntryBlock() const { return entry_block_; }
HBasicBlock* GetExitBlock() const { return exit_block_; }
void SetEntryBlock(HBasicBlock* block) { entry_block_ = block; }
void SetExitBlock(HBasicBlock* block) { exit_block_ = block; }
void AddBlock(HBasicBlock* block);
// Try building the SSA form of this graph, with dominance computation and loop
// recognition. Returns whether it was successful in doing all these steps.
bool TryBuildingSsa() {
BuildDominatorTree();
TransformToSsa();
return AnalyzeNaturalLoops();
}
void BuildDominatorTree();
void TransformToSsa();
void SimplifyCFG();
// Analyze all natural loops in this graph. Returns false if one
// loop is not natural, that is the header does not dominate the
// back edge.
bool AnalyzeNaturalLoops() const;
// Inline this graph in `outer_graph`, replacing the given `invoke` instruction.
void InlineInto(HGraph* outer_graph, HInvoke* invoke);
void SplitCriticalEdge(HBasicBlock* block, HBasicBlock* successor);
void SimplifyLoop(HBasicBlock* header);
int32_t GetNextInstructionId() {
DCHECK_NE(current_instruction_id_, INT32_MAX);
return current_instruction_id_++;
}
int32_t GetCurrentInstructionId() const {
return current_instruction_id_;
}
void SetCurrentInstructionId(int32_t id) {
current_instruction_id_ = id;
}
uint16_t GetMaximumNumberOfOutVRegs() const {
return maximum_number_of_out_vregs_;
}
void SetMaximumNumberOfOutVRegs(uint16_t new_value) {
maximum_number_of_out_vregs_ = new_value;
}
void UpdateTemporariesVRegSlots(size_t slots) {
temporaries_vreg_slots_ = std::max(slots, temporaries_vreg_slots_);
}
size_t GetTemporariesVRegSlots() const {
return temporaries_vreg_slots_;
}
void SetNumberOfVRegs(uint16_t number_of_vregs) {
number_of_vregs_ = number_of_vregs;
}
uint16_t GetNumberOfVRegs() const {
return number_of_vregs_;
}
void SetNumberOfInVRegs(uint16_t value) {
number_of_in_vregs_ = value;
}
uint16_t GetNumberOfLocalVRegs() const {
return number_of_vregs_ - number_of_in_vregs_;
}
const GrowableArray<HBasicBlock*>& GetReversePostOrder() const {
return reverse_post_order_;
}
private:
HBasicBlock* FindCommonDominator(HBasicBlock* first, HBasicBlock* second) const;
void VisitBlockForDominatorTree(HBasicBlock* block,
HBasicBlock* predecessor,
GrowableArray<size_t>* visits);
void FindBackEdges(ArenaBitVector* visited);
void VisitBlockForBackEdges(HBasicBlock* block,
ArenaBitVector* visited,
ArenaBitVector* visiting);
void RemoveInstructionsAsUsersFromDeadBlocks(const ArenaBitVector& visited) const;
void RemoveDeadBlocks(const ArenaBitVector& visited) const;
ArenaAllocator* const arena_;
// List of blocks in insertion order.
GrowableArray<HBasicBlock*> blocks_;
// List of blocks to perform a reverse post order tree traversal.
GrowableArray<HBasicBlock*> reverse_post_order_;
HBasicBlock* entry_block_;
HBasicBlock* exit_block_;
// The maximum number of virtual registers arguments passed to a HInvoke in this graph.
uint16_t maximum_number_of_out_vregs_;
// The number of virtual registers in this method. Contains the parameters.
uint16_t number_of_vregs_;
// The number of virtual registers used by parameters of this method.
uint16_t number_of_in_vregs_;
// Number of vreg size slots that the temporaries use (used in baseline compiler).
size_t temporaries_vreg_slots_;
// The current id to assign to a newly added instruction. See HInstruction.id_.
int32_t current_instruction_id_;
ART_FRIEND_TEST(GraphTest, IfSuccessorSimpleJoinBlock1);
DISALLOW_COPY_AND_ASSIGN(HGraph);
};
class HLoopInformation : public ArenaObject<kArenaAllocMisc> {
public:
HLoopInformation(HBasicBlock* header, HGraph* graph)
: header_(header),
suspend_check_(nullptr),
back_edges_(graph->GetArena(), kDefaultNumberOfBackEdges),
// Make bit vector growable, as the number of blocks may change.
blocks_(graph->GetArena(), graph->GetBlocks().Size(), true) {}
HBasicBlock* GetHeader() const {
return header_;
}
HSuspendCheck* GetSuspendCheck() const { return suspend_check_; }
void SetSuspendCheck(HSuspendCheck* check) { suspend_check_ = check; }
bool HasSuspendCheck() const { return suspend_check_ != nullptr; }
void AddBackEdge(HBasicBlock* back_edge) {
back_edges_.Add(back_edge);
}
void RemoveBackEdge(HBasicBlock* back_edge) {
back_edges_.Delete(back_edge);
}
bool IsBackEdge(HBasicBlock* block) {
for (size_t i = 0, e = back_edges_.Size(); i < e; ++i) {
if (back_edges_.Get(i) == block) return true;
}
return false;
}
size_t NumberOfBackEdges() const {
return back_edges_.Size();
}
HBasicBlock* GetPreHeader() const;
const GrowableArray<HBasicBlock*>& GetBackEdges() const {
return back_edges_;
}
void ClearBackEdges() {
back_edges_.Reset();
}
// Find blocks that are part of this loop. Returns whether the loop is a natural loop,
// that is the header dominates the back edge.
bool Populate();
// Returns whether this loop information contains `block`.
// Note that this loop information *must* be populated before entering this function.
bool Contains(const HBasicBlock& block) const;
// Returns whether this loop information is an inner loop of `other`.
// Note that `other` *must* be populated before entering this function.
bool IsIn(const HLoopInformation& other) const;
const ArenaBitVector& GetBlocks() const { return blocks_; }
private:
// Internal recursive implementation of `Populate`.
void PopulateRecursive(HBasicBlock* block);
HBasicBlock* header_;
HSuspendCheck* suspend_check_;
GrowableArray<HBasicBlock*> back_edges_;
ArenaBitVector blocks_;
DISALLOW_COPY_AND_ASSIGN(HLoopInformation);
};
static constexpr size_t kNoLifetime = -1;
static constexpr uint32_t kNoDexPc = -1;
// A block in a method. Contains the list of instructions represented
// as a double linked list. Each block knows its predecessors and
// successors.
class HBasicBlock : public ArenaObject<kArenaAllocMisc> {
public:
explicit HBasicBlock(HGraph* graph, uint32_t dex_pc = kNoDexPc)
: graph_(graph),
predecessors_(graph->GetArena(), kDefaultNumberOfPredecessors),
successors_(graph->GetArena(), kDefaultNumberOfSuccessors),
loop_information_(nullptr),
dominator_(nullptr),
dominated_blocks_(graph->GetArena(), kDefaultNumberOfDominatedBlocks),
block_id_(-1),
dex_pc_(dex_pc),
lifetime_start_(kNoLifetime),
lifetime_end_(kNoLifetime),
is_catch_block_(false) {}
const GrowableArray<HBasicBlock*>& GetPredecessors() const {
return predecessors_;
}
const GrowableArray<HBasicBlock*>& GetSuccessors() const {
return successors_;
}
const GrowableArray<HBasicBlock*>& GetDominatedBlocks() const {
return dominated_blocks_;
}
bool IsEntryBlock() const {
return graph_->GetEntryBlock() == this;
}
bool IsExitBlock() const {
return graph_->GetExitBlock() == this;
}
void AddBackEdge(HBasicBlock* back_edge) {
if (loop_information_ == nullptr) {
loop_information_ = new (graph_->GetArena()) HLoopInformation(this, graph_);
}
DCHECK_EQ(loop_information_->GetHeader(), this);
loop_information_->AddBackEdge(back_edge);
}
HGraph* GetGraph() const { return graph_; }
int GetBlockId() const { return block_id_; }
void SetBlockId(int id) { block_id_ = id; }
HBasicBlock* GetDominator() const { return dominator_; }
void SetDominator(HBasicBlock* dominator) { dominator_ = dominator; }
void AddDominatedBlock(HBasicBlock* block) { dominated_blocks_.Add(block); }
int NumberOfBackEdges() const {
return loop_information_ == nullptr
? 0
: loop_information_->NumberOfBackEdges();
}
HInstruction* GetFirstInstruction() const { return instructions_.first_instruction_; }
HInstruction* GetLastInstruction() const { return instructions_.last_instruction_; }
const HInstructionList& GetInstructions() const { return instructions_; }
const HInstructionList& GetPhis() const { return phis_; }
HInstruction* GetFirstPhi() const { return phis_.first_instruction_; }
void AddSuccessor(HBasicBlock* block) {
successors_.Add(block);
block->predecessors_.Add(this);
}
void ReplaceSuccessor(HBasicBlock* existing, HBasicBlock* new_block) {
size_t successor_index = GetSuccessorIndexOf(existing);
DCHECK_NE(successor_index, static_cast<size_t>(-1));
existing->RemovePredecessor(this);
new_block->predecessors_.Add(this);
successors_.Put(successor_index, new_block);
}
void RemovePredecessor(HBasicBlock* block) {
predecessors_.Delete(block);
}
void ClearAllPredecessors() {
predecessors_.Reset();
}
void AddPredecessor(HBasicBlock* block) {
predecessors_.Add(block);
block->successors_.Add(this);
}
void SwapPredecessors() {
DCHECK_EQ(predecessors_.Size(), 2u);
HBasicBlock* temp = predecessors_.Get(0);
predecessors_.Put(0, predecessors_.Get(1));
predecessors_.Put(1, temp);
}
size_t GetPredecessorIndexOf(HBasicBlock* predecessor) {
for (size_t i = 0, e = predecessors_.Size(); i < e; ++i) {
if (predecessors_.Get(i) == predecessor) {
return i;
}
}
return -1;
}
size_t GetSuccessorIndexOf(HBasicBlock* successor) {
for (size_t i = 0, e = successors_.Size(); i < e; ++i) {
if (successors_.Get(i) == successor) {
return i;
}
}
return -1;
}
void AddInstruction(HInstruction* instruction);
void RemoveInstruction(HInstruction* instruction);
void InsertInstructionBefore(HInstruction* instruction, HInstruction* cursor);
// Replace instruction `initial` with `replacement` within this block.
void ReplaceAndRemoveInstructionWith(HInstruction* initial,
HInstruction* replacement);
void AddPhi(HPhi* phi);
void InsertPhiAfter(HPhi* instruction, HPhi* cursor);
void RemovePhi(HPhi* phi);
bool IsLoopHeader() const {
return (loop_information_ != nullptr) && (loop_information_->GetHeader() == this);
}
bool IsLoopPreHeaderFirstPredecessor() const {
DCHECK(IsLoopHeader());
DCHECK(!GetPredecessors().IsEmpty());
return GetPredecessors().Get(0) == GetLoopInformation()->GetPreHeader();
}
HLoopInformation* GetLoopInformation() const {
return loop_information_;
}
// Set the loop_information_ on this block. This method overrides the current
// loop_information if it is an outer loop of the passed loop information.
void SetInLoop(HLoopInformation* info) {
if (IsLoopHeader()) {
// Nothing to do. This just means `info` is an outer loop.
} else if (loop_information_ == nullptr) {
loop_information_ = info;
} else if (loop_information_->Contains(*info->GetHeader())) {
// Block is currently part of an outer loop. Make it part of this inner loop.
// Note that a non loop header having a loop information means this loop information
// has already been populated
loop_information_ = info;
} else {
// Block is part of an inner loop. Do not update the loop information.
// Note that we cannot do the check `info->Contains(loop_information_)->GetHeader()`
// at this point, because this method is being called while populating `info`.
}
}
bool IsInLoop() const { return loop_information_ != nullptr; }
// Returns wheter this block dominates the blocked passed as parameter.
bool Dominates(HBasicBlock* block) const;
size_t GetLifetimeStart() const { return lifetime_start_; }
size_t GetLifetimeEnd() const { return lifetime_end_; }
void SetLifetimeStart(size_t start) { lifetime_start_ = start; }
void SetLifetimeEnd(size_t end) { lifetime_end_ = end; }
uint32_t GetDexPc() const { return dex_pc_; }
bool IsCatchBlock() const { return is_catch_block_; }
void SetIsCatchBlock() { is_catch_block_ = true; }
private:
HGraph* const graph_;
GrowableArray<HBasicBlock*> predecessors_;
GrowableArray<HBasicBlock*> successors_;
HInstructionList instructions_;
HInstructionList phis_;
HLoopInformation* loop_information_;
HBasicBlock* dominator_;
GrowableArray<HBasicBlock*> dominated_blocks_;
int block_id_;
// The dex program counter of the first instruction of this block.
const uint32_t dex_pc_;
size_t lifetime_start_;
size_t lifetime_end_;
bool is_catch_block_;
friend class HGraph;
friend class HInstruction;
DISALLOW_COPY_AND_ASSIGN(HBasicBlock);
};
#define FOR_EACH_CONCRETE_INSTRUCTION(M) \
M(Add, BinaryOperation) \
M(And, BinaryOperation) \
M(ArrayGet, Instruction) \
M(ArrayLength, Instruction) \
M(ArraySet, Instruction) \
M(BoundsCheck, Instruction) \
M(CheckCast, Instruction) \
M(ClinitCheck, Instruction) \
M(Compare, BinaryOperation) \
M(Condition, BinaryOperation) \
M(Div, BinaryOperation) \
M(DivZeroCheck, Instruction) \
M(DoubleConstant, Constant) \
M(Equal, Condition) \
M(Exit, Instruction) \
M(FloatConstant, Constant) \
M(Goto, Instruction) \
M(GreaterThan, Condition) \
M(GreaterThanOrEqual, Condition) \
M(If, Instruction) \
M(InstanceFieldGet, Instruction) \
M(InstanceFieldSet, Instruction) \
M(InstanceOf, Instruction) \
M(IntConstant, Constant) \
M(InvokeInterface, Invoke) \
M(InvokeStaticOrDirect, Invoke) \
M(InvokeVirtual, Invoke) \
M(LessThan, Condition) \
M(LessThanOrEqual, Condition) \
M(LoadClass, Instruction) \
M(LoadException, Instruction) \
M(LoadLocal, Instruction) \
M(LoadString, Instruction) \
M(Local, Instruction) \
M(LongConstant, Constant) \
M(MonitorOperation, Instruction) \
M(Mul, BinaryOperation) \
M(Neg, UnaryOperation) \
M(NewArray, Instruction) \
M(NewInstance, Instruction) \
M(Not, UnaryOperation) \
M(NotEqual, Condition) \
M(NullCheck, Instruction) \
M(Or, BinaryOperation) \
M(ParallelMove, Instruction) \
M(ParameterValue, Instruction) \
M(Phi, Instruction) \
M(Rem, BinaryOperation) \
M(Return, Instruction) \
M(ReturnVoid, Instruction) \
M(Shl, BinaryOperation) \
M(Shr, BinaryOperation) \
M(StaticFieldGet, Instruction) \
M(StaticFieldSet, Instruction) \
M(StoreLocal, Instruction) \
M(Sub, BinaryOperation) \
M(SuspendCheck, Instruction) \
M(Temporary, Instruction) \
M(Throw, Instruction) \
M(TypeConversion, Instruction) \
M(UShr, BinaryOperation) \
M(Xor, BinaryOperation) \
#define FOR_EACH_INSTRUCTION(M) \
FOR_EACH_CONCRETE_INSTRUCTION(M) \
M(Constant, Instruction) \
M(UnaryOperation, Instruction) \
M(BinaryOperation, Instruction) \
M(Invoke, Instruction)
#define FORWARD_DECLARATION(type, super) class H##type;
FOR_EACH_INSTRUCTION(FORWARD_DECLARATION)
#undef FORWARD_DECLARATION
#define DECLARE_INSTRUCTION(type) \
virtual InstructionKind GetKind() const { return k##type; } \
virtual const char* DebugName() const { return #type; } \
virtual const H##type* As##type() const OVERRIDE { return this; } \
virtual H##type* As##type() OVERRIDE { return this; } \
virtual bool InstructionTypeEquals(HInstruction* other) const { \
return other->Is##type(); \
} \
virtual void Accept(HGraphVisitor* visitor)
template <typename T>
class HUseListNode : public ArenaObject<kArenaAllocMisc> {
public:
HUseListNode(T* user, size_t index, HUseListNode* tail)
: user_(user), index_(index), tail_(tail) {}
HUseListNode* GetTail() const { return tail_; }
T* GetUser() const { return user_; }
size_t GetIndex() const { return index_; }
void SetTail(HUseListNode<T>* node) { tail_ = node; }
private:
T* const user_;
const size_t index_;
HUseListNode<T>* tail_;
DISALLOW_COPY_AND_ASSIGN(HUseListNode);
};
// Represents the side effects an instruction may have.
class SideEffects : public ValueObject {
public:
SideEffects() : flags_(0) {}
static SideEffects None() {
return SideEffects(0);
}
static SideEffects All() {
return SideEffects(ChangesSomething().flags_ | DependsOnSomething().flags_);
}
static SideEffects ChangesSomething() {
return SideEffects((1 << kFlagChangesCount) - 1);
}
static SideEffects DependsOnSomething() {
int count = kFlagDependsOnCount - kFlagChangesCount;
return SideEffects(((1 << count) - 1) << kFlagChangesCount);
}
SideEffects Union(SideEffects other) const {
return SideEffects(flags_ | other.flags_);
}
bool HasSideEffects() const {
size_t all_bits_set = (1 << kFlagChangesCount) - 1;
return (flags_ & all_bits_set) != 0;
}
bool HasAllSideEffects() const {
size_t all_bits_set = (1 << kFlagChangesCount) - 1;
return all_bits_set == (flags_ & all_bits_set);
}
bool DependsOn(SideEffects other) const {
size_t depends_flags = other.ComputeDependsFlags();
return (flags_ & depends_flags) != 0;
}
bool HasDependencies() const {
int count = kFlagDependsOnCount - kFlagChangesCount;
size_t all_bits_set = (1 << count) - 1;
return ((flags_ >> kFlagChangesCount) & all_bits_set) != 0;
}
private:
static constexpr int kFlagChangesSomething = 0;
static constexpr int kFlagChangesCount = kFlagChangesSomething + 1;
static constexpr int kFlagDependsOnSomething = kFlagChangesCount;
static constexpr int kFlagDependsOnCount = kFlagDependsOnSomething + 1;
explicit SideEffects(size_t flags) : flags_(flags) {}
size_t ComputeDependsFlags() const {
return flags_ << kFlagChangesCount;
}
size_t flags_;
};
class HInstruction : public ArenaObject<kArenaAllocMisc> {
public:
explicit HInstruction(SideEffects side_effects)
: previous_(nullptr),
next_(nullptr),
block_(nullptr),
id_(-1),
ssa_index_(-1),
uses_(nullptr),
env_uses_(nullptr),
environment_(nullptr),
locations_(nullptr),
live_interval_(nullptr),
lifetime_position_(kNoLifetime),
side_effects_(side_effects) {}
virtual ~HInstruction() {}
#define DECLARE_KIND(type, super) k##type,
enum InstructionKind {
FOR_EACH_INSTRUCTION(DECLARE_KIND)
};
#undef DECLARE_KIND
HInstruction* GetNext() const { return next_; }
HInstruction* GetPrevious() const { return previous_; }
HBasicBlock* GetBlock() const { return block_; }
void SetBlock(HBasicBlock* block) { block_ = block; }
bool IsInBlock() const { return block_ != nullptr; }
bool IsInLoop() const { return block_->IsInLoop(); }
bool IsLoopHeaderPhi() { return IsPhi() && block_->IsLoopHeader(); }
virtual size_t InputCount() const = 0;
virtual HInstruction* InputAt(size_t i) const = 0;
virtual void Accept(HGraphVisitor* visitor) = 0;
virtual const char* DebugName() const = 0;
virtual Primitive::Type GetType() const { return Primitive::kPrimVoid; }
virtual void SetRawInputAt(size_t index, HInstruction* input) = 0;
virtual bool NeedsEnvironment() const { return false; }
virtual bool IsControlFlow() const { return false; }
virtual bool CanThrow() const { return false; }
bool HasSideEffects() const { return side_effects_.HasSideEffects(); }
void AddUseAt(HInstruction* user, size_t index) {
uses_ = new (block_->GetGraph()->GetArena()) HUseListNode<HInstruction>(user, index, uses_);
}
void AddEnvUseAt(HEnvironment* user, size_t index) {
DCHECK(user != nullptr);
env_uses_ = new (block_->GetGraph()->GetArena()) HUseListNode<HEnvironment>(
user, index, env_uses_);
}
void RemoveUser(HInstruction* user, size_t index);
void RemoveEnvironmentUser(HEnvironment* user, size_t index);
HUseListNode<HInstruction>* GetUses() const { return uses_; }
HUseListNode<HEnvironment>* GetEnvUses() const { return env_uses_; }
bool HasUses() const { return uses_ != nullptr || env_uses_ != nullptr; }
bool HasEnvironmentUses() const { return env_uses_ != nullptr; }
size_t NumberOfUses() const {
// TODO: Optimize this method if it is used outside of the HGraphVisualizer.
size_t result = 0;
HUseListNode<HInstruction>* current = uses_;
while (current != nullptr) {
current = current->GetTail();
++result;
}
return result;
}
// Does this instruction strictly dominate `other_instruction`?
// Returns false if this instruction and `other_instruction` are the same.
// Aborts if this instruction and `other_instruction` are both phis.
bool StrictlyDominates(HInstruction* other_instruction) const;
int GetId() const { return id_; }
void SetId(int id) { id_ = id; }
int GetSsaIndex() const { return ssa_index_; }
void SetSsaIndex(int ssa_index) { ssa_index_ = ssa_index; }
bool HasSsaIndex() const { return ssa_index_ != -1; }
bool HasEnvironment() const { return environment_ != nullptr; }
HEnvironment* GetEnvironment() const { return environment_; }
void SetEnvironment(HEnvironment* environment) { environment_ = environment; }
// Returns the number of entries in the environment. Typically, that is the
// number of dex registers in a method. It could be more in case of inlining.
size_t EnvironmentSize() const;
LocationSummary* GetLocations() const { return locations_; }
void SetLocations(LocationSummary* locations) { locations_ = locations; }
void ReplaceWith(HInstruction* instruction);
void ReplaceInput(HInstruction* replacement, size_t index);
// Insert `this` instruction in `cursor`'s graph, just before `cursor`.
void InsertBefore(HInstruction* cursor);
bool HasOnlyOneUse() const {
return uses_ != nullptr && uses_->GetTail() == nullptr;
}
#define INSTRUCTION_TYPE_CHECK(type, super) \
bool Is##type() const { return (As##type() != nullptr); } \
virtual const H##type* As##type() const { return nullptr; } \
virtual H##type* As##type() { return nullptr; }
FOR_EACH_INSTRUCTION(INSTRUCTION_TYPE_CHECK)
#undef INSTRUCTION_TYPE_CHECK
// Returns whether the instruction can be moved within the graph.
virtual bool CanBeMoved() const { return false; }
// Returns whether the two instructions are of the same kind.
virtual bool InstructionTypeEquals(HInstruction* other) const {
UNUSED(other);
return false;
}
// Returns whether any data encoded in the two instructions is equal.
// This method does not look at the inputs. Both instructions must be
// of the same type, otherwise the method has undefined behavior.
virtual bool InstructionDataEquals(HInstruction* other) const {
UNUSED(other);
return false;
}
// Returns whether two instructions are equal, that is:
// 1) They have the same type and contain the same data (InstructionDataEquals).
// 2) Their inputs are identical.
bool Equals(HInstruction* other) const;
virtual InstructionKind GetKind() const = 0;
virtual size_t ComputeHashCode() const {
size_t result = GetKind();
for (size_t i = 0, e = InputCount(); i < e; ++i) {
result = (result * 31) + InputAt(i)->GetId();
}
return result;
}
SideEffects GetSideEffects() const { return side_effects_; }
size_t GetLifetimePosition() const { return lifetime_position_; }
void SetLifetimePosition(size_t position) { lifetime_position_ = position; }
LiveInterval* GetLiveInterval() const { return live_interval_; }
void SetLiveInterval(LiveInterval* interval) { live_interval_ = interval; }
bool HasLiveInterval() const { return live_interval_ != nullptr; }
private:
HInstruction* previous_;
HInstruction* next_;
HBasicBlock* block_;
// An instruction gets an id when it is added to the graph.
// It reflects creation order. A negative id means the instruction
// has not been added to the graph.
int id_;
// When doing liveness analysis, instructions that have uses get an SSA index.
int ssa_index_;
// List of instructions that have this instruction as input.
HUseListNode<HInstruction>* uses_;
// List of environments that contain this instruction.
HUseListNode<HEnvironment>* env_uses_;
// The environment associated with this instruction. Not null if the instruction
// might jump out of the method.
HEnvironment* environment_;
// Set by the code generator.
LocationSummary* locations_;
// Set by the liveness analysis.
LiveInterval* live_interval_;
// Set by the liveness analysis, this is the position in a linear
// order of blocks where this instruction's live interval start.
size_t lifetime_position_;
const SideEffects side_effects_;
friend class HBasicBlock;
friend class HGraph;
friend class HInstructionList;
DISALLOW_COPY_AND_ASSIGN(HInstruction);
};
std::ostream& operator<<(std::ostream& os, const HInstruction::InstructionKind& rhs);
template<typename T>
class HUseIterator : public ValueObject {
public:
explicit HUseIterator(HUseListNode<T>* uses) : current_(uses) {}
bool Done() const { return current_ == nullptr; }
void Advance() {
DCHECK(!Done());
current_ = current_->GetTail();
}
HUseListNode<T>* Current() const {
DCHECK(!Done());
return current_;
}
private:
HUseListNode<T>* current_;
friend class HValue;
};
// A HEnvironment object contains the values of virtual registers at a given location.
class HEnvironment : public ArenaObject<kArenaAllocMisc> {
public:
HEnvironment(ArenaAllocator* arena, size_t number_of_vregs) : vregs_(arena, number_of_vregs) {
vregs_.SetSize(number_of_vregs);
for (size_t i = 0; i < number_of_vregs; i++) {
vregs_.Put(i, nullptr);
}
}
void Populate(const GrowableArray<HInstruction*>& env) {
for (size_t i = 0; i < env.Size(); i++) {
HInstruction* instruction = env.Get(i);
vregs_.Put(i, instruction);
if (instruction != nullptr) {
instruction->AddEnvUseAt(this, i);
}
}
}
void SetRawEnvAt(size_t index, HInstruction* instruction) {
vregs_.Put(index, instruction);
}
HInstruction* GetInstructionAt(size_t index) const {
return vregs_.Get(index);
}
GrowableArray<HInstruction*>* GetVRegs() {
return &vregs_;
}
size_t Size() const { return vregs_.Size(); }
private:
GrowableArray<HInstruction*> vregs_;
DISALLOW_COPY_AND_ASSIGN(HEnvironment);
};
class HInputIterator : public ValueObject {
public:
explicit HInputIterator(HInstruction* instruction) : instruction_(instruction), index_(0) {}
bool Done() const { return index_ == instruction_->InputCount(); }
HInstruction* Current() const { return instruction_->InputAt(index_); }
void Advance() { index_++; }
private:
HInstruction* instruction_;
size_t index_;
DISALLOW_COPY_AND_ASSIGN(HInputIterator);
};
class HInstructionIterator : public ValueObject {
public:
explicit HInstructionIterator(const HInstructionList& instructions)
: instruction_(instructions.first_instruction_) {
next_ = Done() ? nullptr : instruction_->GetNext();
}
bool Done() const { return instruction_ == nullptr; }
HInstruction* Current() const { return instruction_; }
void Advance() {
instruction_ = next_;
next_ = Done() ? nullptr : instruction_->GetNext();
}
private:
HInstruction* instruction_;
HInstruction* next_;
DISALLOW_COPY_AND_ASSIGN(HInstructionIterator);
};
class HBackwardInstructionIterator : public ValueObject {
public:
explicit HBackwardInstructionIterator(const HInstructionList& instructions)
: instruction_(instructions.last_instruction_) {
next_ = Done() ? nullptr : instruction_->GetPrevious();
}
bool Done() const { return instruction_ == nullptr; }
HInstruction* Current() const { return instruction_; }
void Advance() {
instruction_ = next_;
next_ = Done() ? nullptr : instruction_->GetPrevious();
}
private:
HInstruction* instruction_;
HInstruction* next_;
DISALLOW_COPY_AND_ASSIGN(HBackwardInstructionIterator);
};
// An embedded container with N elements of type T. Used (with partial
// specialization for N=0) because embedded arrays cannot have size 0.
template<typename T, intptr_t N>
class EmbeddedArray {
public:
EmbeddedArray() : elements_() {}
intptr_t GetLength() const { return N; }
const T& operator[](intptr_t i) const {
DCHECK_LT(i, GetLength());
return elements_[i];
}
T& operator[](intptr_t i) {
DCHECK_LT(i, GetLength());
return elements_[i];
}
const T& At(intptr_t i) const {
return (*this)[i];
}
void SetAt(intptr_t i, const T& val) {
(*this)[i] = val;
}
private:
T elements_[N];
};
template<typename T>
class EmbeddedArray<T, 0> {
public:
intptr_t length() const { return 0; }
const T& operator[](intptr_t i) const {
UNUSED(i);
LOG(FATAL) << "Unreachable";
UNREACHABLE();
}
T& operator[](intptr_t i) {
UNUSED(i);
LOG(FATAL) << "Unreachable";
UNREACHABLE();
}
};
template<intptr_t N>
class HTemplateInstruction: public HInstruction {
public:
HTemplateInstruction<N>(SideEffects side_effects)
: HInstruction(side_effects), inputs_() {}
virtual ~HTemplateInstruction() {}
virtual size_t InputCount() const { return N; }
virtual HInstruction* InputAt(size_t i) const { return inputs_[i]; }
protected:
virtual void SetRawInputAt(size_t i, HInstruction* instruction) {
inputs_[i] = instruction;
}
private:
EmbeddedArray<HInstruction*, N> inputs_;
friend class SsaBuilder;
};
template<intptr_t N>
class HExpression : public HTemplateInstruction<N> {
public:
HExpression<N>(Primitive::Type type, SideEffects side_effects)
: HTemplateInstruction<N>(side_effects), type_(type) {}
virtual ~HExpression() {}
virtual Primitive::Type GetType() const { return type_; }
protected:
Primitive::Type type_;
};
// Represents dex's RETURN_VOID opcode. A HReturnVoid is a control flow
// instruction that branches to the exit block.
class HReturnVoid : public HTemplateInstruction<0> {
public:
HReturnVoid() : HTemplateInstruction(SideEffects::None()) {}
virtual bool IsControlFlow() const { return true; }
DECLARE_INSTRUCTION(ReturnVoid);
private:
DISALLOW_COPY_AND_ASSIGN(HReturnVoid);
};
// Represents dex's RETURN opcodes. A HReturn is a control flow
// instruction that branches to the exit block.
class HReturn : public HTemplateInstruction<1> {
public:
explicit HReturn(HInstruction* value) : HTemplateInstruction(SideEffects::None()) {
SetRawInputAt(0, value);
}
virtual bool IsControlFlow() const { return true; }
DECLARE_INSTRUCTION(Return);
private:
DISALLOW_COPY_AND_ASSIGN(HReturn);
};
// The exit instruction is the only instruction of the exit block.
// Instructions aborting the method (HThrow and HReturn) must branch to the
// exit block.
class HExit : public HTemplateInstruction<0> {
public:
HExit() : HTemplateInstruction(SideEffects::None()) {}
virtual bool IsControlFlow() const { return true; }
DECLARE_INSTRUCTION(Exit);
private:
DISALLOW_COPY_AND_ASSIGN(HExit);
};
// Jumps from one block to another.
class HGoto : public HTemplateInstruction<0> {
public:
HGoto() : HTemplateInstruction(SideEffects::None()) {}
bool IsControlFlow() const OVERRIDE { return true; }
HBasicBlock* GetSuccessor() const {
return GetBlock()->GetSuccessors().Get(0);
}
DECLARE_INSTRUCTION(Goto);
private:
DISALLOW_COPY_AND_ASSIGN(HGoto);
};
// Conditional branch. A block ending with an HIf instruction must have
// two successors.
class HIf : public HTemplateInstruction<1> {
public:
explicit HIf(HInstruction* input) : HTemplateInstruction(SideEffects::None()) {
SetRawInputAt(0, input);
}
bool IsControlFlow() const OVERRIDE { return true; }
HBasicBlock* IfTrueSuccessor() const {
return GetBlock()->GetSuccessors().Get(0);
}
HBasicBlock* IfFalseSuccessor() const {
return GetBlock()->GetSuccessors().Get(1);
}
DECLARE_INSTRUCTION(If);
virtual bool IsIfInstruction() const { return true; }
private:
DISALLOW_COPY_AND_ASSIGN(HIf);
};
class HUnaryOperation : public HExpression<1> {
public:
HUnaryOperation(Primitive::Type result_type, HInstruction* input)
: HExpression(result_type, SideEffects::None()) {
SetRawInputAt(0, input);
}
HInstruction* GetInput() const { return InputAt(0); }
Primitive::Type GetResultType() const { return GetType(); }
virtual bool CanBeMoved() const { return true; }
virtual bool InstructionDataEquals(HInstruction* other) const {
UNUSED(other);
return true;
}
// Try to statically evaluate `operation` and return a HConstant
// containing the result of this evaluation. If `operation` cannot
// be evaluated as a constant, return nullptr.
HConstant* TryStaticEvaluation() const;
// Apply this operation to `x`.
virtual int32_t Evaluate(int32_t x) const = 0;
virtual int64_t Evaluate(int64_t x) const = 0;
DECLARE_INSTRUCTION(UnaryOperation);
private:
DISALLOW_COPY_AND_ASSIGN(HUnaryOperation);
};
class HBinaryOperation : public HExpression<2> {
public:
HBinaryOperation(Primitive::Type result_type,
HInstruction* left,
HInstruction* right) : HExpression(result_type, SideEffects::None()) {
SetRawInputAt(0, left);
SetRawInputAt(1, right);
}
HInstruction* GetLeft() const { return InputAt(0); }
HInstruction* GetRight() const { return InputAt(1); }
Primitive::Type GetResultType() const { return GetType(); }
virtual bool IsCommutative() { return false; }
virtual bool CanBeMoved() const { return true; }
virtual bool InstructionDataEquals(HInstruction* other) const {
UNUSED(other);
return true;
}
// Try to statically evaluate `operation` and return a HConstant
// containing the result of this evaluation. If `operation` cannot
// be evaluated as a constant, return nullptr.
HConstant* TryStaticEvaluation() const;
// Apply this operation to `x` and `y`.
virtual int32_t Evaluate(int32_t x, int32_t y) const = 0;
virtual int64_t Evaluate(int64_t x, int64_t y) const = 0;
DECLARE_INSTRUCTION(BinaryOperation);
private:
DISALLOW_COPY_AND_ASSIGN(HBinaryOperation);
};
class HCondition : public HBinaryOperation {
public:
HCondition(HInstruction* first, HInstruction* second)
: HBinaryOperation(Primitive::kPrimBoolean, first, second),
needs_materialization_(true) {}
virtual bool IsCommutative() { return true; }
bool NeedsMaterialization() const { return needs_materialization_; }
void ClearNeedsMaterialization() { needs_materialization_ = false; }
// For code generation purposes, returns whether this instruction is just before
// `if_`, and disregard moves in between.
bool IsBeforeWhenDisregardMoves(HIf* if_) const;
DECLARE_INSTRUCTION(Condition);
virtual IfCondition GetCondition() const = 0;
private:
// For register allocation purposes, returns whether this instruction needs to be
// materialized (that is, not just be in the processor flags).
bool needs_materialization_;
DISALLOW_COPY_AND_ASSIGN(HCondition);
};
// Instruction to check if two inputs are equal to each other.
class HEqual : public HCondition {
public:
HEqual(HInstruction* first, HInstruction* second)
: HCondition(first, second) {}
virtual int32_t Evaluate(int32_t x, int32_t y) const OVERRIDE {
return x == y ? 1 : 0;
}
virtual int64_t Evaluate(int64_t x, int64_t y) const OVERRIDE {
return x == y ? 1 : 0;
}
DECLARE_INSTRUCTION(Equal);
virtual IfCondition GetCondition() const {
return kCondEQ;
}
private:
DISALLOW_COPY_AND_ASSIGN(HEqual);
};
class HNotEqual : public HCondition {
public:
HNotEqual(HInstruction* first, HInstruction* second)
: HCondition(first, second) {}
virtual int32_t Evaluate(int32_t x, int32_t y) const OVERRIDE {
return x != y ? 1 : 0;
}
virtual int64_t Evaluate(int64_t x, int64_t y) const OVERRIDE {
return x != y ? 1 : 0;
}
DECLARE_INSTRUCTION(NotEqual);
virtual IfCondition GetCondition() const {
return kCondNE;
}
private:
DISALLOW_COPY_AND_ASSIGN(HNotEqual);
};
class HLessThan : public HCondition {
public:
HLessThan(HInstruction* first, HInstruction* second)
: HCondition(first, second) {}
virtual int32_t Evaluate(int32_t x, int32_t y) const OVERRIDE {
return x < y ? 1 : 0;
}
virtual int64_t Evaluate(int64_t x, int64_t y) const OVERRIDE {
return x < y ? 1 : 0;
}
DECLARE_INSTRUCTION(LessThan);
virtual IfCondition GetCondition() const {
return kCondLT;
}
private:
DISALLOW_COPY_AND_ASSIGN(HLessThan);
};
class HLessThanOrEqual : public HCondition {
public:
HLessThanOrEqual(HInstruction* first, HInstruction* second)
: HCondition(first, second) {}
virtual int32_t Evaluate(int32_t x, int32_t y) const OVERRIDE {
return x <= y ? 1 : 0;
}
virtual int64_t Evaluate(int64_t x, int64_t y) const OVERRIDE {
return x <= y ? 1 : 0;
}
DECLARE_INSTRUCTION(LessThanOrEqual);
virtual IfCondition GetCondition() const {
return kCondLE;
}
private:
DISALLOW_COPY_AND_ASSIGN(HLessThanOrEqual);
};
class HGreaterThan : public HCondition {
public:
HGreaterThan(HInstruction* first, HInstruction* second)
: HCondition(first, second) {}
virtual int32_t Evaluate(int32_t x, int32_t y) const OVERRIDE {
return x > y ? 1 : 0;
}
virtual int64_t Evaluate(int64_t x, int64_t y) const OVERRIDE {
return x > y ? 1 : 0;
}
DECLARE_INSTRUCTION(GreaterThan);
virtual IfCondition GetCondition() const {
return kCondGT;
}
private:
DISALLOW_COPY_AND_ASSIGN(HGreaterThan);
};
class HGreaterThanOrEqual : public HCondition {
public:
HGreaterThanOrEqual(HInstruction* first, HInstruction* second)
: HCondition(first, second) {}
virtual int32_t Evaluate(int32_t x, int32_t y) const OVERRIDE {
return x >= y ? 1 : 0;
}
virtual int64_t Evaluate(int64_t x, int64_t y) const OVERRIDE {
return x >= y ? 1 : 0;
}
DECLARE_INSTRUCTION(GreaterThanOrEqual);
virtual IfCondition GetCondition() const {
return kCondGE;
}
private:
DISALLOW_COPY_AND_ASSIGN(HGreaterThanOrEqual);
};
// Instruction to check how two inputs compare to each other.
// Result is 0 if input0 == input1, 1 if input0 > input1, or -1 if input0 < input1.
class HCompare : public HBinaryOperation {
public:
// The bias applies for floating point operations and indicates how NaN
// comparisons are treated:
enum Bias {
kNoBias, // bias is not applicable (i.e. for long operation)
kGtBias, // return 1 for NaN comparisons
kLtBias, // return -1 for NaN comparisons
};
HCompare(Primitive::Type type, HInstruction* first, HInstruction* second, Bias bias)
: HBinaryOperation(Primitive::kPrimInt, first, second), bias_(bias) {
DCHECK_EQ(type, first->GetType());
DCHECK_EQ(type, second->GetType());
}
int32_t Evaluate(int32_t x, int32_t y) const OVERRIDE {
return
x == y ? 0 :
x > y ? 1 :
-1;
}
int64_t Evaluate(int64_t x, int64_t y) const OVERRIDE {
return
x == y ? 0 :
x > y ? 1 :
-1;
}
bool InstructionDataEquals(HInstruction* other) const OVERRIDE {
return bias_ == other->AsCompare()->bias_;
}
bool IsGtBias() { return bias_ == kGtBias; }
DECLARE_INSTRUCTION(Compare);
private:
const Bias bias_;
DISALLOW_COPY_AND_ASSIGN(HCompare);
};
// A local in the graph. Corresponds to a Dex register.
class HLocal : public HTemplateInstruction<0> {
public:
explicit HLocal(uint16_t reg_number)
: HTemplateInstruction(SideEffects::None()), reg_number_(reg_number) {}
DECLARE_INSTRUCTION(Local);
uint16_t GetRegNumber() const { return reg_number_; }
private:
// The Dex register number.
const uint16_t reg_number_;
DISALLOW_COPY_AND_ASSIGN(HLocal);
};
// Load a given local. The local is an input of this instruction.
class HLoadLocal : public HExpression<1> {
public:
HLoadLocal(HLocal* local, Primitive::Type type)
: HExpression(type, SideEffects::None()) {
SetRawInputAt(0, local);
}
HLocal* GetLocal() const { return reinterpret_cast<HLocal*>(InputAt(0)); }
DECLARE_INSTRUCTION(LoadLocal);
private:
DISALLOW_COPY_AND_ASSIGN(HLoadLocal);
};
// Store a value in a given local. This instruction has two inputs: the value
// and the local.
class HStoreLocal : public HTemplateInstruction<2> {
public:
HStoreLocal(HLocal* local, HInstruction* value) : HTemplateInstruction(SideEffects::None()) {
SetRawInputAt(0, local);
SetRawInputAt(1, value);
}
HLocal* GetLocal() const { return reinterpret_cast<HLocal*>(InputAt(0)); }
DECLARE_INSTRUCTION(StoreLocal);
private:
DISALLOW_COPY_AND_ASSIGN(HStoreLocal);
};
class HConstant : public HExpression<0> {
public:
explicit HConstant(Primitive::Type type) : HExpression(type, SideEffects::None()) {}
virtual bool CanBeMoved() const { return true; }
DECLARE_INSTRUCTION(Constant);
private:
DISALLOW_COPY_AND_ASSIGN(HConstant);
};
class HFloatConstant : public HConstant {
public:
explicit HFloatConstant(float value) : HConstant(Primitive::kPrimFloat), value_(value) {}
float GetValue() const { return value_; }
virtual bool InstructionDataEquals(HInstruction* other) const {
return bit_cast<float, int32_t>(other->AsFloatConstant()->value_) ==
bit_cast<float, int32_t>(value_);
}
virtual size_t ComputeHashCode() const { return static_cast<size_t>(GetValue()); }
DECLARE_INSTRUCTION(FloatConstant);
private:
const float value_;
DISALLOW_COPY_AND_ASSIGN(HFloatConstant);
};
class HDoubleConstant : public HConstant {
public:
explicit HDoubleConstant(double value) : HConstant(Primitive::kPrimDouble), value_(value) {}
double GetValue() const { return value_; }
virtual bool InstructionDataEquals(HInstruction* other) const {
return bit_cast<double, int64_t>(other->AsDoubleConstant()->value_) ==
bit_cast<double, int64_t>(value_);
}
virtual size_t ComputeHashCode() const { return static_cast<size_t>(GetValue()); }
DECLARE_INSTRUCTION(DoubleConstant);
private:
const double value_;
DISALLOW_COPY_AND_ASSIGN(HDoubleConstant);
};
// Constants of the type int. Those can be from Dex instructions, or
// synthesized (for example with the if-eqz instruction).
class HIntConstant : public HConstant {
public:
explicit HIntConstant(int32_t value) : HConstant(Primitive::kPrimInt), value_(value) {}
int32_t GetValue() const { return value_; }
virtual bool InstructionDataEquals(HInstruction* other) const {
return other->AsIntConstant()->value_ == value_;
}
virtual size_t ComputeHashCode() const { return GetValue(); }
DECLARE_INSTRUCTION(IntConstant);
private:
const int32_t value_;
DISALLOW_COPY_AND_ASSIGN(HIntConstant);
};
class HLongConstant : public HConstant {
public:
explicit HLongConstant(int64_t value) : HConstant(Primitive::kPrimLong), value_(value) {}
int64_t GetValue() const { return value_; }
virtual bool InstructionDataEquals(HInstruction* other) const {
return other->AsLongConstant()->value_ == value_;
}
virtual size_t ComputeHashCode() const { return static_cast<size_t>(GetValue()); }
DECLARE_INSTRUCTION(LongConstant);
private:
const int64_t value_;
DISALLOW_COPY_AND_ASSIGN(HLongConstant);
};
enum class Intrinsics {
#define OPTIMIZING_INTRINSICS(Name, IsStatic) k ## Name,
#include "intrinsics_list.h"
kNone,
INTRINSICS_LIST(OPTIMIZING_INTRINSICS)
#undef INTRINSICS_LIST
#undef OPTIMIZING_INTRINSICS
};
std::ostream& operator<<(std::ostream& os, const Intrinsics& intrinsic);
class HInvoke : public HInstruction {
public:
virtual size_t InputCount() const { return inputs_.Size(); }
virtual HInstruction* InputAt(size_t i) const { return inputs_.Get(i); }
// Runtime needs to walk the stack, so Dex -> Dex calls need to
// know their environment.
virtual bool NeedsEnvironment() const { return true; }
void SetArgumentAt(size_t index, HInstruction* argument) {
SetRawInputAt(index, argument);
}
virtual void SetRawInputAt(size_t index, HInstruction* input) {
inputs_.Put(index, input);
}
virtual Primitive::Type GetType() const { return return_type_; }
uint32_t GetDexPc() const { return dex_pc_; }
uint32_t GetDexMethodIndex() const { return dex_method_index_; }
Intrinsics GetIntrinsic() {
return intrinsic_;
}
void SetIntrinsic(Intrinsics intrinsic) {
intrinsic_ = intrinsic;
}
DECLARE_INSTRUCTION(Invoke);
protected:
HInvoke(ArenaAllocator* arena,
uint32_t number_of_arguments,
Primitive::Type return_type,
uint32_t dex_pc,
uint32_t dex_method_index)
: HInstruction(SideEffects::All()),
inputs_(arena, number_of_arguments),
return_type_(return_type),
dex_pc_(dex_pc),
dex_method_index_(dex_method_index),
intrinsic_(Intrinsics::kNone) {
inputs_.SetSize(number_of_arguments);
}
GrowableArray<HInstruction*> inputs_;
const Primitive::Type return_type_;
const uint32_t dex_pc_;
const uint32_t dex_method_index_;
Intrinsics intrinsic_;
private:
DISALLOW_COPY_AND_ASSIGN(HInvoke);
};
class HInvokeStaticOrDirect : public HInvoke {
public:
HInvokeStaticOrDirect(ArenaAllocator* arena,
uint32_t number_of_arguments,
Primitive::Type return_type,
uint32_t dex_pc,
uint32_t dex_method_index,
InvokeType invoke_type)
: HInvoke(arena, number_of_arguments, return_type, dex_pc, dex_method_index),
invoke_type_(invoke_type) {}
InvokeType GetInvokeType() const { return invoke_type_; }
DECLARE_INSTRUCTION(InvokeStaticOrDirect);
private:
const InvokeType invoke_type_;
DISALLOW_COPY_AND_ASSIGN(HInvokeStaticOrDirect);
};
class HInvokeVirtual : public HInvoke {
public:
HInvokeVirtual(ArenaAllocator* arena,
uint32_t number_of_arguments,
Primitive::Type return_type,
uint32_t dex_pc,
uint32_t dex_method_index,
uint32_t vtable_index)
: HInvoke(arena, number_of_arguments, return_type, dex_pc, dex_method_index),
vtable_index_(vtable_index) {}
uint32_t GetVTableIndex() const { return vtable_index_; }
DECLARE_INSTRUCTION(InvokeVirtual);
private:
const uint32_t vtable_index_;
DISALLOW_COPY_AND_ASSIGN(HInvokeVirtual);
};
class HInvokeInterface : public HInvoke {
public:
HInvokeInterface(ArenaAllocator* arena,
uint32_t number_of_arguments,
Primitive::Type return_type,
uint32_t dex_pc,
uint32_t dex_method_index,
uint32_t imt_index)
: HInvoke(arena, number_of_arguments, return_type, dex_pc, dex_method_index),
imt_index_(imt_index) {}
uint32_t GetImtIndex() const { return imt_index_; }
uint32_t GetDexMethodIndex() const { return dex_method_index_; }
DECLARE_INSTRUCTION(InvokeInterface);
private:
const uint32_t imt_index_;
DISALLOW_COPY_AND_ASSIGN(HInvokeInterface);
};
class HNewInstance : public HExpression<0> {
public:
HNewInstance(uint32_t dex_pc, uint16_t type_index)
: HExpression(Primitive::kPrimNot, SideEffects::None()),
dex_pc_(dex_pc),
type_index_(type_index) {}
uint32_t GetDexPc() const { return dex_pc_; }
uint16_t GetTypeIndex() const { return type_index_; }
// Calls runtime so needs an environment.
bool NeedsEnvironment() const OVERRIDE { return true; }
// It may throw when called on:
// - interfaces
// - abstract/innaccessible/unknown classes
// TODO: optimize when possible.
bool CanThrow() const OVERRIDE { return true; }
DECLARE_INSTRUCTION(NewInstance);
private:
const uint32_t dex_pc_;
const uint16_t type_index_;
DISALLOW_COPY_AND_ASSIGN(HNewInstance);
};
class HNeg : public HUnaryOperation {
public:
explicit HNeg(Primitive::Type result_type, HInstruction* input)
: HUnaryOperation(result_type, input) {}
virtual int32_t Evaluate(int32_t x) const OVERRIDE { return -x; }
virtual int64_t Evaluate(int64_t x) const OVERRIDE { return -x; }
DECLARE_INSTRUCTION(Neg);
private:
DISALLOW_COPY_AND_ASSIGN(HNeg);
};
class HNewArray : public HExpression<1> {
public:
HNewArray(HInstruction* length, uint32_t dex_pc, uint16_t type_index)
: HExpression(Primitive::kPrimNot, SideEffects::None()),
dex_pc_(dex_pc),
type_index_(type_index) {
SetRawInputAt(0, length);
}
uint32_t GetDexPc() const { return dex_pc_; }
uint16_t GetTypeIndex() const { return type_index_; }
// Calls runtime so needs an environment.
virtual bool NeedsEnvironment() const { return true; }
DECLARE_INSTRUCTION(NewArray);
private:
const uint32_t dex_pc_;
const uint16_t type_index_;
DISALLOW_COPY_AND_ASSIGN(HNewArray);
};
class HAdd : public HBinaryOperation {
public:
HAdd(Primitive::Type result_type, HInstruction* left, HInstruction* right)
: HBinaryOperation(result_type, left, right) {}
virtual bool IsCommutative() { return true; }
virtual int32_t Evaluate(int32_t x, int32_t y) const OVERRIDE {
return x + y;
}
virtual int64_t Evaluate(int64_t x, int64_t y) const OVERRIDE {
return x + y;
}
DECLARE_INSTRUCTION(Add);
private:
DISALLOW_COPY_AND_ASSIGN(HAdd);
};
class HSub : public HBinaryOperation {
public:
HSub(Primitive::Type result_type, HInstruction* left, HInstruction* right)
: HBinaryOperation(result_type, left, right) {}
virtual int32_t Evaluate(int32_t x, int32_t y) const OVERRIDE {
return x - y;
}
virtual int64_t Evaluate(int64_t x, int64_t y) const OVERRIDE {
return x - y;
}
DECLARE_INSTRUCTION(Sub);
private:
DISALLOW_COPY_AND_ASSIGN(HSub);
};
class HMul : public HBinaryOperation {
public:
HMul(Primitive::Type result_type, HInstruction* left, HInstruction* right)
: HBinaryOperation(result_type, left, right) {}
virtual bool IsCommutative() { return true; }
virtual int32_t Evaluate(int32_t x, int32_t y) const { return x * y; }
virtual int64_t Evaluate(int64_t x, int64_t y) const { return x * y; }
DECLARE_INSTRUCTION(Mul);
private:
DISALLOW_COPY_AND_ASSIGN(HMul);
};
class HDiv : public HBinaryOperation {
public:
HDiv(Primitive::Type result_type, HInstruction* left, HInstruction* right, uint32_t dex_pc)
: HBinaryOperation(result_type, left, right), dex_pc_(dex_pc) {}
virtual int32_t Evaluate(int32_t x, int32_t y) const {
// Our graph structure ensures we never have 0 for `y` during constant folding.
DCHECK_NE(y, 0);
// Special case -1 to avoid getting a SIGFPE on x86(_64).
return (y == -1) ? -x : x / y;
}
virtual int64_t Evaluate(int64_t x, int64_t y) const {
DCHECK_NE(y, 0);
// Special case -1 to avoid getting a SIGFPE on x86(_64).
return (y == -1) ? -x : x / y;
}
uint32_t GetDexPc() const { return dex_pc_; }
DECLARE_INSTRUCTION(Div);
private:
const uint32_t dex_pc_;
DISALLOW_COPY_AND_ASSIGN(HDiv);
};
class HRem : public HBinaryOperation {
public:
HRem(Primitive::Type result_type, HInstruction* left, HInstruction* right, uint32_t dex_pc)
: HBinaryOperation(result_type, left, right), dex_pc_(dex_pc) {}
virtual int32_t Evaluate(int32_t x, int32_t y) const {
DCHECK_NE(y, 0);
// Special case -1 to avoid getting a SIGFPE on x86(_64).
return (y == -1) ? 0 : x % y;
}
virtual int64_t Evaluate(int64_t x, int64_t y) const {
DCHECK_NE(y, 0);
// Special case -1 to avoid getting a SIGFPE on x86(_64).
return (y == -1) ? 0 : x % y;
}
uint32_t GetDexPc() const { return dex_pc_; }
DECLARE_INSTRUCTION(Rem);
private:
const uint32_t dex_pc_;
DISALLOW_COPY_AND_ASSIGN(HRem);
};
class HDivZeroCheck : public HExpression<1> {
public:
HDivZeroCheck(HInstruction* value, uint32_t dex_pc)
: HExpression(value->GetType(), SideEffects::None()), dex_pc_(dex_pc) {
SetRawInputAt(0, value);
}
bool CanBeMoved() const OVERRIDE { return true; }
bool InstructionDataEquals(HInstruction* other) const OVERRIDE {
UNUSED(other);
return true;
}
bool NeedsEnvironment() const OVERRIDE { return true; }
bool CanThrow() const OVERRIDE { return true; }
uint32_t GetDexPc() const { return dex_pc_; }
DECLARE_INSTRUCTION(DivZeroCheck);
private:
const uint32_t dex_pc_;
DISALLOW_COPY_AND_ASSIGN(HDivZeroCheck);
};
class HShl : public HBinaryOperation {
public:
HShl(Primitive::Type result_type, HInstruction* left, HInstruction* right)
: HBinaryOperation(result_type, left, right) {}
int32_t Evaluate(int32_t x, int32_t y) const OVERRIDE { return x << (y & kMaxIntShiftValue); }
int64_t Evaluate(int64_t x, int64_t y) const OVERRIDE { return x << (y & kMaxLongShiftValue); }
DECLARE_INSTRUCTION(Shl);
private:
DISALLOW_COPY_AND_ASSIGN(HShl);
};
class HShr : public HBinaryOperation {
public:
HShr(Primitive::Type result_type, HInstruction* left, HInstruction* right)
: HBinaryOperation(result_type, left, right) {}
int32_t Evaluate(int32_t x, int32_t y) const OVERRIDE { return x >> (y & kMaxIntShiftValue); }
int64_t Evaluate(int64_t x, int64_t y) const OVERRIDE { return x >> (y & kMaxLongShiftValue); }
DECLARE_INSTRUCTION(Shr);
private:
DISALLOW_COPY_AND_ASSIGN(HShr);
};
class HUShr : public HBinaryOperation {
public:
HUShr(Primitive::Type result_type, HInstruction* left, HInstruction* right)
: HBinaryOperation(result_type, left, right) {}
int32_t Evaluate(int32_t x, int32_t y) const OVERRIDE {
uint32_t ux = static_cast<uint32_t>(x);
uint32_t uy = static_cast<uint32_t>(y) & kMaxIntShiftValue;
return static_cast<int32_t>(ux >> uy);
}
int64_t Evaluate(int64_t x, int64_t y) const OVERRIDE {
uint64_t ux = static_cast<uint64_t>(x);
uint64_t uy = static_cast<uint64_t>(y) & kMaxLongShiftValue;
return static_cast<int64_t>(ux >> uy);
}
DECLARE_INSTRUCTION(UShr);
private:
DISALLOW_COPY_AND_ASSIGN(HUShr);
};
class HAnd : public HBinaryOperation {
public:
HAnd(Primitive::Type result_type, HInstruction* left, HInstruction* right)
: HBinaryOperation(result_type, left, right) {}
bool IsCommutative() OVERRIDE { return true; }
int32_t Evaluate(int32_t x, int32_t y) const OVERRIDE { return x & y; }
int64_t Evaluate(int64_t x, int64_t y) const OVERRIDE { return x & y; }
DECLARE_INSTRUCTION(And);
private:
DISALLOW_COPY_AND_ASSIGN(HAnd);
};
class HOr : public HBinaryOperation {
public:
HOr(Primitive::Type result_type, HInstruction* left, HInstruction* right)
: HBinaryOperation(result_type, left, right) {}
bool IsCommutative() OVERRIDE { return true; }
int32_t Evaluate(int32_t x, int32_t y) const OVERRIDE { return x | y; }
int64_t Evaluate(int64_t x, int64_t y) const OVERRIDE { return x | y; }
DECLARE_INSTRUCTION(Or);
private:
DISALLOW_COPY_AND_ASSIGN(HOr);
};
class HXor : public HBinaryOperation {
public:
HXor(Primitive::Type result_type, HInstruction* left, HInstruction* right)
: HBinaryOperation(result_type, left, right) {}
bool IsCommutative() OVERRIDE { return true; }
int32_t Evaluate(int32_t x, int32_t y) const OVERRIDE { return x ^ y; }
int64_t Evaluate(int64_t x, int64_t y) const OVERRIDE { return x ^ y; }
DECLARE_INSTRUCTION(Xor);
private:
DISALLOW_COPY_AND_ASSIGN(HXor);
};
// The value of a parameter in this method. Its location depends on
// the calling convention.
class HParameterValue : public HExpression<0> {
public:
HParameterValue(uint8_t index, Primitive::Type parameter_type)
: HExpression(parameter_type, SideEffects::None()), index_(index) {}
uint8_t GetIndex() const { return index_; }
DECLARE_INSTRUCTION(ParameterValue);
private:
// The index of this parameter in the parameters list. Must be less
// than HGraph::number_of_in_vregs_;
const uint8_t index_;
DISALLOW_COPY_AND_ASSIGN(HParameterValue);
};
class HNot : public HUnaryOperation {
public:
explicit HNot(Primitive::Type result_type, HInstruction* input)
: HUnaryOperation(result_type, input) {}
virtual bool CanBeMoved() const { return true; }
virtual bool InstructionDataEquals(HInstruction* other) const {
UNUSED(other);
return true;
}
virtual int32_t Evaluate(int32_t x) const OVERRIDE { return ~x; }
virtual int64_t Evaluate(int64_t x) const OVERRIDE { return ~x; }
DECLARE_INSTRUCTION(Not);
private:
DISALLOW_COPY_AND_ASSIGN(HNot);
};
class HTypeConversion : public HExpression<1> {
public:
// Instantiate a type conversion of `input` to `result_type`.
HTypeConversion(Primitive::Type result_type, HInstruction* input, uint32_t dex_pc)
: HExpression(result_type, SideEffects::None()), dex_pc_(dex_pc) {
SetRawInputAt(0, input);
DCHECK_NE(input->GetType(), result_type);
}
HInstruction* GetInput() const { return InputAt(0); }
Primitive::Type GetInputType() const { return GetInput()->GetType(); }
Primitive::Type GetResultType() const { return GetType(); }
// Required by the x86 and ARM code generators when producing calls
// to the runtime.
uint32_t GetDexPc() const { return dex_pc_; }
bool CanBeMoved() const OVERRIDE { return true; }
bool InstructionDataEquals(HInstruction* other ATTRIBUTE_UNUSED) const OVERRIDE { return true; }
DECLARE_INSTRUCTION(TypeConversion);
private:
const uint32_t dex_pc_;
DISALLOW_COPY_AND_ASSIGN(HTypeConversion);
};
class HPhi : public HInstruction {
public:
HPhi(ArenaAllocator* arena, uint32_t reg_number, size_t number_of_inputs, Primitive::Type type)
: HInstruction(SideEffects::None()),
inputs_(arena, number_of_inputs),
reg_number_(reg_number),
type_(type),
is_live_(false) {
inputs_.SetSize(number_of_inputs);
}
virtual size_t InputCount() const { return inputs_.Size(); }
virtual HInstruction* InputAt(size_t i) const { return inputs_.Get(i); }
virtual void SetRawInputAt(size_t index, HInstruction* input) {
inputs_.Put(index, input);
}
void AddInput(HInstruction* input);
virtual Primitive::Type GetType() const { return type_; }
void SetType(Primitive::Type type) { type_ = type; }
uint32_t GetRegNumber() const { return reg_number_; }
void SetDead() { is_live_ = false; }
void SetLive() { is_live_ = true; }
bool IsDead() const { return !is_live_; }
bool IsLive() const { return is_live_; }
DECLARE_INSTRUCTION(Phi);
private:
GrowableArray<HInstruction*> inputs_;
const uint32_t reg_number_;
Primitive::Type type_;
bool is_live_;
DISALLOW_COPY_AND_ASSIGN(HPhi);
};
class HNullCheck : public HExpression<1> {
public:
HNullCheck(HInstruction* value, uint32_t dex_pc)
: HExpression(value->GetType(), SideEffects::None()), dex_pc_(dex_pc) {
SetRawInputAt(0, value);
}
virtual bool CanBeMoved() const { return true; }
virtual bool InstructionDataEquals(HInstruction* other) const {
UNUSED(other);
return true;
}
virtual bool NeedsEnvironment() const { return true; }
virtual bool CanThrow() const { return true; }
uint32_t GetDexPc() const { return dex_pc_; }
DECLARE_INSTRUCTION(NullCheck);
private:
const uint32_t dex_pc_;
DISALLOW_COPY_AND_ASSIGN(HNullCheck);
};
class FieldInfo : public ValueObject {
public:
FieldInfo(MemberOffset field_offset, Primitive::Type field_type, bool is_volatile)
: field_offset_(field_offset), field_type_(field_type), is_volatile_(is_volatile) {}
MemberOffset GetFieldOffset() const { return field_offset_; }
Primitive::Type GetFieldType() const { return field_type_; }
bool IsVolatile() const { return is_volatile_; }
private:
const MemberOffset field_offset_;
const Primitive::Type field_type_;
const bool is_volatile_;
};
class HInstanceFieldGet : public HExpression<1> {
public:
HInstanceFieldGet(HInstruction* value,
Primitive::Type field_type,
MemberOffset field_offset,
bool is_volatile)
: HExpression(field_type, SideEffects::DependsOnSomething()),
field_info_(field_offset, field_type, is_volatile) {
SetRawInputAt(0, value);
}
bool CanBeMoved() const OVERRIDE { return !IsVolatile(); }
bool InstructionDataEquals(HInstruction* other) const OVERRIDE {
HInstanceFieldGet* other_get = other->AsInstanceFieldGet();
return GetFieldOffset().SizeValue() == other_get->GetFieldOffset().SizeValue();
}
virtual size_t ComputeHashCode() const {
return (HInstruction::ComputeHashCode() << 7) | GetFieldOffset().SizeValue();
}
const FieldInfo& GetFieldInfo() const { return field_info_; }
MemberOffset GetFieldOffset() const { return field_info_.GetFieldOffset(); }
Primitive::Type GetFieldType() const { return field_info_.GetFieldType(); }
bool IsVolatile() const { return field_info_.IsVolatile(); }
DECLARE_INSTRUCTION(InstanceFieldGet);
private:
const FieldInfo field_info_;
DISALLOW_COPY_AND_ASSIGN(HInstanceFieldGet);
};
class HInstanceFieldSet : public HTemplateInstruction<2> {
public:
HInstanceFieldSet(HInstruction* object,
HInstruction* value,
Primitive::Type field_type,
MemberOffset field_offset,
bool is_volatile)
: HTemplateInstruction(SideEffects::ChangesSomething()),
field_info_(field_offset, field_type, is_volatile) {
SetRawInputAt(0, object);
SetRawInputAt(1, value);
}
const FieldInfo& GetFieldInfo() const { return field_info_; }
MemberOffset GetFieldOffset() const { return field_info_.GetFieldOffset(); }
Primitive::Type GetFieldType() const { return field_info_.GetFieldType(); }
bool IsVolatile() const { return field_info_.IsVolatile(); }
HInstruction* GetValue() const { return InputAt(1); }
DECLARE_INSTRUCTION(InstanceFieldSet);
private:
const FieldInfo field_info_;
DISALLOW_COPY_AND_ASSIGN(HInstanceFieldSet);
};
class HArrayGet : public HExpression<2> {
public:
HArrayGet(HInstruction* array, HInstruction* index, Primitive::Type type)
: HExpression(type, SideEffects::DependsOnSomething()) {
SetRawInputAt(0, array);
SetRawInputAt(1, index);
}
bool CanBeMoved() const OVERRIDE { return true; }
bool InstructionDataEquals(HInstruction* other) const OVERRIDE {
UNUSED(other);
return true;
}
void SetType(Primitive::Type type) { type_ = type; }
HInstruction* GetArray() const { return InputAt(0); }
HInstruction* GetIndex() const { return InputAt(1); }
DECLARE_INSTRUCTION(ArrayGet);
private:
DISALLOW_COPY_AND_ASSIGN(HArrayGet);
};
class HArraySet : public HTemplateInstruction<3> {
public:
HArraySet(HInstruction* array,
HInstruction* index,
HInstruction* value,
Primitive::Type expected_component_type,
uint32_t dex_pc)
: HTemplateInstruction(SideEffects::ChangesSomething()),
dex_pc_(dex_pc),
expected_component_type_(expected_component_type),
needs_type_check_(value->GetType() == Primitive::kPrimNot) {
SetRawInputAt(0, array);
SetRawInputAt(1, index);
SetRawInputAt(2, value);
}
bool NeedsEnvironment() const {
// We currently always call a runtime method to catch array store
// exceptions.
return needs_type_check_;
}
void ClearNeedsTypeCheck() {
needs_type_check_ = false;
}
bool NeedsTypeCheck() const { return needs_type_check_; }
uint32_t GetDexPc() const { return dex_pc_; }
HInstruction* GetArray() const { return InputAt(0); }
HInstruction* GetIndex() const { return InputAt(1); }
HInstruction* GetValue() const { return InputAt(2); }
Primitive::Type GetComponentType() const {
// The Dex format does not type floating point index operations. Since the
// `expected_component_type_` is set during building and can therefore not
// be correct, we also check what is the value type. If it is a floating
// point type, we must use that type.
Primitive::Type value_type = GetValue()->GetType();
return ((value_type == Primitive::kPrimFloat) || (value_type == Primitive::kPrimDouble))
? value_type
: expected_component_type_;
}
DECLARE_INSTRUCTION(ArraySet);
private:
const uint32_t dex_pc_;
const Primitive::Type expected_component_type_;
bool needs_type_check_;
DISALLOW_COPY_AND_ASSIGN(HArraySet);
};
class HArrayLength : public HExpression<1> {
public:
explicit HArrayLength(HInstruction* array)
: HExpression(Primitive::kPrimInt, SideEffects::None()) {
// Note that arrays do not change length, so the instruction does not
// depend on any write.
SetRawInputAt(0, array);
}
virtual bool CanBeMoved() const { return true; }
virtual bool InstructionDataEquals(HInstruction* other) const {
UNUSED(other);
return true;
}
DECLARE_INSTRUCTION(ArrayLength);
private:
DISALLOW_COPY_AND_ASSIGN(HArrayLength);
};
class HBoundsCheck : public HExpression<2> {
public:
HBoundsCheck(HInstruction* index, HInstruction* length, uint32_t dex_pc)
: HExpression(index->GetType(), SideEffects::None()), dex_pc_(dex_pc) {
DCHECK(index->GetType() == Primitive::kPrimInt);
SetRawInputAt(0, index);
SetRawInputAt(1, length);
}
virtual bool CanBeMoved() const { return true; }
virtual bool InstructionDataEquals(HInstruction* other) const {
UNUSED(other);
return true;
}
virtual bool NeedsEnvironment() const { return true; }
virtual bool CanThrow() const { return true; }
uint32_t GetDexPc() const { return dex_pc_; }
DECLARE_INSTRUCTION(BoundsCheck);
private:
const uint32_t dex_pc_;
DISALLOW_COPY_AND_ASSIGN(HBoundsCheck);
};
/**
* Some DEX instructions are folded into multiple HInstructions that need
* to stay live until the last HInstruction. This class
* is used as a marker for the baseline compiler to ensure its preceding
* HInstruction stays live. `index` represents the stack location index of the
* instruction (the actual offset is computed as index * vreg_size).
*/
class HTemporary : public HTemplateInstruction<0> {
public:
explicit HTemporary(size_t index) : HTemplateInstruction(SideEffects::None()), index_(index) {}
size_t GetIndex() const { return index_; }
Primitive::Type GetType() const OVERRIDE {
// The previous instruction is the one that will be stored in the temporary location.
DCHECK(GetPrevious() != nullptr);
return GetPrevious()->GetType();
}
DECLARE_INSTRUCTION(Temporary);
private:
const size_t index_;
DISALLOW_COPY_AND_ASSIGN(HTemporary);
};
class HSuspendCheck : public HTemplateInstruction<0> {
public:
explicit HSuspendCheck(uint32_t dex_pc)
: HTemplateInstruction(SideEffects::None()), dex_pc_(dex_pc) {}
virtual bool NeedsEnvironment() const {
return true;
}
uint32_t GetDexPc() const { return dex_pc_; }
DECLARE_INSTRUCTION(SuspendCheck);
private:
const uint32_t dex_pc_;
DISALLOW_COPY_AND_ASSIGN(HSuspendCheck);
};
/**
* Instruction to load a Class object.
*/
class HLoadClass : public HExpression<0> {
public:
HLoadClass(uint16_t type_index,
bool is_referrers_class,
uint32_t dex_pc)
: HExpression(Primitive::kPrimNot, SideEffects::None()),
type_index_(type_index),
is_referrers_class_(is_referrers_class),
dex_pc_(dex_pc),
generate_clinit_check_(false) {}
bool CanBeMoved() const OVERRIDE { return true; }
bool InstructionDataEquals(HInstruction* other) const OVERRIDE {
return other->AsLoadClass()->type_index_ == type_index_;
}
size_t ComputeHashCode() const OVERRIDE { return type_index_; }
uint32_t GetDexPc() const { return dex_pc_; }
uint16_t GetTypeIndex() const { return type_index_; }
bool IsReferrersClass() const { return is_referrers_class_; }
bool NeedsEnvironment() const OVERRIDE {
// Will call runtime and load the class if the class is not loaded yet.
// TODO: finer grain decision.
return !is_referrers_class_;
}
bool MustGenerateClinitCheck() const {
return generate_clinit_check_;
}
void SetMustGenerateClinitCheck() {
generate_clinit_check_ = true;
}
bool CanCallRuntime() const {
return MustGenerateClinitCheck() || !is_referrers_class_;
}
DECLARE_INSTRUCTION(LoadClass);
private:
const uint16_t type_index_;
const bool is_referrers_class_;
const uint32_t dex_pc_;
// Whether this instruction must generate the initialization check.
// Used for code generation.
bool generate_clinit_check_;
DISALLOW_COPY_AND_ASSIGN(HLoadClass);
};
class HLoadString : public HExpression<0> {
public:
HLoadString(uint32_t string_index, uint32_t dex_pc)
: HExpression(Primitive::kPrimNot, SideEffects::None()),
string_index_(string_index),
dex_pc_(dex_pc) {}
bool CanBeMoved() const OVERRIDE { return true; }
bool InstructionDataEquals(HInstruction* other) const OVERRIDE {
return other->AsLoadString()->string_index_ == string_index_;
}
size_t ComputeHashCode() const OVERRIDE { return string_index_; }
uint32_t GetDexPc() const { return dex_pc_; }
uint32_t GetStringIndex() const { return string_index_; }
// TODO: Can we deopt or debug when we resolve a string?
bool NeedsEnvironment() const OVERRIDE { return false; }
DECLARE_INSTRUCTION(LoadString);
private:
const uint32_t string_index_;
const uint32_t dex_pc_;
DISALLOW_COPY_AND_ASSIGN(HLoadString);
};
// TODO: Pass this check to HInvokeStaticOrDirect nodes.
/**
* Performs an initialization check on its Class object input.
*/
class HClinitCheck : public HExpression<1> {
public:
explicit HClinitCheck(HLoadClass* constant, uint32_t dex_pc)
: HExpression(Primitive::kPrimNot, SideEffects::All()),
dex_pc_(dex_pc) {
SetRawInputAt(0, constant);
}
bool CanBeMoved() const OVERRIDE { return true; }
bool InstructionDataEquals(HInstruction* other) const OVERRIDE {
UNUSED(other);
return true;
}
bool NeedsEnvironment() const OVERRIDE {
// May call runtime to initialize the class.
return true;
}
uint32_t GetDexPc() const { return dex_pc_; }
HLoadClass* GetLoadClass() const { return InputAt(0)->AsLoadClass(); }
DECLARE_INSTRUCTION(ClinitCheck);
private:
const uint32_t dex_pc_;
DISALLOW_COPY_AND_ASSIGN(HClinitCheck);
};
class HStaticFieldGet : public HExpression<1> {
public:
HStaticFieldGet(HInstruction* cls,
Primitive::Type field_type,
MemberOffset field_offset,
bool is_volatile)
: HExpression(field_type, SideEffects::DependsOnSomething()),
field_info_(field_offset, field_type, is_volatile) {
SetRawInputAt(0, cls);
}
bool CanBeMoved() const OVERRIDE { return !IsVolatile(); }
bool InstructionDataEquals(HInstruction* other) const OVERRIDE {
HStaticFieldGet* other_get = other->AsStaticFieldGet();
return GetFieldOffset().SizeValue() == other_get->GetFieldOffset().SizeValue();
}
size_t ComputeHashCode() const OVERRIDE {
return (HInstruction::ComputeHashCode() << 7) | GetFieldOffset().SizeValue();
}
const FieldInfo& GetFieldInfo() const { return field_info_; }
MemberOffset GetFieldOffset() const { return field_info_.GetFieldOffset(); }
Primitive::Type GetFieldType() const { return field_info_.GetFieldType(); }
bool IsVolatile() const { return field_info_.IsVolatile(); }
DECLARE_INSTRUCTION(StaticFieldGet);
private:
const FieldInfo field_info_;
DISALLOW_COPY_AND_ASSIGN(HStaticFieldGet);
};
class HStaticFieldSet : public HTemplateInstruction<2> {
public:
HStaticFieldSet(HInstruction* cls,
HInstruction* value,
Primitive::Type field_type,
MemberOffset field_offset,
bool is_volatile)
: HTemplateInstruction(SideEffects::ChangesSomething()),
field_info_(field_offset, field_type, is_volatile) {
SetRawInputAt(0, cls);
SetRawInputAt(1, value);
}
const FieldInfo& GetFieldInfo() const { return field_info_; }
MemberOffset GetFieldOffset() const { return field_info_.GetFieldOffset(); }
Primitive::Type GetFieldType() const { return field_info_.GetFieldType(); }
bool IsVolatile() const { return field_info_.IsVolatile(); }
HInstruction* GetValue() const { return InputAt(1); }
DECLARE_INSTRUCTION(StaticFieldSet);
private:
const FieldInfo field_info_;
DISALLOW_COPY_AND_ASSIGN(HStaticFieldSet);
};
// Implement the move-exception DEX instruction.
class HLoadException : public HExpression<0> {
public:
HLoadException() : HExpression(Primitive::kPrimNot, SideEffects::None()) {}
DECLARE_INSTRUCTION(LoadException);
private:
DISALLOW_COPY_AND_ASSIGN(HLoadException);
};
class HThrow : public HTemplateInstruction<1> {
public:
HThrow(HInstruction* exception, uint32_t dex_pc)
: HTemplateInstruction(SideEffects::None()), dex_pc_(dex_pc) {
SetRawInputAt(0, exception);
}
bool IsControlFlow() const OVERRIDE { return true; }
bool NeedsEnvironment() const OVERRIDE { return true; }
uint32_t GetDexPc() const { return dex_pc_; }
DECLARE_INSTRUCTION(Throw);
private:
uint32_t dex_pc_;
DISALLOW_COPY_AND_ASSIGN(HThrow);
};
class HInstanceOf : public HExpression<2> {
public:
HInstanceOf(HInstruction* object,
HLoadClass* constant,
bool class_is_final,
uint32_t dex_pc)
: HExpression(Primitive::kPrimBoolean, SideEffects::None()),
class_is_final_(class_is_final),
dex_pc_(dex_pc) {
SetRawInputAt(0, object);
SetRawInputAt(1, constant);
}
bool CanBeMoved() const OVERRIDE { return true; }
bool InstructionDataEquals(HInstruction* other ATTRIBUTE_UNUSED) const OVERRIDE {
return true;
}
bool NeedsEnvironment() const OVERRIDE {
return false;
}
uint32_t GetDexPc() const { return dex_pc_; }
bool IsClassFinal() const { return class_is_final_; }
DECLARE_INSTRUCTION(InstanceOf);
private:
const bool class_is_final_;
const uint32_t dex_pc_;
DISALLOW_COPY_AND_ASSIGN(HInstanceOf);
};
class HCheckCast : public HTemplateInstruction<2> {
public:
HCheckCast(HInstruction* object,
HLoadClass* constant,
bool class_is_final,
uint32_t dex_pc)
: HTemplateInstruction(SideEffects::None()),
class_is_final_(class_is_final),
dex_pc_(dex_pc) {
SetRawInputAt(0, object);
SetRawInputAt(1, constant);
}
bool CanBeMoved() const OVERRIDE { return true; }
bool InstructionDataEquals(HInstruction* other ATTRIBUTE_UNUSED) const OVERRIDE {
return true;
}
bool NeedsEnvironment() const OVERRIDE {
// Instruction may throw a CheckCastError.
return true;
}
bool CanThrow() const OVERRIDE { return true; }
uint32_t GetDexPc() const { return dex_pc_; }
bool IsClassFinal() const { return class_is_final_; }
DECLARE_INSTRUCTION(CheckCast);
private:
const bool class_is_final_;
const uint32_t dex_pc_;
DISALLOW_COPY_AND_ASSIGN(HCheckCast);
};
class HMonitorOperation : public HTemplateInstruction<1> {
public:
enum OperationKind {
kEnter,
kExit,
};
HMonitorOperation(HInstruction* object, OperationKind kind, uint32_t dex_pc)
: HTemplateInstruction(SideEffects::None()), kind_(kind), dex_pc_(dex_pc) {
SetRawInputAt(0, object);
}
// Instruction may throw a Java exception, so we need an environment.
bool NeedsEnvironment() const OVERRIDE { return true; }
bool CanThrow() const OVERRIDE { return true; }
uint32_t GetDexPc() const { return dex_pc_; }
bool IsEnter() const { return kind_ == kEnter; }
DECLARE_INSTRUCTION(MonitorOperation);
private:
const OperationKind kind_;
const uint32_t dex_pc_;
private:
DISALLOW_COPY_AND_ASSIGN(HMonitorOperation);
};
class MoveOperands : public ArenaObject<kArenaAllocMisc> {
public:
MoveOperands(Location source, Location destination, HInstruction* instruction)
: source_(source), destination_(destination), instruction_(instruction) {}
Location GetSource() const { return source_; }
Location GetDestination() const { return destination_; }
void SetSource(Location value) { source_ = value; }
void SetDestination(Location value) { destination_ = value; }
// The parallel move resolver marks moves as "in-progress" by clearing the
// destination (but not the source).
Location MarkPending() {
DCHECK(!IsPending());
Location dest = destination_;
destination_ = Location::NoLocation();
return dest;
}
void ClearPending(Location dest) {
DCHECK(IsPending());
destination_ = dest;
}
bool IsPending() const {
DCHECK(!source_.IsInvalid() || destination_.IsInvalid());
return destination_.IsInvalid() && !source_.IsInvalid();
}
// True if this blocks a move from the given location.
bool Blocks(Location loc) const {
return !IsEliminated() && source_.Contains(loc);
}
// A move is redundant if it's been eliminated, if its source and
// destination are the same, or if its destination is unneeded.
bool IsRedundant() const {
return IsEliminated() || destination_.IsInvalid() || source_.Equals(destination_);
}
// We clear both operands to indicate move that's been eliminated.
void Eliminate() {
source_ = destination_ = Location::NoLocation();
}
bool IsEliminated() const {
DCHECK(!source_.IsInvalid() || destination_.IsInvalid());
return source_.IsInvalid();
}
HInstruction* GetInstruction() const { return instruction_; }
private:
Location source_;
Location destination_;
// The instruction this move is assocatied with. Null when this move is
// for moving an input in the expected locations of user (including a phi user).
// This is only used in debug mode, to ensure we do not connect interval siblings
// in the same parallel move.
HInstruction* instruction_;
DISALLOW_COPY_AND_ASSIGN(MoveOperands);
};
static constexpr size_t kDefaultNumberOfMoves = 4;
class HParallelMove : public HTemplateInstruction<0> {
public:
explicit HParallelMove(ArenaAllocator* arena)
: HTemplateInstruction(SideEffects::None()), moves_(arena, kDefaultNumberOfMoves) {}
void AddMove(MoveOperands* move) {
if (kIsDebugBuild && move->GetInstruction() != nullptr) {
for (size_t i = 0, e = moves_.Size(); i < e; ++i) {
DCHECK_NE(moves_.Get(i)->GetInstruction(), move->GetInstruction())
<< "Doing parallel moves for the same instruction.";
}
}
moves_.Add(move);
}
MoveOperands* MoveOperandsAt(size_t index) const {
return moves_.Get(index);
}
size_t NumMoves() const { return moves_.Size(); }
DECLARE_INSTRUCTION(ParallelMove);
private:
GrowableArray<MoveOperands*> moves_;
DISALLOW_COPY_AND_ASSIGN(HParallelMove);
};
class HGraphVisitor : public ValueObject {
public:
explicit HGraphVisitor(HGraph* graph) : graph_(graph) {}
virtual ~HGraphVisitor() {}
virtual void VisitInstruction(HInstruction* instruction) { UNUSED(instruction); }
virtual void VisitBasicBlock(HBasicBlock* block);
// Visit the graph following basic block insertion order.
void VisitInsertionOrder();
// Visit the graph following dominator tree reverse post-order.
void VisitReversePostOrder();
HGraph* GetGraph() const { return graph_; }
// Visit functions for instruction classes.
#define DECLARE_VISIT_INSTRUCTION(name, super) \
virtual void Visit##name(H##name* instr) { VisitInstruction(instr); }
FOR_EACH_INSTRUCTION(DECLARE_VISIT_INSTRUCTION)
#undef DECLARE_VISIT_INSTRUCTION
private:
HGraph* const graph_;
DISALLOW_COPY_AND_ASSIGN(HGraphVisitor);
};
class HGraphDelegateVisitor : public HGraphVisitor {
public:
explicit HGraphDelegateVisitor(HGraph* graph) : HGraphVisitor(graph) {}
virtual ~HGraphDelegateVisitor() {}
// Visit functions that delegate to to super class.
#define DECLARE_VISIT_INSTRUCTION(name, super) \
virtual void Visit##name(H##name* instr) OVERRIDE { Visit##super(instr); }
FOR_EACH_INSTRUCTION(DECLARE_VISIT_INSTRUCTION)
#undef DECLARE_VISIT_INSTRUCTION
private:
DISALLOW_COPY_AND_ASSIGN(HGraphDelegateVisitor);
};
class HInsertionOrderIterator : public ValueObject {
public:
explicit HInsertionOrderIterator(const HGraph& graph) : graph_(graph), index_(0) {}
bool Done() const { return index_ == graph_.GetBlocks().Size(); }
HBasicBlock* Current() const { return graph_.GetBlocks().Get(index_); }
void Advance() { ++index_; }
private:
const HGraph& graph_;
size_t index_;
DISALLOW_COPY_AND_ASSIGN(HInsertionOrderIterator);
};
class HReversePostOrderIterator : public ValueObject {
public:
explicit HReversePostOrderIterator(const HGraph& graph) : graph_(graph), index_(0) {}
bool Done() const { return index_ == graph_.GetReversePostOrder().Size(); }
HBasicBlock* Current() const { return graph_.GetReversePostOrder().Get(index_); }
void Advance() { ++index_; }
private:
const HGraph& graph_;
size_t index_;
DISALLOW_COPY_AND_ASSIGN(HReversePostOrderIterator);
};
class HPostOrderIterator : public ValueObject {
public:
explicit HPostOrderIterator(const HGraph& graph)
: graph_(graph), index_(graph_.GetReversePostOrder().Size()) {}
bool Done() const { return index_ == 0; }
HBasicBlock* Current() const { return graph_.GetReversePostOrder().Get(index_ - 1); }
void Advance() { --index_; }
private:
const HGraph& graph_;
size_t index_;
DISALLOW_COPY_AND_ASSIGN(HPostOrderIterator);
};
} // namespace art
#endif // ART_COMPILER_OPTIMIZING_NODES_H_
|