summaryrefslogtreecommitdiffstats
path: root/compiler/optimizing/optimizing_compiler.cc
blob: 5ce73baef2b26bf6e0a4b9670a27b5fe603b4628 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
/*
 * Copyright (C) 2014 The Android Open Source Project
 *
 * Licensed under the Apache License, Version 2.0 (the "License");
 * you may not use this file except in compliance with the License.
 * You may obtain a copy of the License at
 *
 *      http://www.apache.org/licenses/LICENSE-2.0
 *
 * Unless required by applicable law or agreed to in writing, software
 * distributed under the License is distributed on an "AS IS" BASIS,
 * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
 * See the License for the specific language governing permissions and
 * limitations under the License.
 */

#include "optimizing_compiler.h"

#include <fstream>
#include <stdint.h>

#include "base/arena_allocator.h"
#include "base/dumpable.h"
#include "base/timing_logger.h"
#include "boolean_simplifier.h"
#include "bounds_check_elimination.h"
#include "builder.h"
#include "code_generator.h"
#include "compiler.h"
#include "constant_folding.h"
#include "dead_code_elimination.h"
#include "dex/quick/dex_file_to_method_inliner_map.h"
#include "driver/compiler_driver.h"
#include "driver/dex_compilation_unit.h"
#include "elf_writer_quick.h"
#include "graph_visualizer.h"
#include "gvn.h"
#include "inliner.h"
#include "instruction_simplifier.h"
#include "intrinsics.h"
#include "licm.h"
#include "jni/quick/jni_compiler.h"
#include "mirror/art_method-inl.h"
#include "nodes.h"
#include "prepare_for_register_allocation.h"
#include "register_allocator.h"
#include "side_effects_analysis.h"
#include "ssa_builder.h"
#include "ssa_phi_elimination.h"
#include "ssa_liveness_analysis.h"
#include "reference_type_propagation.h"

namespace art {

/**
 * Used by the code generator, to allocate the code in a vector.
 */
class CodeVectorAllocator FINAL : public CodeAllocator {
 public:
  CodeVectorAllocator() : size_(0) {}

  virtual uint8_t* Allocate(size_t size) {
    size_ = size;
    memory_.resize(size);
    return &memory_[0];
  }

  size_t GetSize() const { return size_; }
  const std::vector<uint8_t>& GetMemory() const { return memory_; }

 private:
  std::vector<uint8_t> memory_;
  size_t size_;

  DISALLOW_COPY_AND_ASSIGN(CodeVectorAllocator);
};

/**
 * Filter to apply to the visualizer. Methods whose name contain that filter will
 * be dumped.
 */
static const char* kStringFilter = "";

class PassInfo;

class PassInfoPrinter : public ValueObject {
 public:
  PassInfoPrinter(HGraph* graph,
                  const char* method_name,
                  const CodeGenerator& codegen,
                  std::ostream* visualizer_output,
                  CompilerDriver* compiler_driver)
      : method_name_(method_name),
        timing_logger_enabled_(compiler_driver->GetDumpPasses()),
        timing_logger_(method_name, true, true),
        visualizer_enabled_(!compiler_driver->GetDumpCfgFileName().empty()),
        visualizer_(visualizer_output, graph, codegen, method_name_) {
    if (strstr(method_name, kStringFilter) == nullptr) {
      timing_logger_enabled_ = visualizer_enabled_ = false;
    }
  }

  ~PassInfoPrinter() {
    if (timing_logger_enabled_) {
      LOG(INFO) << "TIMINGS " << method_name_;
      LOG(INFO) << Dumpable<TimingLogger>(timing_logger_);
    }
  }

 private:
  void StartPass(const char* pass_name) {
    // Dump graph first, then start timer.
    if (visualizer_enabled_) {
      visualizer_.DumpGraph(pass_name, /* is_after_pass */ false);
    }
    if (timing_logger_enabled_) {
      timing_logger_.StartTiming(pass_name);
    }
  }

  void EndPass(const char* pass_name) {
    // Pause timer first, then dump graph.
    if (timing_logger_enabled_) {
      timing_logger_.EndTiming();
    }
    if (visualizer_enabled_) {
      visualizer_.DumpGraph(pass_name, /* is_after_pass */ true);
    }
  }

  const char* method_name_;

  bool timing_logger_enabled_;
  TimingLogger timing_logger_;

  bool visualizer_enabled_;
  HGraphVisualizer visualizer_;

  friend PassInfo;

  DISALLOW_COPY_AND_ASSIGN(PassInfoPrinter);
};

class PassInfo : public ValueObject {
 public:
  PassInfo(const char *pass_name, PassInfoPrinter* pass_info_printer)
      : pass_name_(pass_name),
        pass_info_printer_(pass_info_printer) {
    pass_info_printer_->StartPass(pass_name_);
  }

  ~PassInfo() {
    pass_info_printer_->EndPass(pass_name_);
  }

 private:
  const char* const pass_name_;
  PassInfoPrinter* const pass_info_printer_;
};

class OptimizingCompiler FINAL : public Compiler {
 public:
  explicit OptimizingCompiler(CompilerDriver* driver);
  ~OptimizingCompiler();

  bool CanCompileMethod(uint32_t method_idx, const DexFile& dex_file, CompilationUnit* cu) const
      OVERRIDE;

  CompiledMethod* Compile(const DexFile::CodeItem* code_item,
                          uint32_t access_flags,
                          InvokeType invoke_type,
                          uint16_t class_def_idx,
                          uint32_t method_idx,
                          jobject class_loader,
                          const DexFile& dex_file) const OVERRIDE;

  CompiledMethod* TryCompile(const DexFile::CodeItem* code_item,
                             uint32_t access_flags,
                             InvokeType invoke_type,
                             uint16_t class_def_idx,
                             uint32_t method_idx,
                             jobject class_loader,
                             const DexFile& dex_file) const;

  CompiledMethod* JniCompile(uint32_t access_flags,
                             uint32_t method_idx,
                             const DexFile& dex_file) const OVERRIDE {
    return ArtQuickJniCompileMethod(GetCompilerDriver(), access_flags, method_idx, dex_file);
  }

  uintptr_t GetEntryPointOf(mirror::ArtMethod* method) const OVERRIDE
      SHARED_LOCKS_REQUIRED(Locks::mutator_lock_) {
    return reinterpret_cast<uintptr_t>(method->GetEntryPointFromQuickCompiledCodePtrSize(
        InstructionSetPointerSize(GetCompilerDriver()->GetInstructionSet())));
  }

  bool WriteElf(art::File* file,
                OatWriter* oat_writer,
                const std::vector<const art::DexFile*>& dex_files,
                const std::string& android_root,
                bool is_host) const OVERRIDE SHARED_LOCKS_REQUIRED(Locks::mutator_lock_) {
    return art::ElfWriterQuick32::Create(file, oat_writer, dex_files, android_root, is_host,
                                        *GetCompilerDriver());
  }

  void InitCompilationUnit(CompilationUnit& cu) const OVERRIDE;

  void Init() OVERRIDE;

  void UnInit() const OVERRIDE;

 private:
  // Whether we should run any optimization or register allocation. If false, will
  // just run the code generation after the graph was built.
  const bool run_optimizations_;

  // Optimize and compile `graph`.
  CompiledMethod* CompileOptimized(HGraph* graph,
                                   CodeGenerator* codegen,
                                   CompilerDriver* driver,
                                   const DexFile& dex_file,
                                   const DexCompilationUnit& dex_compilation_unit,
                                   PassInfoPrinter* pass_info) const;

  // Just compile without doing optimizations.
  CompiledMethod* CompileBaseline(CodeGenerator* codegen,
                                  CompilerDriver* driver,
                                  const DexCompilationUnit& dex_compilation_unit) const;

  mutable OptimizingCompilerStats compilation_stats_;

  std::unique_ptr<std::ostream> visualizer_output_;

  // Delegate to Quick in case the optimizing compiler cannot compile a method.
  std::unique_ptr<Compiler> delegate_;

  DISALLOW_COPY_AND_ASSIGN(OptimizingCompiler);
};

static const int kMaximumCompilationTimeBeforeWarning = 100; /* ms */

OptimizingCompiler::OptimizingCompiler(CompilerDriver* driver)
    : Compiler(driver, kMaximumCompilationTimeBeforeWarning),
      run_optimizations_(
          (driver->GetCompilerOptions().GetCompilerFilter() != CompilerOptions::kTime)
          && !driver->GetCompilerOptions().GetDebuggable()),
      compilation_stats_(),
      delegate_(Create(driver, Compiler::Kind::kQuick)) {}

void OptimizingCompiler::Init() {
  delegate_->Init();
  // Enable C1visualizer output. Must be done in Init() because the compiler
  // driver is not fully initialized when passed to the compiler's constructor.
  CompilerDriver* driver = GetCompilerDriver();
  const std::string cfg_file_name = driver->GetDumpCfgFileName();
  if (!cfg_file_name.empty()) {
    CHECK_EQ(driver->GetThreadCount(), 1U)
      << "Graph visualizer requires the compiler to run single-threaded. "
      << "Invoke the compiler with '-j1'.";
    visualizer_output_.reset(new std::ofstream(cfg_file_name));
  }
}

void OptimizingCompiler::UnInit() const {
  delegate_->UnInit();
}

OptimizingCompiler::~OptimizingCompiler() {
  compilation_stats_.Log();
}

void OptimizingCompiler::InitCompilationUnit(CompilationUnit& cu) const {
  delegate_->InitCompilationUnit(cu);
}

bool OptimizingCompiler::CanCompileMethod(uint32_t method_idx ATTRIBUTE_UNUSED,
                                          const DexFile& dex_file ATTRIBUTE_UNUSED,
                                          CompilationUnit* cu ATTRIBUTE_UNUSED) const {
  return true;
}

static bool IsInstructionSetSupported(InstructionSet instruction_set) {
  return instruction_set == kArm64
      || (instruction_set == kThumb2 && !kArm32QuickCodeUseSoftFloat)
      || instruction_set == kX86
      || instruction_set == kX86_64;
}

static bool CanOptimize(const DexFile::CodeItem& code_item) {
  // TODO: We currently cannot optimize methods with try/catch.
  return code_item.tries_size_ == 0;
}

static void RunOptimizations(HOptimization* optimizations[],
                             size_t length,
                             PassInfoPrinter* pass_info_printer) {
  for (size_t i = 0; i < length; ++i) {
    HOptimization* optimization = optimizations[i];
    {
      PassInfo pass_info(optimization->GetPassName(), pass_info_printer);
      optimization->Run();
    }
    optimization->Check();
  }
}

static void RunOptimizations(HGraph* graph,
                             CompilerDriver* driver,
                             OptimizingCompilerStats* stats,
                             const DexFile& dex_file,
                             const DexCompilationUnit& dex_compilation_unit,
                             PassInfoPrinter* pass_info_printer,
                             StackHandleScopeCollection* handles) {
  HDeadCodeElimination dce(graph);
  HConstantFolding fold1(graph);
  InstructionSimplifier simplify1(graph, stats);
  HBooleanSimplifier boolean_not(graph);

  HInliner inliner(graph, dex_compilation_unit, dex_compilation_unit, driver, stats);

  HConstantFolding fold2(graph);
  SideEffectsAnalysis side_effects(graph);
  GVNOptimization gvn(graph, side_effects);
  LICM licm(graph, side_effects);
  BoundsCheckElimination bce(graph);
  ReferenceTypePropagation type_propagation(graph, dex_file, dex_compilation_unit, handles);
  InstructionSimplifier simplify2(graph, stats, "instruction_simplifier_after_types");

  IntrinsicsRecognizer intrinsics(graph, dex_compilation_unit.GetDexFile(), driver);

  HOptimization* optimizations[] = {
    &intrinsics,
    &dce,
    &fold1,
    &simplify1,
    // BooleanSimplifier depends on the InstructionSimplifier removing redundant
    // suspend checks to recognize empty blocks.
    &boolean_not,
    &inliner,
    &fold2,
    &side_effects,
    &gvn,
    &licm,
    &bce,
    &type_propagation,
    &simplify2
  };

  RunOptimizations(optimizations, arraysize(optimizations), pass_info_printer);
}

// The stack map we generate must be 4-byte aligned on ARM. Since existing
// maps are generated alongside these stack maps, we must also align them.
static ArrayRef<const uint8_t> AlignVectorSize(std::vector<uint8_t>& vector) {
  size_t size = vector.size();
  size_t aligned_size = RoundUp(size, 4);
  for (; size < aligned_size; ++size) {
    vector.push_back(0);
  }
  return ArrayRef<const uint8_t>(vector);
}


CompiledMethod* OptimizingCompiler::CompileOptimized(HGraph* graph,
                                                     CodeGenerator* codegen,
                                                     CompilerDriver* compiler_driver,
                                                     const DexFile& dex_file,
                                                     const DexCompilationUnit& dex_compilation_unit,
                                                     PassInfoPrinter* pass_info_printer) const {
  StackHandleScopeCollection handles(Thread::Current());
  RunOptimizations(graph, compiler_driver, &compilation_stats_,
                   dex_file, dex_compilation_unit, pass_info_printer, &handles);

  PrepareForRegisterAllocation(graph).Run();
  SsaLivenessAnalysis liveness(*graph, codegen);
  {
    PassInfo pass_info(SsaLivenessAnalysis::kLivenessPassName, pass_info_printer);
    liveness.Analyze();
  }
  {
    PassInfo pass_info(RegisterAllocator::kRegisterAllocatorPassName, pass_info_printer);
    RegisterAllocator(graph->GetArena(), codegen, liveness).AllocateRegisters();
  }

  CodeVectorAllocator allocator;
  codegen->CompileOptimized(&allocator);

  std::vector<uint8_t> stack_map;
  codegen->BuildStackMaps(&stack_map);

  compilation_stats_.RecordStat(MethodCompilationStat::kCompiledOptimized);

  return CompiledMethod::SwapAllocCompiledMethodStackMap(
      compiler_driver,
      codegen->GetInstructionSet(),
      ArrayRef<const uint8_t>(allocator.GetMemory()),
      // Follow Quick's behavior and set the frame size to zero if it is
      // considered "empty" (see the definition of
      // art::CodeGenerator::HasEmptyFrame).
      codegen->HasEmptyFrame() ? 0 : codegen->GetFrameSize(),
      codegen->GetCoreSpillMask(),
      codegen->GetFpuSpillMask(),
      ArrayRef<const uint8_t>(stack_map));
}


CompiledMethod* OptimizingCompiler::CompileBaseline(
    CodeGenerator* codegen,
    CompilerDriver* compiler_driver,
    const DexCompilationUnit& dex_compilation_unit) const {
  CodeVectorAllocator allocator;
  codegen->CompileBaseline(&allocator);

  std::vector<uint8_t> mapping_table;
  DefaultSrcMap src_mapping_table;
  bool include_debug_symbol = compiler_driver->GetCompilerOptions().GetIncludeDebugSymbols();
  codegen->BuildMappingTable(&mapping_table, include_debug_symbol ? &src_mapping_table : nullptr);
  std::vector<uint8_t> vmap_table;
  codegen->BuildVMapTable(&vmap_table);
  std::vector<uint8_t> gc_map;
  codegen->BuildNativeGCMap(&gc_map, dex_compilation_unit);

  compilation_stats_.RecordStat(MethodCompilationStat::kCompiledBaseline);
  return CompiledMethod::SwapAllocCompiledMethod(
      compiler_driver,
      codegen->GetInstructionSet(),
      ArrayRef<const uint8_t>(allocator.GetMemory()),
      // Follow Quick's behavior and set the frame size to zero if it is
      // considered "empty" (see the definition of
      // art::CodeGenerator::HasEmptyFrame).
      codegen->HasEmptyFrame() ? 0 : codegen->GetFrameSize(),
      codegen->GetCoreSpillMask(),
      codegen->GetFpuSpillMask(),
      &src_mapping_table,
      AlignVectorSize(mapping_table),
      AlignVectorSize(vmap_table),
      AlignVectorSize(gc_map),
      ArrayRef<const uint8_t>());
}

CompiledMethod* OptimizingCompiler::TryCompile(const DexFile::CodeItem* code_item,
                                               uint32_t access_flags,
                                               InvokeType invoke_type,
                                               uint16_t class_def_idx,
                                               uint32_t method_idx,
                                               jobject class_loader,
                                               const DexFile& dex_file) const {
  UNUSED(invoke_type);
  std::string method_name = PrettyMethod(method_idx, dex_file);
  compilation_stats_.RecordStat(MethodCompilationStat::kAttemptCompilation);
  CompilerDriver* compiler_driver = GetCompilerDriver();
  InstructionSet instruction_set = compiler_driver->GetInstructionSet();
  // Always use the thumb2 assembler: some runtime functionality (like implicit stack
  // overflow checks) assume thumb2.
  if (instruction_set == kArm) {
    instruction_set = kThumb2;
  }

  // Do not attempt to compile on architectures we do not support.
  if (!IsInstructionSetSupported(instruction_set)) {
    compilation_stats_.RecordStat(MethodCompilationStat::kNotCompiledUnsupportedIsa);
    return nullptr;
  }

  if (Compiler::IsPathologicalCase(*code_item, method_idx, dex_file)) {
    compilation_stats_.RecordStat(MethodCompilationStat::kNotCompiledPathological);
    return nullptr;
  }

  // Implementation of the space filter: do not compile a code item whose size in
  // code units is bigger than 256.
  static constexpr size_t kSpaceFilterOptimizingThreshold = 256;
  const CompilerOptions& compiler_options = compiler_driver->GetCompilerOptions();
  if ((compiler_options.GetCompilerFilter() == CompilerOptions::kSpace)
      && (code_item->insns_size_in_code_units_ > kSpaceFilterOptimizingThreshold)) {
    compilation_stats_.RecordStat(MethodCompilationStat::kNotCompiledSpaceFilter);
    return nullptr;
  }

  DexCompilationUnit dex_compilation_unit(
    nullptr, class_loader, art::Runtime::Current()->GetClassLinker(), dex_file, code_item,
    class_def_idx, method_idx, access_flags,
    compiler_driver->GetVerifiedMethod(&dex_file, method_idx));

  ArenaAllocator arena(Runtime::Current()->GetArenaPool());
  HGraph* graph = new (&arena) HGraph(
      &arena, compiler_driver->GetCompilerOptions().GetDebuggable());

  // For testing purposes, we put a special marker on method names that should be compiled
  // with this compiler. This makes sure we're not regressing.
  bool shouldCompile = method_name.find("$opt$") != std::string::npos;
  bool shouldOptimize = method_name.find("$opt$reg$") != std::string::npos && run_optimizations_;

  std::unique_ptr<CodeGenerator> codegen(
      CodeGenerator::Create(graph,
                            instruction_set,
                            *compiler_driver->GetInstructionSetFeatures(),
                            compiler_driver->GetCompilerOptions()));
  if (codegen.get() == nullptr) {
    CHECK(!shouldCompile) << "Could not find code generator for optimizing compiler";
    compilation_stats_.RecordStat(MethodCompilationStat::kNotCompiledNoCodegen);
    return nullptr;
  }

  PassInfoPrinter pass_info_printer(graph,
                                    method_name.c_str(),
                                    *codegen.get(),
                                    visualizer_output_.get(),
                                    compiler_driver);

  HGraphBuilder builder(graph,
                        &dex_compilation_unit,
                        &dex_compilation_unit,
                        &dex_file,
                        compiler_driver,
                        &compilation_stats_);

  VLOG(compiler) << "Building " << method_name;

  {
    PassInfo pass_info(HGraphBuilder::kBuilderPassName, &pass_info_printer);
    if (!builder.BuildGraph(*code_item)) {
      CHECK(!shouldCompile) << "Could not build graph in optimizing compiler";
      return nullptr;
    }
  }

  bool can_optimize = CanOptimize(*code_item);
  bool can_allocate_registers = RegisterAllocator::CanAllocateRegistersFor(*graph, instruction_set);

  // `run_optimizations_` is set explicitly (either through a compiler filter
  // or the debuggable flag). If it is set, we can run baseline. Otherwise, we fall back
  // to Quick.
  bool can_use_baseline = !run_optimizations_;
  if (run_optimizations_ && can_optimize && can_allocate_registers) {
    VLOG(compiler) << "Optimizing " << method_name;

    {
      PassInfo pass_info(SsaBuilder::kSsaBuilderPassName, &pass_info_printer);
      if (!graph->TryBuildingSsa()) {
        // We could not transform the graph to SSA, bailout.
        LOG(INFO) << "Skipping compilation of " << method_name << ": it contains a non natural loop";
        compilation_stats_.RecordStat(MethodCompilationStat::kNotCompiledCannotBuildSSA);
        return nullptr;
      }
    }

    return CompileOptimized(graph,
                            codegen.get(),
                            compiler_driver,
                            dex_file,
                            dex_compilation_unit,
                            &pass_info_printer);
  } else if (shouldOptimize && can_allocate_registers) {
    LOG(FATAL) << "Could not allocate registers in optimizing compiler";
    UNREACHABLE();
  } else if (can_use_baseline) {
    VLOG(compiler) << "Compile baseline " << method_name;

    if (!run_optimizations_) {
      compilation_stats_.RecordStat(MethodCompilationStat::kNotOptimizedDisabled);
    } else if (!can_optimize) {
      compilation_stats_.RecordStat(MethodCompilationStat::kNotOptimizedTryCatch);
    } else if (!can_allocate_registers) {
      compilation_stats_.RecordStat(MethodCompilationStat::kNotOptimizedRegisterAllocator);
    }

    return CompileBaseline(codegen.get(), compiler_driver, dex_compilation_unit);
  } else {
    return nullptr;
  }
}

CompiledMethod* OptimizingCompiler::Compile(const DexFile::CodeItem* code_item,
                                            uint32_t access_flags,
                                            InvokeType invoke_type,
                                            uint16_t class_def_idx,
                                            uint32_t method_idx,
                                            jobject class_loader,
                                            const DexFile& dex_file) const {
  CompiledMethod* method = TryCompile(code_item, access_flags, invoke_type, class_def_idx,
                                      method_idx, class_loader, dex_file);
  if (method != nullptr) {
    return method;
  }
  return delegate_->Compile(code_item, access_flags, invoke_type, class_def_idx, method_idx,
                            class_loader, dex_file);
}

Compiler* CreateOptimizingCompiler(CompilerDriver* driver) {
  return new OptimizingCompiler(driver);
}

}  // namespace art