1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
|
/*
* Copyright (C) 2014 The Android Open Source Project
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
#include <iostream>
#include "parallel_move_resolver.h"
#include "nodes.h"
namespace art {
void ParallelMoveResolver::BuildInitialMoveList(HParallelMove* parallel_move) {
// Perform a linear sweep of the moves to add them to the initial list of
// moves to perform, ignoring any move that is redundant (the source is
// the same as the destination, the destination is ignored and
// unallocated, or the move was already eliminated).
for (size_t i = 0; i < parallel_move->NumMoves(); ++i) {
MoveOperands* move = parallel_move->MoveOperandsAt(i);
if (!move->IsRedundant()) {
moves_.Add(move);
}
}
}
void ParallelMoveResolverWithSwap::EmitNativeCode(HParallelMove* parallel_move) {
DCHECK(moves_.IsEmpty());
// Build up a worklist of moves.
BuildInitialMoveList(parallel_move);
for (size_t i = 0; i < moves_.Size(); ++i) {
const MoveOperands& move = *moves_.Get(i);
// Skip constants to perform them last. They don't block other moves
// and skipping such moves with register destinations keeps those
// registers free for the whole algorithm.
if (!move.IsEliminated() && !move.GetSource().IsConstant()) {
PerformMove(i);
}
}
// Perform the moves with constant sources.
for (size_t i = 0; i < moves_.Size(); ++i) {
MoveOperands* move = moves_.Get(i);
if (!move->IsEliminated()) {
DCHECK(move->GetSource().IsConstant());
EmitMove(i);
// Eliminate the move, in case following moves need a scratch register.
move->Eliminate();
}
}
moves_.Reset();
}
Location LowOf(Location location) {
if (location.IsRegisterPair()) {
return Location::RegisterLocation(location.low());
} else if (location.IsFpuRegisterPair()) {
return Location::FpuRegisterLocation(location.low());
} else if (location.IsDoubleStackSlot()) {
return Location::StackSlot(location.GetStackIndex());
} else {
return Location::NoLocation();
}
}
Location HighOf(Location location) {
if (location.IsRegisterPair()) {
return Location::RegisterLocation(location.high());
} else if (location.IsFpuRegisterPair()) {
return Location::FpuRegisterLocation(location.high());
} else if (location.IsDoubleStackSlot()) {
return Location::StackSlot(location.GetHighStackIndex(4));
} else {
return Location::NoLocation();
}
}
// Update the source of `move`, knowing that `updated_location` has been swapped
// with `new_source`. Note that `updated_location` can be a pair, therefore if
// `move` is non-pair, we need to extract which register to use.
static void UpdateSourceOf(MoveOperands* move, Location updated_location, Location new_source) {
Location source = move->GetSource();
if (LowOf(updated_location).Equals(source)) {
move->SetSource(LowOf(new_source));
} else if (HighOf(updated_location).Equals(source)) {
move->SetSource(HighOf(new_source));
} else {
DCHECK(updated_location.Equals(source)) << updated_location << " " << source;
move->SetSource(new_source);
}
}
MoveOperands* ParallelMoveResolverWithSwap::PerformMove(size_t index) {
// Each call to this function performs a move and deletes it from the move
// graph. We first recursively perform any move blocking this one. We
// mark a move as "pending" on entry to PerformMove in order to detect
// cycles in the move graph. We use operand swaps to resolve cycles,
// which means that a call to PerformMove could change any source operand
// in the move graph.
MoveOperands* move = moves_.Get(index);
DCHECK(!move->IsPending());
if (move->IsRedundant()) {
// Because we swap register pairs first, following, un-pending
// moves may become redundant.
move->Eliminate();
return nullptr;
}
// Clear this move's destination to indicate a pending move. The actual
// destination is saved in a stack-allocated local. Recursion may allow
// multiple moves to be pending.
DCHECK(!move->GetSource().IsInvalid());
Location destination = move->MarkPending();
// Perform a depth-first traversal of the move graph to resolve
// dependencies. Any unperformed, unpending move with a source the same
// as this one's destination blocks this one so recursively perform all
// such moves.
MoveOperands* required_swap = nullptr;
for (size_t i = 0; i < moves_.Size(); ++i) {
const MoveOperands& other_move = *moves_.Get(i);
if (other_move.Blocks(destination) && !other_move.IsPending()) {
// Though PerformMove can change any source operand in the move graph,
// calling `PerformMove` cannot create a blocking move via a swap
// (this loop does not miss any).
// For example, assume there is a non-blocking move with source A
// and this move is blocked on source B and there is a swap of A and
// B. Then A and B must be involved in the same cycle (or they would
// not be swapped). Since this move's destination is B and there is
// only a single incoming edge to an operand, this move must also be
// involved in the same cycle. In that case, the blocking move will
// be created but will be "pending" when we return from PerformMove.
required_swap = PerformMove(i);
if (required_swap == move) {
// If this move is required to swap, we do so without looking
// at the next moves. Swapping is not blocked by anything, it just
// updates other moves's source.
break;
} else if (required_swap == moves_.Get(i)) {
// If `other_move` was swapped, we iterate again to find a new
// potential cycle.
required_swap = nullptr;
i = 0;
} else if (required_swap != nullptr) {
// A move is required to swap. We walk back the cycle to find the
// move by just returning from this `PerforrmMove`.
moves_.Get(index)->ClearPending(destination);
return required_swap;
}
}
}
// We are about to resolve this move and don't need it marked as
// pending, so restore its destination.
move->ClearPending(destination);
// This move's source may have changed due to swaps to resolve cycles and
// so it may now be the last move in the cycle. If so remove it.
if (move->GetSource().Equals(destination)) {
move->Eliminate();
DCHECK(required_swap == nullptr);
return nullptr;
}
// The move may be blocked on a (at most one) pending move, in which case
// we have a cycle. Search for such a blocking move and perform a swap to
// resolve it.
bool do_swap = false;
if (required_swap != nullptr) {
DCHECK_EQ(required_swap, move);
do_swap = true;
} else {
for (size_t i = 0; i < moves_.Size(); ++i) {
const MoveOperands& other_move = *moves_.Get(i);
if (other_move.Blocks(destination)) {
DCHECK(other_move.IsPending());
if (!move->Is64BitMove() && other_move.Is64BitMove()) {
// We swap 64bits moves before swapping 32bits moves. Go back from the
// cycle by returning the move that must be swapped.
return moves_.Get(i);
}
do_swap = true;
break;
}
}
}
if (do_swap) {
EmitSwap(index);
// Any unperformed (including pending) move with a source of either
// this move's source or destination needs to have their source
// changed to reflect the state of affairs after the swap.
Location source = move->GetSource();
Location swap_destination = move->GetDestination();
move->Eliminate();
for (size_t i = 0; i < moves_.Size(); ++i) {
const MoveOperands& other_move = *moves_.Get(i);
if (other_move.Blocks(source)) {
UpdateSourceOf(moves_.Get(i), source, swap_destination);
} else if (other_move.Blocks(swap_destination)) {
UpdateSourceOf(moves_.Get(i), swap_destination, source);
}
}
// If the swap was required because of a 64bits move in the middle of a cycle,
// we return the swapped move, so that the caller knows it needs to re-iterate
// its dependency loop.
return required_swap;
} else {
// This move is not blocked.
EmitMove(index);
move->Eliminate();
DCHECK(required_swap == nullptr);
return nullptr;
}
}
bool ParallelMoveResolverWithSwap::IsScratchLocation(Location loc) {
for (size_t i = 0; i < moves_.Size(); ++i) {
if (moves_.Get(i)->Blocks(loc)) {
return false;
}
}
for (size_t i = 0; i < moves_.Size(); ++i) {
if (moves_.Get(i)->GetDestination().Equals(loc)) {
return true;
}
}
return false;
}
int ParallelMoveResolverWithSwap::AllocateScratchRegister(int blocked,
int register_count,
int if_scratch,
bool* spilled) {
DCHECK_NE(blocked, if_scratch);
int scratch = -1;
for (int reg = 0; reg < register_count; ++reg) {
if ((blocked != reg) && IsScratchLocation(Location::RegisterLocation(reg))) {
scratch = reg;
break;
}
}
if (scratch == -1) {
*spilled = true;
scratch = if_scratch;
} else {
*spilled = false;
}
return scratch;
}
ParallelMoveResolverWithSwap::ScratchRegisterScope::ScratchRegisterScope(
ParallelMoveResolverWithSwap* resolver, int blocked, int if_scratch, int number_of_registers)
: resolver_(resolver),
reg_(kNoRegister),
spilled_(false) {
reg_ = resolver_->AllocateScratchRegister(blocked, number_of_registers, if_scratch, &spilled_);
if (spilled_) {
resolver->SpillScratch(reg_);
}
}
ParallelMoveResolverWithSwap::ScratchRegisterScope::~ScratchRegisterScope() {
if (spilled_) {
resolver_->RestoreScratch(reg_);
}
}
void ParallelMoveResolverNoSwap::EmitNativeCode(HParallelMove* parallel_move) {
DCHECK_EQ(GetNumberOfPendingMoves(), 0u);
DCHECK(moves_.IsEmpty());
DCHECK(scratches_.IsEmpty());
// Backend dependent initialization.
PrepareForEmitNativeCode();
// Build up a worklist of moves.
BuildInitialMoveList(parallel_move);
for (size_t i = 0; i < moves_.Size(); ++i) {
const MoveOperands& move = *moves_.Get(i);
// Skip constants to perform them last. They don't block other moves and
// skipping such moves with register destinations keeps those registers
// free for the whole algorithm.
if (!move.IsEliminated() && !move.GetSource().IsConstant()) {
PerformMove(i);
}
}
// Perform the moves with constant sources and register destinations with UpdateMoveSource()
// to reduce the number of literal loads. Stack destinations are skipped since we won't be benefit
// from changing the constant sources to stack locations.
for (size_t i = 0; i < moves_.Size(); ++i) {
MoveOperands* move = moves_.Get(i);
Location destination = move->GetDestination();
if (!move->IsEliminated() && !destination.IsStackSlot() && !destination.IsDoubleStackSlot()) {
Location source = move->GetSource();
EmitMove(i);
move->Eliminate();
// This may introduce additional instruction dependency, but reduce number
// of moves and possible literal loads. For example,
// Original moves:
// 1234.5678 -> D0
// 1234.5678 -> D1
// Updated moves:
// 1234.5678 -> D0
// D0 -> D1
UpdateMoveSource(source, destination);
}
}
// Perform the rest of the moves.
for (size_t i = 0; i < moves_.Size(); ++i) {
MoveOperands* move = moves_.Get(i);
if (!move->IsEliminated()) {
EmitMove(i);
move->Eliminate();
}
}
// All pending moves that we have added for resolve cycles should be performed.
DCHECK_EQ(GetNumberOfPendingMoves(), 0u);
// Backend dependent cleanup.
FinishEmitNativeCode();
moves_.Reset();
scratches_.Reset();
}
Location ParallelMoveResolverNoSwap::GetScratchLocation(Location::Kind kind) {
for (size_t i = 0; i < scratches_.Size(); ++i) {
Location loc = scratches_.Get(i);
if (loc.GetKind() == kind && !IsBlockedByMoves(loc)) {
return loc;
}
}
for (size_t i = 0; i < moves_.Size(); ++i) {
Location loc = moves_.Get(i)->GetDestination();
if (loc.GetKind() == kind && !IsBlockedByMoves(loc)) {
return loc;
}
}
return Location::NoLocation();
}
void ParallelMoveResolverNoSwap::AddScratchLocation(Location loc) {
if (kIsDebugBuild) {
for (size_t i = 0; i < scratches_.Size(); ++i) {
DCHECK(!loc.Equals(scratches_.Get(i)));
}
}
scratches_.Add(loc);
}
void ParallelMoveResolverNoSwap::RemoveScratchLocation(Location loc) {
DCHECK(!IsBlockedByMoves(loc));
for (size_t i = 0; i < scratches_.Size(); ++i) {
if (loc.Equals(scratches_.Get(i))) {
scratches_.DeleteAt(i);
break;
}
}
}
void ParallelMoveResolverNoSwap::PerformMove(size_t index) {
// Each call to this function performs a move and deletes it from the move
// graph. We first recursively perform any move blocking this one. We mark
// a move as "pending" on entry to PerformMove in order to detect cycles
// in the move graph. We use scratch location to resolve cycles, also
// additional pending moves might be added. After move has been performed,
// we will update source operand in the move graph to reduce dependencies in
// the graph.
MoveOperands* move = moves_.Get(index);
DCHECK(!move->IsPending());
DCHECK(!move->IsEliminated());
if (move->IsRedundant()) {
// Previous operations on the list of moves have caused this particular move
// to become a no-op, so we can safely eliminate it. Consider for example
// (0 -> 1) (1 -> 0) (1 -> 2). There is a cycle (0 -> 1) (1 -> 0), that we will
// resolve as (1 -> scratch) (0 -> 1) (scratch -> 0). If, by chance, '2' is
// used as the scratch location, the move (1 -> 2) will occur while resolving
// the cycle. When that move is emitted, the code will update moves with a '1'
// as their source to use '2' instead (see `UpdateMoveSource()`. In our example
// the initial move (1 -> 2) would then become the no-op (2 -> 2) that can be
// eliminated here.
move->Eliminate();
return;
}
// Clear this move's destination to indicate a pending move. The actual
// destination is saved in a stack-allocated local. Recursion may allow
// multiple moves to be pending.
DCHECK(!move->GetSource().IsInvalid());
Location destination = move->MarkPending();
// Perform a depth-first traversal of the move graph to resolve
// dependencies. Any unperformed, unpending move with a source the same
// as this one's destination blocks this one so recursively perform all
// such moves.
for (size_t i = 0; i < moves_.Size(); ++i) {
const MoveOperands& other_move = *moves_.Get(i);
if (other_move.Blocks(destination) && !other_move.IsPending()) {
PerformMove(i);
}
}
// We are about to resolve this move and don't need it marked as
// pending, so restore its destination.
move->ClearPending(destination);
// No one else should write to the move destination when the it is pending.
DCHECK(!move->IsRedundant());
Location source = move->GetSource();
// The move may be blocked on several pending moves, in case we have a cycle.
if (IsBlockedByMoves(destination)) {
// For a cycle like: (A -> B) (B -> C) (C -> A), we change it to following
// sequence:
// (C -> scratch) # Emit right now.
// (A -> B) (B -> C) # Unblocked.
// (scratch -> A) # Add to pending_moves_, blocked by (A -> B).
Location::Kind kind = source.GetKind();
DCHECK_NE(kind, Location::kConstant);
Location scratch = AllocateScratchLocationFor(kind);
// We only care about the move size.
Primitive::Type type = move->Is64BitMove() ? Primitive::kPrimLong : Primitive::kPrimInt;
// Perform (C -> scratch)
move->SetDestination(scratch);
EmitMove(index);
move->Eliminate();
UpdateMoveSource(source, scratch);
// Add (scratch -> A).
AddPendingMove(scratch, destination, type);
} else {
// This move is not blocked.
EmitMove(index);
move->Eliminate();
UpdateMoveSource(source, destination);
}
// Moves in the pending list should not block any other moves. But performing
// unblocked moves in the pending list can free scratch registers, so we do this
// as early as possible.
MoveOperands* pending_move;
while ((pending_move = GetUnblockedPendingMove(source)) != nullptr) {
Location pending_source = pending_move->GetSource();
Location pending_destination = pending_move->GetDestination();
// We do not depend on the pending move index. So just delete the move instead
// of eliminating it to make the pending list cleaner.
DeletePendingMove(pending_move);
move->SetSource(pending_source);
move->SetDestination(pending_destination);
EmitMove(index);
move->Eliminate();
UpdateMoveSource(pending_source, pending_destination);
// Free any unblocked locations in the scratch location list.
for (size_t i = 0; i < scratches_.Size(); ++i) {
Location scratch = scratches_.Get(i);
// Only scratch overlapping with performed move source can be unblocked.
if (scratch.OverlapsWith(pending_source) && !IsBlockedByMoves(scratch)) {
FreeScratchLocation(pending_source);
}
}
}
}
void ParallelMoveResolverNoSwap::UpdateMoveSource(Location from, Location to) {
// This function is used to reduce the dependencies in the graph after
// (from -> to) has been performed. Since we ensure there is no move with the same
// destination, (to -> X) can not be blocked while (from -> X) might still be
// blocked. Consider for example the moves (0 -> 1) (1 -> 2) (1 -> 3). After
// (1 -> 2) has been performed, the moves left are (0 -> 1) and (1 -> 3). There is
// a dependency between the two. If we update the source location from 1 to 2, we
// will get (0 -> 1) and (2 -> 3). There is no dependency between the two.
//
// This is not something we must do, but we can use fewer scratch locations with
// this trick. For example, we can avoid using additional scratch locations for
// moves (0 -> 1), (1 -> 2), (1 -> 0).
for (size_t i = 0; i < moves_.Size(); ++i) {
MoveOperands* move = moves_.Get(i);
if (move->GetSource().Equals(from)) {
move->SetSource(to);
}
}
}
void ParallelMoveResolverNoSwap::AddPendingMove(Location source,
Location destination, Primitive::Type type) {
pending_moves_.Add(new (allocator_) MoveOperands(source, destination, type, nullptr));
}
void ParallelMoveResolverNoSwap::DeletePendingMove(MoveOperands* move) {
pending_moves_.Delete(move);
}
MoveOperands* ParallelMoveResolverNoSwap::GetUnblockedPendingMove(Location loc) {
for (size_t i = 0; i < pending_moves_.Size(); ++i) {
MoveOperands* move = pending_moves_.Get(i);
Location destination = move->GetDestination();
// Only moves with destination overlapping with input loc can be unblocked.
if (destination.OverlapsWith(loc) && !IsBlockedByMoves(destination)) {
return move;
}
}
return nullptr;
}
bool ParallelMoveResolverNoSwap::IsBlockedByMoves(Location loc) {
for (size_t i = 0; i < pending_moves_.Size(); ++i) {
if (pending_moves_.Get(i)->Blocks(loc)) {
return true;
}
}
for (size_t i = 0; i < moves_.Size(); ++i) {
if (moves_.Get(i)->Blocks(loc)) {
return true;
}
}
return false;
}
// So far it is only used for debugging purposes to make sure all pending moves
// have been performed.
size_t ParallelMoveResolverNoSwap::GetNumberOfPendingMoves() {
return pending_moves_.Size();
}
} // namespace art
|