summaryrefslogtreecommitdiffstats
path: root/compiler/optimizing/parallel_move_resolver.cc
blob: 3d2d136ec3d341527f75c7d90cc771e65041165b (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
/*
 * Copyright (C) 2014 The Android Open Source Project
 *
 * Licensed under the Apache License, Version 2.0 (the "License");
 * you may not use this file except in compliance with the License.
 * You may obtain a copy of the License at
 *
 *      http://www.apache.org/licenses/LICENSE-2.0
 *
 * Unless required by applicable law or agreed to in writing, software
 * distributed under the License is distributed on an "AS IS" BASIS,
 * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
 * See the License for the specific language governing permissions and
 * limitations under the License.
 */

#include "parallel_move_resolver.h"
#include "nodes.h"
#include "locations.h"

namespace art {

void ParallelMoveResolver::EmitNativeCode(HParallelMove* parallel_move) {
  DCHECK(moves_.IsEmpty());
  // Build up a worklist of moves.
  BuildInitialMoveList(parallel_move);

  for (size_t i = 0; i < moves_.Size(); ++i) {
    const MoveOperands& move = *moves_.Get(i);
    // Skip constants to perform them last.  They don't block other moves
    // and skipping such moves with register destinations keeps those
    // registers free for the whole algorithm.
    if (!move.IsEliminated() && !move.GetSource().IsConstant()) {
      PerformMove(i);
    }
  }

  // Perform the moves with constant sources.
  for (size_t i = 0; i < moves_.Size(); ++i) {
    const MoveOperands& move = *moves_.Get(i);
    if (!move.IsEliminated()) {
      DCHECK(move.GetSource().IsConstant());
      EmitMove(i);
    }
  }

  moves_.Reset();
}


void ParallelMoveResolver::BuildInitialMoveList(HParallelMove* parallel_move) {
  // Perform a linear sweep of the moves to add them to the initial list of
  // moves to perform, ignoring any move that is redundant (the source is
  // the same as the destination, the destination is ignored and
  // unallocated, or the move was already eliminated).
  for (size_t i = 0; i < parallel_move->NumMoves(); ++i) {
    MoveOperands* move = parallel_move->MoveOperandsAt(i);
    if (!move->IsRedundant()) {
      moves_.Add(move);
    }
  }
}


void ParallelMoveResolver::PerformMove(size_t index) {
  // Each call to this function performs a move and deletes it from the move
  // graph.  We first recursively perform any move blocking this one.  We
  // mark a move as "pending" on entry to PerformMove in order to detect
  // cycles in the move graph.  We use operand swaps to resolve cycles,
  // which means that a call to PerformMove could change any source operand
  // in the move graph.

  DCHECK(!moves_.Get(index)->IsPending());
  DCHECK(!moves_.Get(index)->IsRedundant());

  // Clear this move's destination to indicate a pending move.  The actual
  // destination is saved in a stack-allocated local.  Recursion may allow
  // multiple moves to be pending.
  DCHECK(!moves_.Get(index)->GetSource().IsInvalid());
  Location destination = moves_.Get(index)->MarkPending();

  // Perform a depth-first traversal of the move graph to resolve
  // dependencies.  Any unperformed, unpending move with a source the same
  // as this one's destination blocks this one so recursively perform all
  // such moves.
  for (size_t i = 0; i < moves_.Size(); ++i) {
    const MoveOperands& other_move = *moves_.Get(i);
    if (other_move.Blocks(destination) && !other_move.IsPending()) {
      // Though PerformMove can change any source operand in the move graph,
      // this call cannot create a blocking move via a swap (this loop does
      // not miss any).  Assume there is a non-blocking move with source A
      // and this move is blocked on source B and there is a swap of A and
      // B.  Then A and B must be involved in the same cycle (or they would
      // not be swapped).  Since this move's destination is B and there is
      // only a single incoming edge to an operand, this move must also be
      // involved in the same cycle.  In that case, the blocking move will
      // be created but will be "pending" when we return from PerformMove.
      PerformMove(i);
    }
  }
  MoveOperands* move = moves_.Get(index);

  // We are about to resolve this move and don't need it marked as
  // pending, so restore its destination.
  move->ClearPending(destination);

  // This move's source may have changed due to swaps to resolve cycles and
  // so it may now be the last move in the cycle.  If so remove it.
  if (move->GetSource().Equals(destination)) {
    move->Eliminate();
    return;
  }

  // The move may be blocked on a (at most one) pending move, in which case
  // we have a cycle.  Search for such a blocking move and perform a swap to
  // resolve it.
  bool do_swap = false;
  for (size_t i = 0; i < moves_.Size(); ++i) {
    const MoveOperands& other_move = *moves_.Get(i);
    if (other_move.Blocks(destination)) {
      DCHECK(other_move.IsPending());
      do_swap = true;
      break;
    }
  }

  if (do_swap) {
    EmitSwap(index);
    // Any unperformed (including pending) move with a source of either
    // this move's source or destination needs to have their source
    // changed to reflect the state of affairs after the swap.
    Location source = move->GetSource();
    Location destination = move->GetDestination();
    move->Eliminate();
    for (size_t i = 0; i < moves_.Size(); ++i) {
      const MoveOperands& other_move = *moves_.Get(i);
      if (other_move.Blocks(source)) {
        moves_.Get(i)->SetSource(destination);
      } else if (other_move.Blocks(destination)) {
        moves_.Get(i)->SetSource(source);
      }
    }
  } else {
    // This move is not blocked.
    EmitMove(index);
    move->Eliminate();
  }
}

}  // namespace art