summaryrefslogtreecommitdiffstats
path: root/compiler/optimizing/ssa_builder.cc
blob: 9236f7c58582d79f552421da64bd4db50371c5fa (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
/*
 * Copyright (C) 2014 The Android Open Source Project
 *
 * Licensed under the Apache License, Version 2.0 (the "License");
 * you may not use this file except in compliance with the License.
 * You may obtain a copy of the License at
 *
 *      http://www.apache.org/licenses/LICENSE-2.0
 *
 * Unless required by applicable law or agreed to in writing, software
 * distributed under the License is distributed on an "AS IS" BASIS,
 * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
 * See the License for the specific language governing permissions and
 * limitations under the License.
 */

#include "ssa_builder.h"

#include "nodes.h"
#include "primitive_type_propagation.h"
#include "ssa_phi_elimination.h"

namespace art {

/**
 * A debuggable application may require to reviving phis, to ensure their
 * associated DEX register is available to a debugger. This class implements
 * the logic for statement (c) of the SsaBuilder (see ssa_builder.h). It
 * also makes sure that phis with incompatible input types are not revived
 * (statement (b) of the SsaBuilder).
 *
 * This phase must be run after detecting dead phis through the
 * DeadPhiElimination phase, and before deleting the dead phis.
 */
class DeadPhiHandling : public ValueObject {
 public:
  explicit DeadPhiHandling(HGraph* graph)
      : graph_(graph), worklist_(graph->GetArena(), kDefaultWorklistSize) {}

  void Run();

 private:
  void VisitBasicBlock(HBasicBlock* block);
  void ProcessWorklist();
  void AddToWorklist(HPhi* phi);
  void AddDependentInstructionsToWorklist(HPhi* phi);
  bool UpdateType(HPhi* phi);

  HGraph* const graph_;
  GrowableArray<HPhi*> worklist_;

  static constexpr size_t kDefaultWorklistSize = 8;

  DISALLOW_COPY_AND_ASSIGN(DeadPhiHandling);
};

bool DeadPhiHandling::UpdateType(HPhi* phi) {
  Primitive::Type existing = phi->GetType();
  DCHECK(phi->IsLive());

  bool conflict = false;
  Primitive::Type new_type = existing;
  for (size_t i = 0, e = phi->InputCount(); i < e; ++i) {
    HInstruction* input = phi->InputAt(i);
    if (input->IsPhi() && input->AsPhi()->IsDead()) {
      // We are doing a reverse post order visit of the graph, reviving
      // phis that have environment uses and updating their types. If an
      // input is a phi, and it is dead (because its input types are
      // conflicting), this phi must be marked dead as well.
      conflict = true;
      break;
    }
    Primitive::Type input_type = HPhi::ToPhiType(input->GetType());

    // The only acceptable transitions are:
    // - From void to typed: first time we update the type of this phi.
    // - From int to reference (or reference to int): the phi has to change
    //   to reference type. If the integer input cannot be converted to a
    //   reference input, the phi will remain dead.
    if (new_type == Primitive::kPrimVoid) {
      new_type = input_type;
    } else if (new_type == Primitive::kPrimNot && input_type == Primitive::kPrimInt) {
      HInstruction* equivalent = SsaBuilder::GetReferenceTypeEquivalent(input);
      if (equivalent == nullptr) {
        conflict = true;
        break;
      } else {
        phi->ReplaceInput(equivalent, i);
        if (equivalent->IsPhi()) {
          DCHECK_EQ(equivalent->GetType(), Primitive::kPrimNot);
          // We created a new phi, but that phi has the same inputs as the old phi. We
          // add it to the worklist to ensure its inputs can also be converted to reference.
          // If not, it will remain dead, and the algorithm will make the current phi dead
          // as well.
          equivalent->AsPhi()->SetLive();
          AddToWorklist(equivalent->AsPhi());
        }
      }
    } else if (new_type == Primitive::kPrimInt && input_type == Primitive::kPrimNot) {
      new_type = Primitive::kPrimNot;
      // Start over, we may request reference equivalents for the inputs of the phi.
      i = -1;
    } else if (new_type != input_type) {
      conflict = true;
      break;
    }
  }

  if (conflict) {
    phi->SetType(Primitive::kPrimVoid);
    phi->SetDead();
    return true;
  } else {
    DCHECK(phi->IsLive());
    phi->SetType(new_type);
    return existing != new_type;
  }
}

void DeadPhiHandling::VisitBasicBlock(HBasicBlock* block) {
  for (HInstructionIterator it(block->GetPhis()); !it.Done(); it.Advance()) {
    HPhi* phi = it.Current()->AsPhi();
    if (phi->IsDead() && phi->HasEnvironmentUses()) {
      phi->SetLive();
      if (block->IsLoopHeader()) {
        // Give a type to the loop phi, to guarantee convergence of the algorithm.
        phi->SetType(phi->InputAt(0)->GetType());
        AddToWorklist(phi);
      } else {
        // Because we are doing a reverse post order visit, all inputs of
        // this phi have been visited and therefore had their (initial) type set.
        UpdateType(phi);
      }
    }
  }
}

void DeadPhiHandling::ProcessWorklist() {
  while (!worklist_.IsEmpty()) {
    HPhi* instruction = worklist_.Pop();
    // Note that the same equivalent phi can be added multiple times in the work list, if
    // used by multiple phis. The first call to `UpdateType` will know whether the phi is
    // dead or live.
    if (instruction->IsLive() && UpdateType(instruction)) {
      AddDependentInstructionsToWorklist(instruction);
    }
  }
}

void DeadPhiHandling::AddToWorklist(HPhi* instruction) {
  DCHECK(instruction->IsLive());
  worklist_.Add(instruction);
}

void DeadPhiHandling::AddDependentInstructionsToWorklist(HPhi* instruction) {
  for (HUseIterator<HInstruction*> it(instruction->GetUses()); !it.Done(); it.Advance()) {
    HPhi* phi = it.Current()->GetUser()->AsPhi();
    if (phi != nullptr && !phi->IsDead()) {
      AddToWorklist(phi);
    }
  }
}

void DeadPhiHandling::Run() {
  for (HReversePostOrderIterator it(*graph_); !it.Done(); it.Advance()) {
    VisitBasicBlock(it.Current());
  }
  ProcessWorklist();
}

static bool IsPhiEquivalentOf(HInstruction* instruction, HPhi* phi) {
  return instruction != nullptr
      && instruction->IsPhi()
      && instruction->AsPhi()->GetRegNumber() == phi->GetRegNumber();
}

void SsaBuilder::FixNullConstantType() {
  // The order doesn't matter here.
  for (HReversePostOrderIterator itb(*GetGraph()); !itb.Done(); itb.Advance()) {
    for (HInstructionIterator it(itb.Current()->GetInstructions()); !it.Done(); it.Advance()) {
      HInstruction* equality_instr = it.Current();
      if (!equality_instr->IsEqual() && !equality_instr->IsNotEqual()) {
        continue;
      }
      HInstruction* left = equality_instr->InputAt(0);
      HInstruction* right = equality_instr->InputAt(1);
      HInstruction* int_operand = nullptr;

      if ((left->GetType() == Primitive::kPrimNot) && (right->GetType() == Primitive::kPrimInt)) {
        int_operand = right;
      } else if ((right->GetType() == Primitive::kPrimNot)
                 && (left->GetType() == Primitive::kPrimInt)) {
        int_operand = left;
      } else {
        continue;
      }

      // If we got here, we are comparing against a reference and the int constant
      // should be replaced with a null constant.
      // Both type propagation and redundant phi elimination ensure `int_operand`
      // can only be the 0 constant.
      DCHECK(int_operand->IsIntConstant());
      DCHECK_EQ(0, int_operand->AsIntConstant()->GetValue());
      equality_instr->ReplaceInput(GetGraph()->GetNullConstant(), int_operand == right ? 1 : 0);
    }
  }
}

void SsaBuilder::EquivalentPhisCleanup() {
  // The order doesn't matter here.
  for (HReversePostOrderIterator itb(*GetGraph()); !itb.Done(); itb.Advance()) {
    for (HInstructionIterator it(itb.Current()->GetPhis()); !it.Done(); it.Advance()) {
      HPhi* phi = it.Current()->AsPhi();
      HPhi* next = phi->GetNextEquivalentPhiWithSameType();
      if (next != nullptr) {
        phi->ReplaceWith(next);
        DCHECK(next->GetNextEquivalentPhiWithSameType() == nullptr)
            << "More then one phi equivalent with type " << phi->GetType()
            << " found for phi" << phi->GetId();
      }
    }
  }
}

void SsaBuilder::BuildSsa() {
  // 1) Visit in reverse post order. We need to have all predecessors of a block visited
  // (with the exception of loops) in order to create the right environment for that
  // block. For loops, we create phis whose inputs will be set in 2).
  for (HReversePostOrderIterator it(*GetGraph()); !it.Done(); it.Advance()) {
    VisitBasicBlock(it.Current());
  }

  // 2) Set inputs of loop phis.
  for (size_t i = 0; i < loop_headers_.Size(); i++) {
    HBasicBlock* block = loop_headers_.Get(i);
    for (HInstructionIterator it(block->GetPhis()); !it.Done(); it.Advance()) {
      HPhi* phi = it.Current()->AsPhi();
      for (size_t pred = 0; pred < block->GetPredecessors().Size(); pred++) {
        HInstruction* input = ValueOfLocal(block->GetPredecessors().Get(pred), phi->GetRegNumber());
        phi->AddInput(input);
      }
    }
  }

  // 3) Mark dead phis. This will mark phis that are only used by environments:
  // at the DEX level, the type of these phis does not need to be consistent, but
  // our code generator will complain if the inputs of a phi do not have the same
  // type. The marking allows the type propagation to know which phis it needs
  // to handle. We mark but do not eliminate: the elimination will be done in
  // step 9).
  SsaDeadPhiElimination dead_phis_for_type_propagation(GetGraph());
  dead_phis_for_type_propagation.MarkDeadPhis();

  // 4) Propagate types of phis. At this point, phis are typed void in the general
  // case, or float/double/reference when we created an equivalent phi. So we
  // need to propagate the types across phis to give them a correct type.
  PrimitiveTypePropagation type_propagation(GetGraph());
  type_propagation.Run();

  // 5) When creating equivalent phis we copy the inputs of the original phi which
  // may be improperly typed. This was fixed during the type propagation in 4) but
  // as a result we may end up with two equivalent phis with the same type for
  // the same dex register. This pass cleans them up.
  EquivalentPhisCleanup();

  // 6) Mark dead phis again. Step 4) may have introduced new phis.
  // Step 5) might enable the death of new phis.
  SsaDeadPhiElimination dead_phis(GetGraph());
  dead_phis.MarkDeadPhis();

  // 7) Now that the graph is correctly typed, we can get rid of redundant phis.
  // Note that we cannot do this phase before type propagation, otherwise
  // we could get rid of phi equivalents, whose presence is a requirement for the
  // type propagation phase. Note that this is to satisfy statement (a) of the
  // SsaBuilder (see ssa_builder.h).
  SsaRedundantPhiElimination redundant_phi(GetGraph());
  redundant_phi.Run();

  // 8) Fix the type for null constants which are part of an equality comparison.
  // We need to do this after redundant phi elimination, to ensure the only cases
  // that we can see are reference comparison against 0. The redundant phi
  // elimination ensures we do not see a phi taking two 0 constants in a HEqual
  // or HNotEqual.
  FixNullConstantType();

  // 9) Make sure environments use the right phi "equivalent": a phi marked dead
  // can have a phi equivalent that is not dead. We must therefore update
  // all environment uses of the dead phi to use its equivalent. Note that there
  // can be multiple phis for the same Dex register that are live (for example
  // when merging constants), in which case it is OK for the environments
  // to just reference one.
  for (HReversePostOrderIterator it(*GetGraph()); !it.Done(); it.Advance()) {
    HBasicBlock* block = it.Current();
    for (HInstructionIterator it_phis(block->GetPhis()); !it_phis.Done(); it_phis.Advance()) {
      HPhi* phi = it_phis.Current()->AsPhi();
      // If the phi is not dead, or has no environment uses, there is nothing to do.
      if (!phi->IsDead() || !phi->HasEnvironmentUses()) continue;
      HInstruction* next = phi->GetNext();
      if (!IsPhiEquivalentOf(next, phi)) continue;
      if (next->AsPhi()->IsDead()) {
        // If the phi equivalent is dead, check if there is another one.
        next = next->GetNext();
        if (!IsPhiEquivalentOf(next, phi)) continue;
        // There can be at most two phi equivalents.
        DCHECK(!IsPhiEquivalentOf(next->GetNext(), phi));
        if (next->AsPhi()->IsDead()) continue;
      }
      // We found a live phi equivalent. Update the environment uses of `phi` with it.
      phi->ReplaceWith(next);
    }
  }

  // 10) Deal with phis to guarantee liveness of phis in case of a debuggable
  // application. This is for satisfying statement (c) of the SsaBuilder
  // (see ssa_builder.h).
  if (GetGraph()->IsDebuggable()) {
    DeadPhiHandling dead_phi_handler(GetGraph());
    dead_phi_handler.Run();
  }

  // 11) Now that the right phis are used for the environments, and we
  // have potentially revive dead phis in case of a debuggable application,
  // we can eliminate phis we do not need. Regardless of the debuggable status,
  // this phase is necessary for statement (b) of the SsaBuilder (see ssa_builder.h),
  // as well as for the code generation, which does not deal with phis of conflicting
  // input types.
  dead_phis.EliminateDeadPhis();

  // 12) Clear locals.
  for (HInstructionIterator it(GetGraph()->GetEntryBlock()->GetInstructions());
       !it.Done();
       it.Advance()) {
    HInstruction* current = it.Current();
    if (current->IsLocal()) {
      current->GetBlock()->RemoveInstruction(current);
    }
  }
}

HInstruction* SsaBuilder::ValueOfLocal(HBasicBlock* block, size_t local) {
  return GetLocalsFor(block)->Get(local);
}

void SsaBuilder::VisitBasicBlock(HBasicBlock* block) {
  current_locals_ = GetLocalsFor(block);

  if (block->IsLoopHeader()) {
    // If the block is a loop header, we know we only have visited the pre header
    // because we are visiting in reverse post order. We create phis for all initialized
    // locals from the pre header. Their inputs will be populated at the end of
    // the analysis.
    for (size_t local = 0; local < current_locals_->Size(); local++) {
      HInstruction* incoming = ValueOfLocal(block->GetLoopInformation()->GetPreHeader(), local);
      if (incoming != nullptr) {
        HPhi* phi = new (GetGraph()->GetArena()) HPhi(
            GetGraph()->GetArena(), local, 0, Primitive::kPrimVoid);
        block->AddPhi(phi);
        current_locals_->Put(local, phi);
      }
    }
    // Save the loop header so that the last phase of the analysis knows which
    // blocks need to be updated.
    loop_headers_.Add(block);
  } else if (block->GetPredecessors().Size() > 0) {
    // All predecessors have already been visited because we are visiting in reverse post order.
    // We merge the values of all locals, creating phis if those values differ.
    for (size_t local = 0; local < current_locals_->Size(); local++) {
      bool one_predecessor_has_no_value = false;
      bool is_different = false;
      HInstruction* value = ValueOfLocal(block->GetPredecessors().Get(0), local);

      for (size_t i = 0, e = block->GetPredecessors().Size(); i < e; ++i) {
        HInstruction* current = ValueOfLocal(block->GetPredecessors().Get(i), local);
        if (current == nullptr) {
          one_predecessor_has_no_value = true;
          break;
        } else if (current != value) {
          is_different = true;
        }
      }

      if (one_predecessor_has_no_value) {
        // If one predecessor has no value for this local, we trust the verifier has
        // successfully checked that there is a store dominating any read after this block.
        continue;
      }

      if (is_different) {
        HPhi* phi = new (GetGraph()->GetArena()) HPhi(
            GetGraph()->GetArena(), local, block->GetPredecessors().Size(), Primitive::kPrimVoid);
        for (size_t i = 0; i < block->GetPredecessors().Size(); i++) {
          HInstruction* pred_value = ValueOfLocal(block->GetPredecessors().Get(i), local);
          phi->SetRawInputAt(i, pred_value);
        }
        block->AddPhi(phi);
        value = phi;
      }
      current_locals_->Put(local, value);
    }
  }

  // Visit all instructions. The instructions of interest are:
  // - HLoadLocal: replace them with the current value of the local.
  // - HStoreLocal: update current value of the local and remove the instruction.
  // - Instructions that require an environment: populate their environment
  //   with the current values of the locals.
  for (HInstructionIterator it(block->GetInstructions()); !it.Done(); it.Advance()) {
    it.Current()->Accept(this);
  }
}

/**
 * Constants in the Dex format are not typed. So the builder types them as
 * integers, but when doing the SSA form, we might realize the constant
 * is used for floating point operations. We create a floating-point equivalent
 * constant to make the operations correctly typed.
 */
HFloatConstant* SsaBuilder::GetFloatEquivalent(HIntConstant* constant) {
  // We place the floating point constant next to this constant.
  HFloatConstant* result = constant->GetNext()->AsFloatConstant();
  if (result == nullptr) {
    HGraph* graph = constant->GetBlock()->GetGraph();
    ArenaAllocator* allocator = graph->GetArena();
    result = new (allocator) HFloatConstant(bit_cast<float, int32_t>(constant->GetValue()));
    constant->GetBlock()->InsertInstructionBefore(result, constant->GetNext());
    graph->CacheFloatConstant(result);
  } else {
    // If there is already a constant with the expected type, we know it is
    // the floating point equivalent of this constant.
    DCHECK_EQ((bit_cast<int32_t, float>(result->GetValue())), constant->GetValue());
  }
  return result;
}

/**
 * Wide constants in the Dex format are not typed. So the builder types them as
 * longs, but when doing the SSA form, we might realize the constant
 * is used for floating point operations. We create a floating-point equivalent
 * constant to make the operations correctly typed.
 */
HDoubleConstant* SsaBuilder::GetDoubleEquivalent(HLongConstant* constant) {
  // We place the floating point constant next to this constant.
  HDoubleConstant* result = constant->GetNext()->AsDoubleConstant();
  if (result == nullptr) {
    HGraph* graph = constant->GetBlock()->GetGraph();
    ArenaAllocator* allocator = graph->GetArena();
    result = new (allocator) HDoubleConstant(bit_cast<double, int64_t>(constant->GetValue()));
    constant->GetBlock()->InsertInstructionBefore(result, constant->GetNext());
    graph->CacheDoubleConstant(result);
  } else {
    // If there is already a constant with the expected type, we know it is
    // the floating point equivalent of this constant.
    DCHECK_EQ((bit_cast<int64_t, double>(result->GetValue())), constant->GetValue());
  }
  return result;
}

/**
 * Because of Dex format, we might end up having the same phi being
 * used for non floating point operations and floating point / reference operations.
 * Because we want the graph to be correctly typed (and thereafter avoid moves between
 * floating point registers and core registers), we need to create a copy of the
 * phi with a floating point / reference type.
 */
HPhi* SsaBuilder::GetFloatDoubleOrReferenceEquivalentOfPhi(HPhi* phi, Primitive::Type type) {
  // We place the floating point /reference phi next to this phi.
  HInstruction* next = phi->GetNext();
  if (next != nullptr
      && next->AsPhi()->GetRegNumber() == phi->GetRegNumber()
      && next->GetType() != type) {
    // Move to the next phi to see if it is the one we are looking for.
    next = next->GetNext();
  }

  if (next == nullptr
      || (next->AsPhi()->GetRegNumber() != phi->GetRegNumber())
      || (next->GetType() != type)) {
    ArenaAllocator* allocator = phi->GetBlock()->GetGraph()->GetArena();
    HPhi* new_phi = new (allocator) HPhi(allocator, phi->GetRegNumber(), phi->InputCount(), type);
    for (size_t i = 0, e = phi->InputCount(); i < e; ++i) {
      // Copy the inputs. Note that the graph may not be correctly typed by doing this copy,
      // but the type propagation phase will fix it.
      new_phi->SetRawInputAt(i, phi->InputAt(i));
    }
    phi->GetBlock()->InsertPhiAfter(new_phi, phi);
    return new_phi;
  } else {
    DCHECK_EQ(next->GetType(), type);
    return next->AsPhi();
  }
}

HInstruction* SsaBuilder::GetFloatOrDoubleEquivalent(HInstruction* user,
                                                     HInstruction* value,
                                                     Primitive::Type type) {
  if (value->IsArrayGet()) {
    // The verifier has checked that values in arrays cannot be used for both
    // floating point and non-floating point operations. It is therefore safe to just
    // change the type of the operation.
    value->AsArrayGet()->SetType(type);
    return value;
  } else if (value->IsLongConstant()) {
    return GetDoubleEquivalent(value->AsLongConstant());
  } else if (value->IsIntConstant()) {
    return GetFloatEquivalent(value->AsIntConstant());
  } else if (value->IsPhi()) {
    return GetFloatDoubleOrReferenceEquivalentOfPhi(value->AsPhi(), type);
  } else {
    // For other instructions, we assume the verifier has checked that the dex format is correctly
    // typed and the value in a dex register will not be used for both floating point and
    // non-floating point operations. So the only reason an instruction would want a floating
    // point equivalent is for an unused phi that will be removed by the dead phi elimination phase.
    DCHECK(user->IsPhi());
    return value;
  }
}

HInstruction* SsaBuilder::GetReferenceTypeEquivalent(HInstruction* value) {
  if (value->IsIntConstant() && value->AsIntConstant()->GetValue() == 0) {
    return value->GetBlock()->GetGraph()->GetNullConstant();
  } else if (value->IsPhi()) {
    return GetFloatDoubleOrReferenceEquivalentOfPhi(value->AsPhi(), Primitive::kPrimNot);
  } else {
    return nullptr;
  }
}

void SsaBuilder::VisitLoadLocal(HLoadLocal* load) {
  HInstruction* value = current_locals_->Get(load->GetLocal()->GetRegNumber());
  // If the operation requests a specific type, we make sure its input is of that type.
  if (load->GetType() != value->GetType()) {
    if (load->GetType() == Primitive::kPrimFloat || load->GetType() == Primitive::kPrimDouble) {
      value = GetFloatOrDoubleEquivalent(load, value, load->GetType());
    } else if (load->GetType() == Primitive::kPrimNot) {
      value = GetReferenceTypeEquivalent(value);
    }
  }
  load->ReplaceWith(value);
  load->GetBlock()->RemoveInstruction(load);
}

void SsaBuilder::VisitStoreLocal(HStoreLocal* store) {
  current_locals_->Put(store->GetLocal()->GetRegNumber(), store->InputAt(1));
  store->GetBlock()->RemoveInstruction(store);
}

void SsaBuilder::VisitInstruction(HInstruction* instruction) {
  if (!instruction->NeedsEnvironment()) {
    return;
  }
  HEnvironment* environment = new (GetGraph()->GetArena()) HEnvironment(
      GetGraph()->GetArena(),
      current_locals_->Size(),
      GetGraph()->GetDexFile(),
      GetGraph()->GetMethodIdx(),
      instruction->GetDexPc());
  environment->CopyFrom(*current_locals_);
  instruction->SetRawEnvironment(environment);
}

void SsaBuilder::VisitTemporary(HTemporary* temp) {
  // Temporaries are only used by the baseline register allocator.
  temp->GetBlock()->RemoveInstruction(temp);
}

}  // namespace art