1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
|
/*
* Copyright (C) 2014 The Android Open Source Project
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
#ifndef ART_COMPILER_OPTIMIZING_SSA_LIVENESS_ANALYSIS_H_
#define ART_COMPILER_OPTIMIZING_SSA_LIVENESS_ANALYSIS_H_
#include "nodes.h"
namespace art {
class BlockInfo : public ArenaObject {
public:
BlockInfo(ArenaAllocator* allocator, const HBasicBlock& block, size_t number_of_ssa_values)
: block_(block),
live_in_(allocator, number_of_ssa_values, false),
live_out_(allocator, number_of_ssa_values, false),
kill_(allocator, number_of_ssa_values, false) {
live_in_.ClearAllBits();
live_out_.ClearAllBits();
kill_.ClearAllBits();
}
private:
const HBasicBlock& block_;
ArenaBitVector live_in_;
ArenaBitVector live_out_;
ArenaBitVector kill_;
friend class SsaLivenessAnalysis;
DISALLOW_COPY_AND_ASSIGN(BlockInfo);
};
/**
* A live range contains the start and end of a range where an instruction
* is live.
*/
class LiveRange : public ArenaObject {
public:
LiveRange(size_t start, size_t end, LiveRange* next) : start_(start), end_(end), next_(next) {
DCHECK_LT(start, end);
DCHECK(next_ == nullptr || next_->GetStart() > GetEnd());
}
size_t GetStart() const { return start_; }
size_t GetEnd() const { return end_; }
LiveRange* GetNext() const { return next_; }
bool IntersectsWith(const LiveRange& other) {
return (start_ >= other.start_ && start_ < other.end_)
|| (other.start_ >= start_ && other.start_ < end_);
}
bool IsBefore(const LiveRange& other) {
return end_ <= other.start_;
}
void Dump(std::ostream& stream) {
stream << "[" << start_ << ", " << end_ << ")";
}
private:
size_t start_;
size_t end_;
LiveRange* next_;
friend class LiveInterval;
DISALLOW_COPY_AND_ASSIGN(LiveRange);
};
/**
* A use position represents a live interval use at a given position.
*/
class UsePosition : public ArenaObject {
public:
UsePosition(HInstruction* user, size_t position, UsePosition* next)
: user_(user), position_(position), next_(next) {
DCHECK(user->AsPhi() != nullptr || GetPosition() == user->GetLifetimePosition());
DCHECK(next_ == nullptr || next->GetPosition() >= GetPosition());
}
size_t GetPosition() const { return position_; }
UsePosition* GetNext() const { return next_; }
HInstruction* GetUser() const { return user_; }
void Dump(std::ostream& stream) {
stream << position_;
}
private:
HInstruction* const user_;
const size_t position_;
UsePosition* const next_;
DISALLOW_COPY_AND_ASSIGN(UsePosition);
};
/**
* An interval is a list of disjoint live ranges where an instruction is live.
* Each instruction that has uses gets an interval.
*/
class LiveInterval : public ArenaObject {
public:
LiveInterval(ArenaAllocator* allocator, Primitive::Type type)
: allocator_(allocator),
first_range_(nullptr),
last_range_(nullptr),
first_use_(nullptr),
type_(type),
next_sibling_(nullptr),
register_(kNoRegister) {}
void AddUse(HInstruction* instruction) {
size_t position = instruction->GetLifetimePosition();
size_t start_block_position = instruction->GetBlock()->GetLifetimeStart();
size_t end_block_position = instruction->GetBlock()->GetLifetimeEnd();
if (first_range_ == nullptr) {
// First time we see a use of that interval.
first_range_ = last_range_ = new (allocator_) LiveRange(start_block_position, position, nullptr);
} else if (first_range_->GetStart() == start_block_position) {
// There is a use later in the same block.
DCHECK_LE(position, first_range_->GetEnd());
} else if (first_range_->GetStart() == end_block_position) {
// Last use is in the following block.
first_range_->start_ = start_block_position;
} else {
// There is a hole in the interval. Create a new range.
first_range_ = new (allocator_) LiveRange(start_block_position, position, first_range_);
}
first_use_ = new (allocator_) UsePosition(instruction, position, first_use_);
}
void AddPhiUse(HInstruction* instruction, HBasicBlock* block) {
DCHECK(instruction->AsPhi() != nullptr);
first_use_ = new (allocator_) UsePosition(instruction, block->GetLifetimeEnd(), first_use_);
}
void AddRange(size_t start, size_t end) {
if (first_range_ == nullptr) {
first_range_ = last_range_ = new (allocator_) LiveRange(start, end, first_range_);
} else if (first_range_->GetStart() == end) {
// There is a use in the following block.
first_range_->start_ = start;
} else {
// There is a hole in the interval. Create a new range.
first_range_ = new (allocator_) LiveRange(start, end, first_range_);
}
}
void AddLoopRange(size_t start, size_t end) {
DCHECK(first_range_ != nullptr);
while (first_range_ != nullptr && first_range_->GetEnd() < end) {
DCHECK_LE(start, first_range_->GetStart());
first_range_ = first_range_->GetNext();
}
if (first_range_ == nullptr) {
// Uses are only in the loop.
first_range_ = last_range_ = new (allocator_) LiveRange(start, end, nullptr);
} else {
// There are uses after the loop.
first_range_->start_ = start;
}
}
void SetFrom(size_t from) {
DCHECK(first_range_ != nullptr);
first_range_->start_ = from;
}
LiveRange* GetFirstRange() const { return first_range_; }
int GetRegister() const { return register_; }
void SetRegister(int reg) { register_ = reg; }
void ClearRegister() { register_ = kNoRegister; }
bool HasRegister() const { return register_ != kNoRegister; }
bool IsDeadAt(size_t position) {
return last_range_->GetEnd() <= position;
}
bool Covers(size_t position) {
LiveRange* current = first_range_;
while (current != nullptr) {
if (position >= current->GetStart() && position < current->GetEnd()) {
return true;
}
current = current->GetNext();
}
return false;
}
/**
* Returns the first intersection of this interval with `other`.
*/
size_t FirstIntersectionWith(LiveInterval* other) {
// We only call this method if there is a lifetime hole in this interval
// at the start of `other`.
DCHECK(!Covers(other->GetStart()));
DCHECK_LE(GetStart(), other->GetStart());
// Move to the range in this interval that starts after the other interval.
size_t other_start = other->GetStart();
LiveRange* my_range = first_range_;
while (my_range != nullptr) {
if (my_range->GetStart() >= other_start) {
break;
} else {
my_range = my_range->GetNext();
}
}
if (my_range == nullptr) {
return kNoLifetime;
}
// Advance both intervals and find the first matching range start in
// this interval.
LiveRange* other_range = other->first_range_;
do {
if (my_range->IntersectsWith(*other_range)) {
return std::max(my_range->GetStart(), other_range->GetStart());
} else if (my_range->IsBefore(*other_range)) {
my_range = my_range->GetNext();
if (my_range == nullptr) {
return kNoLifetime;
}
} else {
DCHECK(other_range->IsBefore(*my_range));
other_range = other_range->GetNext();
if (other_range == nullptr) {
return kNoLifetime;
}
}
} while (true);
}
size_t GetStart() const {
return first_range_->GetStart();
}
size_t FirstRegisterUseAfter(size_t position) const {
UsePosition* use = first_use_;
while (use != nullptr) {
size_t use_position = use->GetPosition();
// TODO: Once we plug the Locations builder of the code generator
// to the register allocator, this method must be adjusted. We
// test if there is an environment, because these are currently the only
// instructions that could have more uses than the number of registers.
if (use_position >= position && !use->GetUser()->NeedsEnvironment()) {
return use_position;
}
use = use->GetNext();
}
return kNoLifetime;
}
size_t FirstRegisterUse() const {
return FirstRegisterUseAfter(GetStart());
}
Primitive::Type GetType() const {
return type_;
}
/**
* Split this interval at `position`. This interval is changed to:
* [start ... position).
*
* The new interval covers:
* [position ... end)
*/
LiveInterval* SplitAt(size_t position) {
DCHECK(next_sibling_ == nullptr);
DCHECK_GT(position, GetStart());
if (last_range_->GetEnd() <= position) {
// This range dies before `position`, no need to split.
return nullptr;
}
LiveInterval* new_interval = new (allocator_) LiveInterval(allocator_, type_);
next_sibling_ = new_interval;
new_interval->first_use_ = first_use_;
LiveRange* current = first_range_;
LiveRange* previous = nullptr;
// Iterate over the ranges, and either find a range that covers this position, or
// a two ranges in between this position (that is, the position is in a lifetime hole).
do {
if (position >= current->GetEnd()) {
// Move to next range.
previous = current;
current = current->next_;
} else if (position <= current->GetStart()) {
// If the previous range did not cover this position, we know position is in
// a lifetime hole. We can just break the first_range_ and last_range_ links
// and return the new interval.
DCHECK(previous != nullptr);
DCHECK(current != first_range_);
new_interval->last_range_ = last_range_;
last_range_ = previous;
previous->next_ = nullptr;
new_interval->first_range_ = current;
return new_interval;
} else {
// This range covers position. We create a new last_range_ for this interval
// that covers last_range_->Start() and position. We also shorten the current
// range and make it the first range of the new interval.
DCHECK(position < current->GetEnd() && position > current->GetStart());
new_interval->last_range_ = last_range_;
last_range_ = new (allocator_) LiveRange(current->start_, position, nullptr);
if (previous != nullptr) {
previous->next_ = last_range_;
} else {
first_range_ = last_range_;
}
new_interval->first_range_ = current;
current->start_ = position;
return new_interval;
}
} while (current != nullptr);
LOG(FATAL) << "Unreachable";
return nullptr;
}
bool StartsBefore(LiveInterval* other) const {
return GetStart() <= other->GetStart();
}
bool StartsAfter(LiveInterval* other) const {
return GetStart() >= other->GetStart();
}
void Dump(std::ostream& stream) const {
stream << "ranges: { ";
LiveRange* current = first_range_;
do {
current->Dump(stream);
stream << " ";
} while ((current = current->GetNext()) != nullptr);
stream << "}, uses: { ";
UsePosition* use = first_use_;
if (use != nullptr) {
do {
use->Dump(stream);
stream << " ";
} while ((use = use->GetNext()) != nullptr);
}
stream << "}";
}
LiveInterval* GetNextSibling() const { return next_sibling_; }
private:
ArenaAllocator* const allocator_;
// Ranges of this interval. We need a quick access to the last range to test
// for liveness (see `IsDeadAt`).
LiveRange* first_range_;
LiveRange* last_range_;
// Uses of this interval. Note that this linked list is shared amongst siblings.
UsePosition* first_use_;
// The instruction type this interval corresponds to.
const Primitive::Type type_;
// Live interval that is the result of a split.
LiveInterval* next_sibling_;
// The register allocated to this interval.
int register_;
static constexpr int kNoRegister = -1;
DISALLOW_COPY_AND_ASSIGN(LiveInterval);
};
class SsaLivenessAnalysis : public ValueObject {
public:
explicit SsaLivenessAnalysis(const HGraph& graph)
: graph_(graph),
linear_post_order_(graph.GetArena(), graph.GetBlocks().Size()),
block_infos_(graph.GetArena(), graph.GetBlocks().Size()),
instructions_from_ssa_index_(graph.GetArena(), 0),
number_of_ssa_values_(0) {
block_infos_.SetSize(graph.GetBlocks().Size());
}
void Analyze();
BitVector* GetLiveInSet(const HBasicBlock& block) const {
return &block_infos_.Get(block.GetBlockId())->live_in_;
}
BitVector* GetLiveOutSet(const HBasicBlock& block) const {
return &block_infos_.Get(block.GetBlockId())->live_out_;
}
BitVector* GetKillSet(const HBasicBlock& block) const {
return &block_infos_.Get(block.GetBlockId())->kill_;
}
const GrowableArray<HBasicBlock*>& GetLinearPostOrder() const {
return linear_post_order_;
}
HInstruction* GetInstructionFromSsaIndex(size_t index) const {
return instructions_from_ssa_index_.Get(index);
}
size_t GetNumberOfSsaValues() const {
return number_of_ssa_values_;
}
private:
// Linearize the graph so that:
// (1): a block is always after its dominator,
// (2): blocks of loops are contiguous.
// This creates a natural and efficient ordering when visualizing live ranges.
void LinearizeGraph();
// Give an SSA number to each instruction that defines a value used by another instruction,
// and setup the lifetime information of each instruction and block.
void NumberInstructions();
// Compute live ranges of instructions, as well as live_in, live_out and kill sets.
void ComputeLiveness();
// Compute the live ranges of instructions, as well as the initial live_in, live_out and
// kill sets, that do not take into account backward branches.
void ComputeLiveRanges();
// After computing the initial sets, this method does a fixed point
// calculation over the live_in and live_out set to take into account
// backwards branches.
void ComputeLiveInAndLiveOutSets();
// Update the live_in set of the block and returns whether it has changed.
bool UpdateLiveIn(const HBasicBlock& block);
// Update the live_out set of the block and returns whether it has changed.
bool UpdateLiveOut(const HBasicBlock& block);
const HGraph& graph_;
GrowableArray<HBasicBlock*> linear_post_order_;
GrowableArray<BlockInfo*> block_infos_;
GrowableArray<HInstruction*> instructions_from_ssa_index_;
size_t number_of_ssa_values_;
DISALLOW_COPY_AND_ASSIGN(SsaLivenessAnalysis);
};
} // namespace art
#endif // ART_COMPILER_OPTIMIZING_SSA_LIVENESS_ANALYSIS_H_
|