1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
|
/*
* Copyright (C) 2013 The Android Open Source Project
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
#include "base/stringprintf.h"
#include "sea_ir/ir/instruction_tools.h"
#include "sea_ir/ir/sea.h"
#include "sea_ir/code_gen/code_gen.h"
#include "sea_ir/types/type_inference.h"
#define MAX_REACHING_DEF_ITERERATIONS (10)
// TODO: When development is done, this define should not
// be needed, it is currently used as a cutoff
// for cases where the iterative fixed point algorithm
// does not reach a fixed point because of a bug.
namespace sea_ir {
int SeaNode::current_max_node_id_ = 0;
void IRVisitor::Traverse(Region* region) {
std::vector<PhiInstructionNode*>* phis = region->GetPhiNodes();
for (std::vector<PhiInstructionNode*>::const_iterator cit = phis->begin();
cit != phis->end(); cit++) {
(*cit)->Accept(this);
}
std::vector<InstructionNode*>* instructions = region->GetInstructions();
for (std::vector<InstructionNode*>::const_iterator cit = instructions->begin();
cit != instructions->end(); cit++) {
(*cit)->Accept(this);
}
}
void IRVisitor::Traverse(SeaGraph* graph) {
for (std::vector<Region*>::const_iterator cit = ordered_regions_.begin();
cit != ordered_regions_.end(); cit++ ) {
(*cit)->Accept(this);
}
}
SeaGraph* SeaGraph::GetGraph(const art::DexFile& dex_file) {
return new SeaGraph(dex_file);
}
void SeaGraph::AddEdge(Region* src, Region* dst) const {
src->AddSuccessor(dst);
dst->AddPredecessor(src);
}
void SeaGraph::ComputeRPO(Region* current_region, int& current_rpo) {
current_region->SetRPO(VISITING);
std::vector<sea_ir::Region*>* succs = current_region->GetSuccessors();
for (std::vector<sea_ir::Region*>::iterator succ_it = succs->begin();
succ_it != succs->end(); ++succ_it) {
if (NOT_VISITED == (*succ_it)->GetRPO()) {
SeaGraph::ComputeRPO(*succ_it, current_rpo);
}
}
current_region->SetRPO(current_rpo--);
}
void SeaGraph::ComputeIDominators() {
bool changed = true;
while (changed) {
changed = false;
// Entry node has itself as IDOM.
std::vector<Region*>::iterator crt_it;
std::set<Region*> processedNodes;
// Find and mark the entry node(s).
for (crt_it = regions_.begin(); crt_it != regions_.end(); ++crt_it) {
if ((*crt_it)->GetPredecessors()->size() == 0) {
processedNodes.insert(*crt_it);
(*crt_it)->SetIDominator(*crt_it);
}
}
for (crt_it = regions_.begin(); crt_it != regions_.end(); ++crt_it) {
if ((*crt_it)->GetPredecessors()->size() == 0) {
continue;
}
// NewIDom = first (processed) predecessor of b.
Region* new_dom = NULL;
std::vector<Region*>* preds = (*crt_it)->GetPredecessors();
DCHECK(NULL != preds);
Region* root_pred = NULL;
for (std::vector<Region*>::iterator pred_it = preds->begin();
pred_it != preds->end(); ++pred_it) {
if (processedNodes.end() != processedNodes.find((*pred_it))) {
root_pred = *pred_it;
new_dom = root_pred;
break;
}
}
// For all other predecessors p of b, if idom is not set,
// then NewIdom = Intersect(p, NewIdom)
for (std::vector<Region*>::const_iterator pred_it = preds->begin();
pred_it != preds->end(); ++pred_it) {
DCHECK(NULL != *pred_it);
// if IDOMS[p] != UNDEFINED
if ((*pred_it != root_pred) && (*pred_it)->GetIDominator() != NULL) {
DCHECK(NULL != new_dom);
new_dom = SeaGraph::Intersect(*pred_it, new_dom);
}
}
DCHECK(NULL != *crt_it);
if ((*crt_it)->GetIDominator() != new_dom) {
(*crt_it)->SetIDominator(new_dom);
changed = true;
}
processedNodes.insert(*crt_it);
}
}
// For easily ordering of regions we need edges dominator->dominated.
for (std::vector<Region*>::iterator region_it = regions_.begin();
region_it != regions_.end(); region_it++) {
Region* idom = (*region_it)->GetIDominator();
if (idom != *region_it) {
idom->AddToIDominatedSet(*region_it);
}
}
}
Region* SeaGraph::Intersect(Region* i, Region* j) {
Region* finger1 = i;
Region* finger2 = j;
while (finger1 != finger2) {
while (finger1->GetRPO() > finger2->GetRPO()) {
DCHECK(NULL != finger1);
finger1 = finger1->GetIDominator(); // should have: finger1 != NULL
DCHECK(NULL != finger1);
}
while (finger1->GetRPO() < finger2->GetRPO()) {
DCHECK(NULL != finger2);
finger2 = finger2->GetIDominator(); // should have: finger1 != NULL
DCHECK(NULL != finger2);
}
}
return finger1; // finger1 should be equal to finger2 at this point.
}
void SeaGraph::ComputeDownExposedDefs() {
for (std::vector<Region*>::iterator region_it = regions_.begin();
region_it != regions_.end(); region_it++) {
(*region_it)->ComputeDownExposedDefs();
}
}
void SeaGraph::ComputeReachingDefs() {
// Iterate until the reaching definitions set doesn't change anymore.
// (See Cooper & Torczon, "Engineering a Compiler", second edition, page 487)
bool changed = true;
int iteration = 0;
while (changed && (iteration < MAX_REACHING_DEF_ITERERATIONS)) {
iteration++;
changed = false;
// TODO: optimize the ordering if this becomes performance bottleneck.
for (std::vector<Region*>::iterator regions_it = regions_.begin();
regions_it != regions_.end();
regions_it++) {
changed |= (*regions_it)->UpdateReachingDefs();
}
}
DCHECK(!changed) << "Reaching definitions computation did not reach a fixed point.";
}
void SeaGraph::InsertSignatureNodes(const art::DexFile::CodeItem* code_item, Region* r) {
// Insert a fake SignatureNode for the first parameter.
// TODO: Provide a register enum value for the fake parameter.
SignatureNode* parameter_def_node = new sea_ir::SignatureNode(0, 0);
AddParameterNode(parameter_def_node);
r->AddChild(parameter_def_node);
// Insert SignatureNodes for each Dalvik register parameter.
for (unsigned int crt_offset = 0; crt_offset < code_item->ins_size_; crt_offset++) {
int register_no = code_item->registers_size_ - crt_offset - 1;
int position = crt_offset + 1;
SignatureNode* parameter_def_node = new sea_ir::SignatureNode(register_no, position);
AddParameterNode(parameter_def_node);
r->AddChild(parameter_def_node);
}
}
void SeaGraph::BuildMethodSeaGraph(const art::DexFile::CodeItem* code_item,
const art::DexFile& dex_file, uint16_t class_def_idx,
uint32_t method_idx, uint32_t method_access_flags) {
code_item_ = code_item;
class_def_idx_ = class_def_idx;
method_idx_ = method_idx;
method_access_flags_ = method_access_flags;
const uint16_t* code = code_item->insns_;
const size_t size_in_code_units = code_item->insns_size_in_code_units_;
// This maps target instruction pointers to their corresponding region objects.
std::map<const uint16_t*, Region*> target_regions;
size_t i = 0;
// Pass: Find the start instruction of basic blocks
// by locating targets and flow-though instructions of branches.
while (i < size_in_code_units) {
const art::Instruction* inst = art::Instruction::At(&code[i]);
if (inst->IsBranch() || inst->IsUnconditional()) {
int32_t offset = inst->GetTargetOffset();
if (target_regions.end() == target_regions.find(&code[i + offset])) {
Region* region = GetNewRegion();
target_regions.insert(std::pair<const uint16_t*, Region*>(&code[i + offset], region));
}
if (inst->CanFlowThrough()
&& (target_regions.end() == target_regions.find(&code[i + inst->SizeInCodeUnits()]))) {
Region* region = GetNewRegion();
target_regions.insert(
std::pair<const uint16_t*, Region*>(&code[i + inst->SizeInCodeUnits()], region));
}
}
i += inst->SizeInCodeUnits();
}
Region* r = GetNewRegion();
InsertSignatureNodes(code_item, r);
// Pass: Assign instructions to region nodes and
// assign branches their control flow successors.
i = 0;
sea_ir::InstructionNode* last_node = NULL;
sea_ir::InstructionNode* node = NULL;
while (i < size_in_code_units) {
const art::Instruction* inst = art::Instruction::At(&code[i]);
std::vector<InstructionNode*> sea_instructions_for_dalvik =
sea_ir::InstructionNode::Create(inst);
for (std::vector<InstructionNode*>::const_iterator cit = sea_instructions_for_dalvik.begin();
sea_instructions_for_dalvik.end() != cit; ++cit) {
last_node = node;
node = *cit;
if (inst->IsBranch() || inst->IsUnconditional()) {
int32_t offset = inst->GetTargetOffset();
std::map<const uint16_t*, Region*>::iterator it = target_regions.find(&code[i + offset]);
DCHECK(it != target_regions.end());
AddEdge(r, it->second); // Add edge to branch target.
}
std::map<const uint16_t*, Region*>::iterator it = target_regions.find(&code[i]);
if (target_regions.end() != it) {
// Get the already created region because this is a branch target.
Region* nextRegion = it->second;
if (last_node->GetInstruction()->IsBranch()
&& last_node->GetInstruction()->CanFlowThrough()) {
AddEdge(r, it->second); // Add flow-through edge.
}
r = nextRegion;
}
r->AddChild(node);
}
i += inst->SizeInCodeUnits();
}
}
void SeaGraph::ComputeRPO() {
int rpo_id = regions_.size() - 1;
for (std::vector<Region*>::const_iterator crt_it = regions_.begin(); crt_it != regions_.end();
++crt_it) {
if ((*crt_it)->GetPredecessors()->size() == 0) {
ComputeRPO(*crt_it, rpo_id);
}
}
}
// Performs the renaming phase in traditional SSA transformations.
// See: Cooper & Torczon, "Engineering a Compiler", second edition, page 505.)
void SeaGraph::RenameAsSSA() {
utils::ScopedHashtable<int, InstructionNode*> scoped_table;
scoped_table.OpenScope();
for (std::vector<Region*>::iterator region_it = regions_.begin(); region_it != regions_.end();
region_it++) {
if ((*region_it)->GetIDominator() == *region_it) {
RenameAsSSA(*region_it, &scoped_table);
}
}
scoped_table.CloseScope();
}
void SeaGraph::ConvertToSSA() {
// Pass: find global names.
// The map @block maps registers to the blocks in which they are defined.
std::map<int, std::set<Region*> > blocks;
// The set @globals records registers whose use
// is in a different block than the corresponding definition.
std::set<int> globals;
for (std::vector<Region*>::iterator region_it = regions_.begin(); region_it != regions_.end();
region_it++) {
std::set<int> var_kill;
std::vector<InstructionNode*>* instructions = (*region_it)->GetInstructions();
for (std::vector<InstructionNode*>::iterator inst_it = instructions->begin();
inst_it != instructions->end(); inst_it++) {
std::vector<int> used_regs = (*inst_it)->GetUses();
for (std::size_t i = 0; i < used_regs.size(); i++) {
int used_reg = used_regs[i];
if (var_kill.find(used_reg) == var_kill.end()) {
globals.insert(used_reg);
}
}
const int reg_def = (*inst_it)->GetResultRegister();
if (reg_def != NO_REGISTER) {
var_kill.insert(reg_def);
}
blocks.insert(std::pair<int, std::set<Region*> >(reg_def, std::set<Region*>()));
std::set<Region*>* reg_def_blocks = &(blocks.find(reg_def)->second);
reg_def_blocks->insert(*region_it);
}
}
// Pass: Actually add phi-nodes to regions.
for (std::set<int>::const_iterator globals_it = globals.begin();
globals_it != globals.end(); globals_it++) {
int global = *globals_it;
// Copy the set, because we will modify the worklist as we go.
std::set<Region*> worklist((*(blocks.find(global))).second);
for (std::set<Region*>::const_iterator b_it = worklist.begin();
b_it != worklist.end(); b_it++) {
std::set<Region*>* df = (*b_it)->GetDominanceFrontier();
for (std::set<Region*>::const_iterator df_it = df->begin(); df_it != df->end(); df_it++) {
if ((*df_it)->InsertPhiFor(global)) {
// Check that the dominance frontier element is in the worklist already
// because we only want to break if the element is actually not there yet.
if (worklist.find(*df_it) == worklist.end()) {
worklist.insert(*df_it);
b_it = worklist.begin();
break;
}
}
}
}
}
// Pass: Build edges to the definition corresponding to each use.
// (This corresponds to the renaming phase in traditional SSA transformations.
// See: Cooper & Torczon, "Engineering a Compiler", second edition, page 505.)
RenameAsSSA();
}
void SeaGraph::RenameAsSSA(Region* crt_region,
utils::ScopedHashtable<int, InstructionNode*>* scoped_table) {
scoped_table->OpenScope();
// Rename phi nodes defined in the current region.
std::vector<PhiInstructionNode*>* phis = crt_region->GetPhiNodes();
for (std::vector<PhiInstructionNode*>::iterator phi_it = phis->begin();
phi_it != phis->end(); phi_it++) {
int reg_no = (*phi_it)->GetRegisterNumber();
scoped_table->Add(reg_no, (*phi_it));
}
// Rename operands of instructions from the current region.
std::vector<InstructionNode*>* instructions = crt_region->GetInstructions();
for (std::vector<InstructionNode*>::const_iterator instructions_it = instructions->begin();
instructions_it != instructions->end(); instructions_it++) {
InstructionNode* current_instruction = (*instructions_it);
// Rename uses.
std::vector<int> used_regs = current_instruction->GetUses();
for (std::vector<int>::const_iterator reg_it = used_regs.begin();
reg_it != used_regs.end(); reg_it++) {
int current_used_reg = (*reg_it);
InstructionNode* definition = scoped_table->Lookup(current_used_reg);
current_instruction->RenameToSSA(current_used_reg, definition);
}
// Update scope table with latest definitions.
std::vector<int> def_regs = current_instruction->GetDefinitions();
for (std::vector<int>::const_iterator reg_it = def_regs.begin();
reg_it != def_regs.end(); reg_it++) {
int current_defined_reg = (*reg_it);
scoped_table->Add(current_defined_reg, current_instruction);
}
}
// Fill in uses of phi functions in CFG successor regions.
const std::vector<Region*>* successors = crt_region->GetSuccessors();
for (std::vector<Region*>::const_iterator successors_it = successors->begin();
successors_it != successors->end(); successors_it++) {
Region* successor = (*successors_it);
successor->SetPhiDefinitionsForUses(scoped_table, crt_region);
}
// Rename all successors in the dominators tree.
const std::set<Region*>* dominated_nodes = crt_region->GetIDominatedSet();
for (std::set<Region*>::const_iterator dominated_nodes_it = dominated_nodes->begin();
dominated_nodes_it != dominated_nodes->end(); dominated_nodes_it++) {
Region* dominated_node = (*dominated_nodes_it);
RenameAsSSA(dominated_node, scoped_table);
}
scoped_table->CloseScope();
}
CodeGenData* SeaGraph::GenerateLLVM(const std::string& function_name,
const art::DexFile& dex_file) {
// Pass: Generate LLVM IR.
CodeGenPrepassVisitor code_gen_prepass_visitor(function_name);
std::cout << "Generating code..." << std::endl;
Accept(&code_gen_prepass_visitor);
CodeGenVisitor code_gen_visitor(code_gen_prepass_visitor.GetData(), dex_file);
Accept(&code_gen_visitor);
CodeGenPostpassVisitor code_gen_postpass_visitor(code_gen_visitor.GetData());
Accept(&code_gen_postpass_visitor);
return code_gen_postpass_visitor.GetData();
}
CodeGenData* SeaGraph::CompileMethod(
const std::string& function_name,
const art::DexFile::CodeItem* code_item, uint16_t class_def_idx,
uint32_t method_idx, uint32_t method_access_flags, const art::DexFile& dex_file) {
// Two passes: Builds the intermediate structure (non-SSA) of the sea-ir for the function.
BuildMethodSeaGraph(code_item, dex_file, class_def_idx, method_idx, method_access_flags);
// Pass: Compute reverse post-order of regions.
ComputeRPO();
// Multiple passes: compute immediate dominators.
ComputeIDominators();
// Pass: compute downward-exposed definitions.
ComputeDownExposedDefs();
// Multiple Passes (iterative fixed-point algorithm): Compute reaching definitions
ComputeReachingDefs();
// Pass (O(nlogN)): Compute the dominance frontier for region nodes.
ComputeDominanceFrontier();
// Two Passes: Phi node insertion.
ConvertToSSA();
// Pass: type inference
ti_->ComputeTypes(this);
// Pass: Generate LLVM IR.
CodeGenData* cgd = GenerateLLVM(function_name, dex_file);
return cgd;
}
void SeaGraph::ComputeDominanceFrontier() {
for (std::vector<Region*>::iterator region_it = regions_.begin();
region_it != regions_.end(); region_it++) {
std::vector<Region*>* preds = (*region_it)->GetPredecessors();
if (preds->size() > 1) {
for (std::vector<Region*>::iterator pred_it = preds->begin();
pred_it != preds->end(); pred_it++) {
Region* runner = *pred_it;
while (runner != (*region_it)->GetIDominator()) {
runner->AddToDominanceFrontier(*region_it);
runner = runner->GetIDominator();
}
}
}
}
}
Region* SeaGraph::GetNewRegion() {
Region* new_region = new Region();
AddRegion(new_region);
return new_region;
}
void SeaGraph::AddRegion(Region* r) {
DCHECK(r) << "Tried to add NULL region to SEA graph.";
regions_.push_back(r);
}
SeaGraph::SeaGraph(const art::DexFile& df)
:ti_(new TypeInference()), class_def_idx_(0), method_idx_(0), method_access_flags_(),
regions_(), parameters_(), dex_file_(df), code_item_(NULL) { }
void Region::AddChild(sea_ir::InstructionNode* instruction) {
DCHECK(instruction) << "Tried to add NULL instruction to region node.";
instructions_.push_back(instruction);
instruction->SetRegion(this);
}
SeaNode* Region::GetLastChild() const {
if (instructions_.size() > 0) {
return instructions_.back();
}
return NULL;
}
void Region::ComputeDownExposedDefs() {
for (std::vector<InstructionNode*>::const_iterator inst_it = instructions_.begin();
inst_it != instructions_.end(); inst_it++) {
int reg_no = (*inst_it)->GetResultRegister();
std::map<int, InstructionNode*>::iterator res = de_defs_.find(reg_no);
if ((reg_no != NO_REGISTER) && (res == de_defs_.end())) {
de_defs_.insert(std::pair<int, InstructionNode*>(reg_no, *inst_it));
} else {
res->second = *inst_it;
}
}
for (std::map<int, sea_ir::InstructionNode*>::const_iterator cit = de_defs_.begin();
cit != de_defs_.end(); cit++) {
(*cit).second->MarkAsDEDef();
}
}
const std::map<int, sea_ir::InstructionNode*>* Region::GetDownExposedDefs() const {
return &de_defs_;
}
std::map<int, std::set<sea_ir::InstructionNode*>* >* Region::GetReachingDefs() {
return &reaching_defs_;
}
bool Region::UpdateReachingDefs() {
std::map<int, std::set<sea_ir::InstructionNode*>* > new_reaching;
for (std::vector<Region*>::const_iterator pred_it = predecessors_.begin();
pred_it != predecessors_.end(); pred_it++) {
// The reaching_defs variable will contain reaching defs __for current predecessor only__
std::map<int, std::set<sea_ir::InstructionNode*>* > reaching_defs;
std::map<int, std::set<sea_ir::InstructionNode*>* >* pred_reaching =
(*pred_it)->GetReachingDefs();
const std::map<int, InstructionNode*>* de_defs = (*pred_it)->GetDownExposedDefs();
// The definitions from the reaching set of the predecessor
// may be shadowed by downward exposed definitions from the predecessor,
// otherwise the defs from the reaching set are still good.
for (std::map<int, InstructionNode*>::const_iterator de_def = de_defs->begin();
de_def != de_defs->end(); de_def++) {
std::set<InstructionNode*>* solo_def;
solo_def = new std::set<InstructionNode*>();
solo_def->insert(de_def->second);
reaching_defs.insert(
std::pair<int const, std::set<InstructionNode*>*>(de_def->first, solo_def));
}
reaching_defs.insert(pred_reaching->begin(), pred_reaching->end());
// Now we combine the reaching map coming from the current predecessor (reaching_defs)
// with the accumulated set from all predecessors so far (from new_reaching).
std::map<int, std::set<sea_ir::InstructionNode*>*>::iterator reaching_it =
reaching_defs.begin();
for (; reaching_it != reaching_defs.end(); reaching_it++) {
std::map<int, std::set<sea_ir::InstructionNode*>*>::iterator crt_entry =
new_reaching.find(reaching_it->first);
if (new_reaching.end() != crt_entry) {
crt_entry->second->insert(reaching_it->second->begin(), reaching_it->second->end());
} else {
new_reaching.insert(
std::pair<int, std::set<sea_ir::InstructionNode*>*>(
reaching_it->first,
reaching_it->second) );
}
}
}
bool changed = false;
// Because the sets are monotonically increasing,
// we can compare sizes instead of using set comparison.
// TODO: Find formal proof.
int old_size = 0;
if (-1 == reaching_defs_size_) {
std::map<int, std::set<sea_ir::InstructionNode*>*>::iterator reaching_it =
reaching_defs_.begin();
for (; reaching_it != reaching_defs_.end(); reaching_it++) {
old_size += (*reaching_it).second->size();
}
} else {
old_size = reaching_defs_size_;
}
int new_size = 0;
std::map<int, std::set<sea_ir::InstructionNode*>*>::iterator reaching_it = new_reaching.begin();
for (; reaching_it != new_reaching.end(); reaching_it++) {
new_size += (*reaching_it).second->size();
}
if (old_size != new_size) {
changed = true;
}
if (changed) {
reaching_defs_ = new_reaching;
reaching_defs_size_ = new_size;
}
return changed;
}
bool Region::InsertPhiFor(int reg_no) {
if (!ContainsPhiFor(reg_no)) {
phi_set_.insert(reg_no);
PhiInstructionNode* new_phi = new PhiInstructionNode(reg_no);
new_phi->SetRegion(this);
phi_instructions_.push_back(new_phi);
return true;
}
return false;
}
void Region::SetPhiDefinitionsForUses(
const utils::ScopedHashtable<int, InstructionNode*>* scoped_table, Region* predecessor) {
int predecessor_id = -1;
for (unsigned int crt_pred_id = 0; crt_pred_id < predecessors_.size(); crt_pred_id++) {
if (predecessors_.at(crt_pred_id) == predecessor) {
predecessor_id = crt_pred_id;
}
}
DCHECK_NE(-1, predecessor_id);
for (std::vector<PhiInstructionNode*>::iterator phi_it = phi_instructions_.begin();
phi_it != phi_instructions_.end(); phi_it++) {
PhiInstructionNode* phi = (*phi_it);
int reg_no = phi->GetRegisterNumber();
InstructionNode* definition = scoped_table->Lookup(reg_no);
phi->RenameToSSA(reg_no, definition, predecessor_id);
}
}
std::vector<InstructionNode*> InstructionNode::Create(const art::Instruction* in) {
std::vector<InstructionNode*> sea_instructions;
switch (in->Opcode()) {
case art::Instruction::CONST_4:
sea_instructions.push_back(new ConstInstructionNode(in));
break;
case art::Instruction::RETURN:
sea_instructions.push_back(new ReturnInstructionNode(in));
break;
case art::Instruction::IF_NE:
sea_instructions.push_back(new IfNeInstructionNode(in));
break;
case art::Instruction::ADD_INT_LIT8:
sea_instructions.push_back(new UnnamedConstInstructionNode(in, in->VRegC_22b()));
sea_instructions.push_back(new AddIntLitInstructionNode(in));
break;
case art::Instruction::MOVE_RESULT:
sea_instructions.push_back(new MoveResultInstructionNode(in));
break;
case art::Instruction::INVOKE_STATIC:
sea_instructions.push_back(new InvokeStaticInstructionNode(in));
break;
case art::Instruction::ADD_INT:
sea_instructions.push_back(new AddIntInstructionNode(in));
break;
case art::Instruction::GOTO:
sea_instructions.push_back(new GotoInstructionNode(in));
break;
case art::Instruction::IF_EQZ:
sea_instructions.push_back(new IfEqzInstructionNode(in));
break;
default:
// Default, generic IR instruction node; default case should never be reached
// when support for all instructions ahs been added.
sea_instructions.push_back(new InstructionNode(in));
}
return sea_instructions;
}
void InstructionNode::MarkAsDEDef() {
de_def_ = true;
}
int InstructionNode::GetResultRegister() const {
if (instruction_->HasVRegA() && InstructionTools::IsDefinition(instruction_)) {
return instruction_->VRegA();
}
return NO_REGISTER;
}
std::vector<int> InstructionNode::GetDefinitions() const {
// TODO: Extend this to handle instructions defining more than one register (if any)
// The return value should be changed to pointer to field then; for now it is an object
// so that we avoid possible memory leaks from allocating objects dynamically.
std::vector<int> definitions;
int result = GetResultRegister();
if (NO_REGISTER != result) {
definitions.push_back(result);
}
return definitions;
}
std::vector<int> InstructionNode::GetUses() const {
std::vector<int> uses; // Using vector<> instead of set<> because order matters.
if (!InstructionTools::IsDefinition(instruction_) && (instruction_->HasVRegA())) {
int vA = instruction_->VRegA();
uses.push_back(vA);
}
if (instruction_->HasVRegB()) {
int vB = instruction_->VRegB();
uses.push_back(vB);
}
if (instruction_->HasVRegC()) {
int vC = instruction_->VRegC();
uses.push_back(vC);
}
return uses;
}
} // namespace sea_ir
|