1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
|
/*
* Copyright (C) 2013 The Android Open Source Project
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
#ifndef ART_COMPILER_UTILS_DEDUPE_SET_H_
#define ART_COMPILER_UTILS_DEDUPE_SET_H_
#include <algorithm>
#include <inttypes.h>
#include <memory>
#include <set>
#include <string>
#include "base/mutex.h"
#include "base/stl_util.h"
#include "base/stringprintf.h"
#include "base/time_utils.h"
#include "utils/swap_space.h"
namespace art {
// A set of Keys that support a HashFunc returning HashType. Used to find duplicates of Key in the
// Add method. The data-structure is thread-safe through the use of internal locks, it also
// supports the lock being sharded.
template <typename InKey, typename StoreKey, typename HashType, typename HashFunc,
HashType kShard = 1>
class DedupeSet {
typedef std::pair<HashType, const InKey*> HashedInKey;
struct HashedKey {
StoreKey* store_ptr;
union {
HashType store_hash; // Valid if store_ptr != null.
const HashedInKey* in_key; // Valid if store_ptr == null.
};
};
class Comparator {
public:
bool operator()(const HashedKey& a, const HashedKey& b) const {
HashType a_hash = (a.store_ptr != nullptr) ? a.store_hash : a.in_key->first;
HashType b_hash = (b.store_ptr != nullptr) ? b.store_hash : b.in_key->first;
if (a_hash != b_hash) {
return a_hash < b_hash;
}
if (a.store_ptr != nullptr && b.store_ptr != nullptr) {
return std::lexicographical_compare(a.store_ptr->begin(), a.store_ptr->end(),
b.store_ptr->begin(), b.store_ptr->end());
} else if (a.store_ptr != nullptr && b.store_ptr == nullptr) {
return std::lexicographical_compare(a.store_ptr->begin(), a.store_ptr->end(),
b.in_key->second->begin(), b.in_key->second->end());
} else if (a.store_ptr == nullptr && b.store_ptr != nullptr) {
return std::lexicographical_compare(a.in_key->second->begin(), a.in_key->second->end(),
b.store_ptr->begin(), b.store_ptr->end());
} else {
return std::lexicographical_compare(a.in_key->second->begin(), a.in_key->second->end(),
b.in_key->second->begin(), b.in_key->second->end());
}
}
};
public:
StoreKey* Add(Thread* self, const InKey& key) {
uint64_t hash_start;
if (kIsDebugBuild) {
hash_start = NanoTime();
}
HashType raw_hash = HashFunc()(key);
if (kIsDebugBuild) {
uint64_t hash_end = NanoTime();
hash_time_ += hash_end - hash_start;
}
HashType shard_hash = raw_hash / kShard;
HashType shard_bin = raw_hash % kShard;
HashedInKey hashed_in_key(shard_hash, &key);
HashedKey hashed_key;
hashed_key.store_ptr = nullptr;
hashed_key.in_key = &hashed_in_key;
MutexLock lock(self, *lock_[shard_bin]);
auto it = keys_[shard_bin].find(hashed_key);
if (it != keys_[shard_bin].end()) {
DCHECK(it->store_ptr != nullptr);
return it->store_ptr;
}
hashed_key.store_ptr = CreateStoreKey(key);
hashed_key.store_hash = shard_hash;
keys_[shard_bin].insert(hashed_key);
return hashed_key.store_ptr;
}
explicit DedupeSet(const char* set_name, SwapAllocator<void>& alloc)
: allocator_(alloc), hash_time_(0) {
for (HashType i = 0; i < kShard; ++i) {
std::ostringstream oss;
oss << set_name << " lock " << i;
lock_name_[i] = oss.str();
lock_[i].reset(new Mutex(lock_name_[i].c_str()));
}
}
~DedupeSet() {
// Have to manually free all pointers.
for (auto& shard : keys_) {
for (const auto& hashed_key : shard) {
DCHECK(hashed_key.store_ptr != nullptr);
DeleteStoreKey(hashed_key.store_ptr);
}
}
}
std::string DumpStats() const {
size_t collision_sum = 0;
size_t collision_max = 0;
for (HashType shard = 0; shard < kShard; ++shard) {
HashType last_hash = 0;
size_t collision_cur_max = 0;
for (const HashedKey& key : keys_[shard]) {
DCHECK(key.store_ptr != nullptr);
if (key.store_hash == last_hash) {
collision_cur_max++;
if (collision_cur_max > 1) {
collision_sum++;
if (collision_cur_max > collision_max) {
collision_max = collision_cur_max;
}
}
} else {
collision_cur_max = 1;
last_hash = key.store_hash;
}
}
}
return StringPrintf("%zu collisions, %zu max bucket size, %" PRIu64 " ns hash time",
collision_sum, collision_max, hash_time_);
}
private:
StoreKey* CreateStoreKey(const InKey& key) {
StoreKey* ret = allocator_.allocate(1);
allocator_.construct(ret, key.begin(), key.end(), allocator_);
return ret;
}
void DeleteStoreKey(StoreKey* key) {
SwapAllocator<StoreKey> alloc(allocator_);
alloc.destroy(key);
alloc.deallocate(key, 1);
}
std::string lock_name_[kShard];
std::unique_ptr<Mutex> lock_[kShard];
std::set<HashedKey, Comparator> keys_[kShard];
SwapAllocator<StoreKey> allocator_;
uint64_t hash_time_;
DISALLOW_COPY_AND_ASSIGN(DedupeSet);
};
} // namespace art
#endif // ART_COMPILER_UTILS_DEDUPE_SET_H_
|