1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
|
/*
* Copyright (C) 2014 The Android Open Source Project
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
#include "gtest/gtest.h"
#include "memcmp16.h"
class RandGen {
public:
explicit RandGen(uint32_t seed) : val_(seed) {}
uint32_t next() {
val_ = val_ * 48271 % 2147483647 + 13;
return val_;
}
uint32_t val_;
};
class MemCmp16Test : public testing::Test {
};
// A simple implementation to compare against.
// Note: this version is equivalent to the generic one used when no optimized version is available.
int32_t memcmp16_compare(const uint16_t* s0, const uint16_t* s1, size_t count) {
for (size_t i = 0; i < count; i++) {
if (s0[i] != s1[i]) {
return static_cast<int32_t>(s0[i]) - static_cast<int32_t>(s1[i]);
}
}
return 0;
}
static constexpr size_t kMemCmp16Rounds = 100000;
static void CheckSeparate(size_t max_length, size_t min_length) {
RandGen r(0x1234);
size_t range_of_tests = 7; // All four (weighted) tests active in the beginning.
for (size_t round = 0; round < kMemCmp16Rounds; ++round) {
size_t type = r.next() % range_of_tests;
size_t count1, count2;
uint16_t *s1, *s2; // Use raw pointers to simplify using clobbered addresses
switch (type) {
case 0: // random, non-zero lengths of both strings
case 1:
case 2:
case 3:
count1 = (r.next() % max_length) + min_length;
count2 = (r.next() % max_length) + min_length;
break;
case 4: // random non-zero length of first, second is zero
count1 = (r.next() % max_length) + min_length;
count2 = 0U;
break;
case 5: // random non-zero length of second, first is zero
count1 = 0U;
count2 = (r.next() % max_length) + min_length;
break;
case 6: // both zero-length
count1 = 0U;
count2 = 0U;
range_of_tests = 6; // Don't do zero-zero again.
break;
default:
ASSERT_TRUE(false) << "Should not get here.";
continue;
}
if (count1 > 0U) {
s1 = new uint16_t[count1];
} else {
// Leave a random pointer, should not be touched.
s1 = reinterpret_cast<uint16_t*>(0xebad1001);
}
if (count2 > 0U) {
s2 = new uint16_t[count2];
} else {
// Leave a random pointer, should not be touched.
s2 = reinterpret_cast<uint16_t*>(0xebad2002);
}
size_t min = count1 < count2 ? count1 : count2;
bool fill_same = r.next() % 1 == 1;
if (fill_same) {
for (size_t i = 0; i < min; ++i) {
s1[i] = static_cast<uint16_t>(r.next() & 0xFFFF);
s2[i] = s1[i];
}
for (size_t i = min; i < count1; ++i) {
s1[i] = static_cast<uint16_t>(r.next() & 0xFFFF);
}
for (size_t i = min; i < count2; ++i) {
s2[i] = static_cast<uint16_t>(r.next() & 0xFFFF);
}
} else {
for (size_t i = 0; i < count1; ++i) {
s1[i] = static_cast<uint16_t>(r.next() & 0xFFFF);
}
for (size_t i = 0; i < count2; ++i) {
s2[i] = static_cast<uint16_t>(r.next() & 0xFFFF);
}
}
uint16_t* s1_pot_unaligned = s1;
uint16_t* s2_pot_unaligned = s2;
size_t c1_mod = count1;
size_t c2_mod = count2;
if (!fill_same) { // Don't waste a good "long" test.
if (count1 > 1 && r.next() % 10 == 0) {
c1_mod--;
s1_pot_unaligned++;
}
if (count2 > 1 && r.next() % 10 == 0) {
c2_mod--;
s2_pot_unaligned++;
}
}
size_t mod_min = c1_mod < c2_mod ? c1_mod : c2_mod;
int32_t expected = memcmp16_compare(s1_pot_unaligned, s2_pot_unaligned, mod_min);
int32_t computed = art::testing::MemCmp16Testing(s1_pot_unaligned, s2_pot_unaligned, mod_min);
ASSERT_EQ(expected, computed) << "Run " << round << ", c1=" << count1 << " c2=" << count2;
if (count1 > 0U) {
delete s1;
}
if (count2 > 0U) {
delete s2;
}
}
}
TEST_F(MemCmp16Test, RandomSeparateShort) {
CheckSeparate(5U, 1U);
}
TEST_F(MemCmp16Test, RandomSeparateLong) {
CheckSeparate(64U, 32U);
}
// TODO: What's a good test for overlapping memory. Is it important?
// TEST_F(MemCmp16Test, RandomOverlay) {
//
// }
|