summaryrefslogtreecommitdiffstats
path: root/runtime/arch/x86/fault_handler_x86.cc
blob: f62200aabe6c9a26bdcfe1d084afdb3bc2c299fd (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
/*
 * Copyright (C) 2008 The Android Open Source Project
 *
 * Licensed under the Apache License, Version 2.0 (the "License");
 * you may not use this file except in compliance with the License.
 * You may obtain a copy of the License at
 *
 *      http://www.apache.org/licenses/LICENSE-2.0
 *
 * Unless required by applicable law or agreed to in writing, software
 * distributed under the License is distributed on an "AS IS" BASIS,
 * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
 * See the License for the specific language governing permissions and
 * limitations under the License.
 */


#include "fault_handler.h"
#include <sys/ucontext.h>
#include "base/macros.h"
#include "globals.h"
#include "base/logging.h"
#include "base/hex_dump.h"
#include "mirror/art_method.h"
#include "mirror/art_method-inl.h"
#include "thread.h"
#include "thread-inl.h"


//
// X86 specific fault handler functions.
//

namespace art {

extern "C" void art_quick_throw_null_pointer_exception();
extern "C" void art_quick_throw_stack_overflow_from_signal();
extern "C" void art_quick_test_suspend();

// From the x86 disassembler...
enum SegmentPrefix {
  kCs = 0x2e,
  kSs = 0x36,
  kDs = 0x3e,
  kEs = 0x26,
  kFs = 0x64,
  kGs = 0x65,
};

// Get the size of an instruction in bytes.
static uint32_t GetInstructionSize(uint8_t* pc) {
  uint8_t* instruction_start = pc;
  bool have_prefixes = true;
  bool two_byte = false;

  // Skip all the prefixes.
  do {
    switch (*pc) {
        // Group 1 - lock and repeat prefixes:
      case 0xF0:
      case 0xF2:
      case 0xF3:
        // Group 2 - segment override prefixes:
      case kCs:
      case kSs:
      case kDs:
      case kEs:
      case kFs:
      case kGs:
        // Group 3 - operand size override:
      case 0x66:
        // Group 4 - address size override:
      case 0x67:
        break;
      default:
        have_prefixes = false;
        break;
    }
    if (have_prefixes) {
      pc++;
    }
  } while (have_prefixes);

#if defined(__x86_64__)
  // Skip REX is present.
  if (*pc >= 0x40 && *pc <= 0x4F) {
    ++pc;
  }
#endif

  // Check for known instructions.
  uint32_t known_length = 0;
  switch (*pc) {
  case 0x83:                // cmp [r + v], b: 4 byte instruction
    known_length = 4;
    break;
  }

  if (known_length > 0) {
    VLOG(signals) << "known instruction with length " << known_length;
    return known_length;
  }

  // Unknown instruction, work out length.

  // Work out if we have a ModR/M byte.
  uint8_t opcode = *pc++;
  if (opcode == 0xf) {
    two_byte = true;
    opcode = *pc++;
  }

  bool has_modrm = false;         // Is ModR/M byte present?
  uint8_t hi = opcode >> 4;       // Opcode high nybble.
  uint8_t lo = opcode & 0b1111;   // Opcode low nybble.

  // From the Intel opcode tables.
  if (two_byte) {
    has_modrm = true;   // TODO: all of these?
  } else if (hi < 4) {
    has_modrm = lo < 4 || (lo >= 8 && lo <= 0xb);
  } else if (hi == 6) {
    has_modrm = lo == 3 || lo == 9 || lo == 0xb;
  } else if (hi == 8) {
    has_modrm = lo != 0xd;
  } else if (hi == 0xc) {
    has_modrm = lo == 1 || lo == 2 || lo == 6 || lo == 7;
  } else if (hi == 0xd) {
    has_modrm = lo < 4;
  } else if (hi == 0xf) {
    has_modrm = lo == 6 || lo == 7;
  }

  if (has_modrm) {
    uint8_t modrm = *pc++;
    uint8_t mod = (modrm >> 6) & 0b11;
    uint8_t reg = (modrm >> 3) & 0b111;
    switch (mod) {
      case 0:
        break;
      case 1:
        if (reg == 4) {
          // SIB + 1 byte displacement.
          pc += 2;
        } else {
          pc += 1;
        }
        break;
      case 2:
        // SIB + 4 byte displacement.
        pc += 5;
        break;
      case 3:
        break;
    }
  }

  VLOG(signals) << "calculated X86 instruction size is " << (pc - instruction_start);
  return pc - instruction_start;
}

void FaultManager::GetMethodAndReturnPCAndSP(siginfo_t* siginfo, void* context,
                                             mirror::ArtMethod** out_method,
                                             uintptr_t* out_return_pc, uintptr_t* out_sp) {
  struct ucontext* uc = reinterpret_cast<struct ucontext*>(context);
  *out_sp = static_cast<uintptr_t>(uc->uc_mcontext.gregs[REG_ESP]);
  VLOG(signals) << "sp: " << std::hex << *out_sp;
  if (*out_sp == 0) {
    return;
  }

  // In the case of a stack overflow, the stack is not valid and we can't
  // get the method from the top of the stack.  However it's in EAX.
  uintptr_t* fault_addr = reinterpret_cast<uintptr_t*>(siginfo->si_addr);
  uintptr_t* overflow_addr = reinterpret_cast<uintptr_t*>(
      reinterpret_cast<uint8_t*>(*out_sp) - GetStackOverflowReservedBytes(kX86));
  if (overflow_addr == fault_addr) {
    *out_method = reinterpret_cast<mirror::ArtMethod*>(uc->uc_mcontext.gregs[REG_EAX]);
  } else {
    // The method is at the top of the stack.
    *out_method = reinterpret_cast<mirror::ArtMethod*>(reinterpret_cast<uintptr_t*>(*out_sp)[0]);
  }

  uint8_t* pc = reinterpret_cast<uint8_t*>(uc->uc_mcontext.gregs[REG_EIP]);
  VLOG(signals) << HexDump(pc, 32, true, "PC ");

  uint32_t instr_size = GetInstructionSize(pc);
  *out_return_pc = reinterpret_cast<uintptr_t>(pc + instr_size);
}

bool NullPointerHandler::Action(int sig, siginfo_t* info, void* context) {
  struct ucontext *uc = reinterpret_cast<struct ucontext*>(context);
  uint8_t* pc = reinterpret_cast<uint8_t*>(uc->uc_mcontext.gregs[REG_EIP]);
  uint8_t* sp = reinterpret_cast<uint8_t*>(uc->uc_mcontext.gregs[REG_ESP]);

  uint32_t instr_size = GetInstructionSize(pc);
  // We need to arrange for the signal handler to return to the null pointer
  // exception generator.  The return address must be the address of the
  // next instruction (this instruction + instruction size).  The return address
  // is on the stack at the top address of the current frame.

  // Push the return address onto the stack.
  uint32_t retaddr = reinterpret_cast<uint32_t>(pc + instr_size);
  uint32_t* next_sp = reinterpret_cast<uint32_t*>(sp - 4);
  *next_sp = retaddr;
  uc->uc_mcontext.gregs[REG_ESP] = reinterpret_cast<uint32_t>(next_sp);

  uc->uc_mcontext.gregs[REG_EIP] =
        reinterpret_cast<uintptr_t>(art_quick_throw_null_pointer_exception);
  VLOG(signals) << "Generating null pointer exception";
  return true;
}

// A suspend check is done using the following instruction sequence:
// 0xf720f1df:         648B058C000000      mov     eax, fs:[0x8c]  ; suspend_trigger
// .. some intervening instructions.
// 0xf720f1e6:                   8500      test    eax, [eax]

// The offset from fs is Thread::ThreadSuspendTriggerOffset().
// To check for a suspend check, we examine the instructions that caused
// the fault.
bool SuspensionHandler::Action(int sig, siginfo_t* info, void* context) {
  // These are the instructions to check for.  The first one is the mov eax, fs:[xxx]
  // where xxx is the offset of the suspend trigger.
  uint32_t trigger = Thread::ThreadSuspendTriggerOffset<4>().Int32Value();

  VLOG(signals) << "Checking for suspension point";
  uint8_t checkinst1[] = {0x64, 0x8b, 0x05, static_cast<uint8_t>(trigger & 0xff),
      static_cast<uint8_t>((trigger >> 8) & 0xff), 0, 0};
  uint8_t checkinst2[] = {0x85, 0x00};

  struct ucontext *uc = reinterpret_cast<struct ucontext*>(context);
  uint8_t* pc = reinterpret_cast<uint8_t*>(uc->uc_mcontext.gregs[REG_EIP]);
  uint8_t* sp = reinterpret_cast<uint8_t*>(uc->uc_mcontext.gregs[REG_ESP]);

  if (pc[0] != checkinst2[0] || pc[1] != checkinst2[1]) {
    // Second instruction is not correct (test eax,[eax]).
    VLOG(signals) << "Not a suspension point";
    return false;
  }

  // The first instruction can a little bit up the stream due to load hoisting
  // in the compiler.
  uint8_t* limit = pc - 100;   // Compiler will hoist to a max of 20 instructions.
  uint8_t* ptr = pc - sizeof(checkinst1);
  bool found = false;
  while (ptr > limit) {
    if (memcmp(ptr, checkinst1, sizeof(checkinst1)) == 0) {
      found = true;
      break;
    }
    ptr -= 1;
  }

  if (found) {
    VLOG(signals) << "suspend check match";

    // We need to arrange for the signal handler to return to the null pointer
    // exception generator.  The return address must be the address of the
    // next instruction (this instruction + 2).  The return address
    // is on the stack at the top address of the current frame.

    // Push the return address onto the stack.
    uint32_t retaddr = reinterpret_cast<uint32_t>(pc + 2);
    uint32_t* next_sp = reinterpret_cast<uint32_t*>(sp - 4);
    *next_sp = retaddr;
    uc->uc_mcontext.gregs[REG_ESP] = reinterpret_cast<uint32_t>(next_sp);

    uc->uc_mcontext.gregs[REG_EIP] = reinterpret_cast<uintptr_t>(art_quick_test_suspend);

    // Now remove the suspend trigger that caused this fault.
    Thread::Current()->RemoveSuspendTrigger();
    VLOG(signals) << "removed suspend trigger invoking test suspend";
    return true;
  }
  VLOG(signals) << "Not a suspend check match, first instruction mismatch";
  return false;
}

// The stack overflow check is done using the following instruction:
// test eax, [esp+ -xxx]
// where 'xxx' is the size of the overflow area.
//
// This is done before any frame is established in the method.  The return
// address for the previous method is on the stack at ESP.

bool StackOverflowHandler::Action(int sig, siginfo_t* info, void* context) {
  struct ucontext *uc = reinterpret_cast<struct ucontext*>(context);
  uintptr_t sp = static_cast<uintptr_t>(uc->uc_mcontext.gregs[REG_ESP]);

  uintptr_t fault_addr = reinterpret_cast<uintptr_t>(info->si_addr);
  VLOG(signals) << "fault_addr: " << std::hex << fault_addr;
  VLOG(signals) << "checking for stack overflow, sp: " << std::hex << sp <<
    ", fault_addr: " << fault_addr;

  uintptr_t overflow_addr = sp - GetStackOverflowReservedBytes(kX86);

  Thread* self = Thread::Current();
  uintptr_t pregion = reinterpret_cast<uintptr_t>(self->GetStackEnd()) -
      Thread::kStackOverflowProtectedSize;

  // Check that the fault address is the value expected for a stack overflow.
  if (fault_addr != overflow_addr) {
    VLOG(signals) << "Not a stack overflow";
    return false;
  }

  // We know this is a stack overflow.  We need to move the sp to the overflow region
  // that exists below the protected region.  Determine the address of the next
  // available valid address below the protected region.
  VLOG(signals) << "setting sp to overflow region at " << std::hex << pregion;

  // Since the compiler puts the implicit overflow
  // check before the callee save instructions, the SP is already pointing to
  // the previous frame.

  // Tell the stack overflow code where the new stack pointer should be.
  uc->uc_mcontext.gregs[REG_EAX] = pregion;

  // Now arrange for the signal handler to return to art_quick_throw_stack_overflow_from_signal.
  uc->uc_mcontext.gregs[REG_EIP] = reinterpret_cast<uintptr_t>(
    art_quick_throw_stack_overflow_from_signal);

  return true;
}
}       // namespace art