summaryrefslogtreecommitdiffstats
path: root/runtime/atomic.h
blob: 868f32cda4191088e1bcca92209e494deba33bf0 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
/*
 * Copyright (C) 2008 The Android Open Source Project
 *
 * Licensed under the Apache License, Version 2.0 (the "License");
 * you may not use this file except in compliance with the License.
 * You may obtain a copy of the License at
 *
 *      http://www.apache.org/licenses/LICENSE-2.0
 *
 * Unless required by applicable law or agreed to in writing, software
 * distributed under the License is distributed on an "AS IS" BASIS,
 * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
 * See the License for the specific language governing permissions and
 * limitations under the License.
 */

#ifndef ART_RUNTIME_ATOMIC_H_
#define ART_RUNTIME_ATOMIC_H_

#ifdef __clang__
#define ART_HAVE_STDATOMIC 1
#endif

#include <stdint.h>
#if ART_HAVE_STDATOMIC
#include <atomic>
#endif
#include <limits>
#include <vector>

#include "base/logging.h"
#include "base/macros.h"

namespace art {

class Mutex;

// QuasiAtomic encapsulates two separate facilities that we are
// trying to move away from:  "quasiatomic" 64 bit operations
// and custom memory fences.  For the time being, they remain
// exposed.  Clients should be converted to use either class Atomic
// below whenever possible, and should eventually use C++11 atomics.
// The two facilities that do not have a good C++11 analog are
// ThreadFenceForConstructor and Atomic::*JavaData.
//
// NOTE: Two "quasiatomic" operations on the exact same memory address
// are guaranteed to operate atomically with respect to each other,
// but no guarantees are made about quasiatomic operations mixed with
// non-quasiatomic operations on the same address, nor about
// quasiatomic operations that are performed on partially-overlapping
// memory.
class QuasiAtomic {
#if defined(__mips__) && !defined(__LP64__)
  static constexpr bool kNeedSwapMutexes = true;
#else
  static constexpr bool kNeedSwapMutexes = false;
#endif

 public:
  static void Startup();

  static void Shutdown();

  // Reads the 64-bit value at "addr" without tearing.
  static int64_t Read64(volatile const int64_t* addr) {
    if (!kNeedSwapMutexes) {
      int64_t value;
#if defined(__LP64__)
      value = *addr;
#else
#if defined(__arm__)
#if defined(__ARM_FEATURE_LPAE)
      // With LPAE support (such as Cortex-A15) then ldrd is defined not to tear.
      __asm__ __volatile__("@ QuasiAtomic::Read64\n"
        "ldrd     %0, %H0, %1"
        : "=r" (value)
        : "m" (*addr));
#else
      // Exclusive loads are defined not to tear, clearing the exclusive state isn't necessary.
      __asm__ __volatile__("@ QuasiAtomic::Read64\n"
        "ldrexd     %0, %H0, %1"
        : "=r" (value)
        : "Q" (*addr));
#endif
#elif defined(__i386__)
  __asm__ __volatile__(
      "movq     %1, %0\n"
      : "=x" (value)
      : "m" (*addr));
#else
      LOG(FATAL) << "Unsupported architecture";
#endif
#endif  // defined(__LP64__)
      return value;
    } else {
      return SwapMutexRead64(addr);
    }
  }

  // Writes to the 64-bit value at "addr" without tearing.
  static void Write64(volatile int64_t* addr, int64_t value) {
    if (!kNeedSwapMutexes) {
#if defined(__LP64__)
      *addr = value;
#else
#if defined(__arm__)
#if defined(__ARM_FEATURE_LPAE)
    // If we know that ARM architecture has LPAE (such as Cortex-A15) strd is defined not to tear.
    __asm__ __volatile__("@ QuasiAtomic::Write64\n"
      "strd     %1, %H1, %0"
      : "=m"(*addr)
      : "r" (value));
#else
    // The write is done as a swap so that the cache-line is in the exclusive state for the store.
    int64_t prev;
    int status;
    do {
      __asm__ __volatile__("@ QuasiAtomic::Write64\n"
        "ldrexd     %0, %H0, %2\n"
        "strexd     %1, %3, %H3, %2"
        : "=&r" (prev), "=&r" (status), "+Q"(*addr)
        : "r" (value)
        : "cc");
      } while (UNLIKELY(status != 0));
#endif
#elif defined(__i386__)
      __asm__ __volatile__(
        "movq     %1, %0"
        : "=m" (*addr)
        : "x" (value));
#else
      LOG(FATAL) << "Unsupported architecture";
#endif
#endif  // defined(__LP64__)
    } else {
      SwapMutexWrite64(addr, value);
    }
  }

  // Atomically compare the value at "addr" to "old_value", if equal replace it with "new_value"
  // and return true. Otherwise, don't swap, and return false.
  // This is fully ordered, i.e. it has C++11 memory_order_seq_cst
  // semantics (assuming all other accesses use a mutex if this one does).
  // This has "strong" semantics; if it fails then it is guaranteed that
  // at some point during the execution of Cas64, *addr was not equal to
  // old_value.
  static bool Cas64(int64_t old_value, int64_t new_value, volatile int64_t* addr) {
    if (!kNeedSwapMutexes) {
      return __sync_bool_compare_and_swap(addr, old_value, new_value);
    } else {
      return SwapMutexCas64(old_value, new_value, addr);
    }
  }

  // Does the architecture provide reasonable atomic long operations or do we fall back on mutexes?
  static bool LongAtomicsUseMutexes() {
    return kNeedSwapMutexes;
  }

  #if ART_HAVE_STDATOMIC

  static void ThreadFenceAcquire() {
    std::atomic_thread_fence(std::memory_order_acquire);
  }

  static void ThreadFenceRelease() {
    std::atomic_thread_fence(std::memory_order_release);
  }

  static void ThreadFenceForConstructor() {
    #if defined(__aarch64__)
      __asm__ __volatile__("dmb ishst" : : : "memory");
    #else
      std::atomic_thread_fence(std::memory_order_release);
    #endif
  }

  static void ThreadFenceSequentiallyConsistent() {
    std::atomic_thread_fence(std::memory_order_seq_cst);
  }

  #else

  static void ThreadFenceAcquire() {
  #if defined(__arm__) || defined(__aarch64__)
    __asm__ __volatile__("dmb ish" : : : "memory");
    // Could possibly use dmb ishld on aarch64
    // But currently we also use this on volatile loads
    // to enforce store atomicity.  Ishld is
    // insufficient for that purpose.
  #elif defined(__i386__) || defined(__x86_64__)
    __asm__ __volatile__("" : : : "memory");
  #elif defined(__mips__)
    __asm__ __volatile__("sync" : : : "memory");
  #else
  #error Unexpected architecture
  #endif
  }

  static void ThreadFenceRelease() {
  #if defined(__arm__) || defined(__aarch64__)
    __asm__ __volatile__("dmb ish" : : : "memory");
    // ishst doesn't order load followed by store.
  #elif defined(__i386__) || defined(__x86_64__)
    __asm__ __volatile__("" : : : "memory");
  #elif defined(__mips__)
    __asm__ __volatile__("sync" : : : "memory");
  #else
  #error Unexpected architecture
  #endif
  }

  // Fence at the end of a constructor with final fields
  // or allocation.  We believe this
  // only has to order stores, and can thus be weaker than
  // release on aarch64.
  static void ThreadFenceForConstructor() {
  #if defined(__arm__) || defined(__aarch64__)
    __asm__ __volatile__("dmb ishst" : : : "memory");
  #elif defined(__i386__) || defined(__x86_64__)
    __asm__ __volatile__("" : : : "memory");
  #elif defined(__mips__)
    __asm__ __volatile__("sync" : : : "memory");
  #else
  #error Unexpected architecture
  #endif
  }

  static void ThreadFenceSequentiallyConsistent() {
  #if defined(__arm__) || defined(__aarch64__)
    __asm__ __volatile__("dmb ish" : : : "memory");
  #elif defined(__i386__) || defined(__x86_64__)
    __asm__ __volatile__("mfence" : : : "memory");
  #elif defined(__mips__)
    __asm__ __volatile__("sync" : : : "memory");
  #else
  #error Unexpected architecture
  #endif
  }
  #endif

 private:
  static Mutex* GetSwapMutex(const volatile int64_t* addr);
  static int64_t SwapMutexRead64(volatile const int64_t* addr);
  static void SwapMutexWrite64(volatile int64_t* addr, int64_t val);
  static bool SwapMutexCas64(int64_t old_value, int64_t new_value, volatile int64_t* addr);

  // We stripe across a bunch of different mutexes to reduce contention.
  static constexpr size_t kSwapMutexCount = 32;
  static std::vector<Mutex*>* gSwapMutexes;

  DISALLOW_COPY_AND_ASSIGN(QuasiAtomic);
};

#if ART_HAVE_STDATOMIC
template<typename T>
class Atomic : public std::atomic<T> {
 public:
  Atomic<T>() : std::atomic<T>(0) { }

  explicit Atomic<T>(T value) : std::atomic<T>(value) { }

  // Load from memory without ordering or synchronization constraints.
  T LoadRelaxed() const {
    return this->load(std::memory_order_relaxed);
  }

  // Word tearing allowed, but may race.
  // TODO: Optimize?
  // There has been some discussion of eventually disallowing word
  // tearing for Java data loads.
  T LoadJavaData() const {
    return this->load(std::memory_order_relaxed);
  }

  // Load from memory with a total ordering.
  // Corresponds exactly to a Java volatile load.
  T LoadSequentiallyConsistent() const {
    return this->load(std::memory_order_seq_cst);
  }

  // Store to memory without ordering or synchronization constraints.
  void StoreRelaxed(T desired) {
    this->store(desired, std::memory_order_relaxed);
  }

  // Word tearing allowed, but may race.
  void StoreJavaData(T desired) {
    this->store(desired, std::memory_order_relaxed);
  }

  // Store to memory with release ordering.
  void StoreRelease(T desired) {
    this->store(desired, std::memory_order_release);
  }

  // Store to memory with a total ordering.
  void StoreSequentiallyConsistent(T desired) {
    this->store(desired, std::memory_order_seq_cst);
  }

  // Atomically replace the value with desired value if it matches the expected value.
  // Participates in total ordering of atomic operations.
  bool CompareExchangeStrongSequentiallyConsistent(T expected_value, T desired_value) {
    return this->compare_exchange_strong(expected_value, desired_value, std::memory_order_seq_cst);
  }

  // The same, except it may fail spuriously.
  bool CompareExchangeWeakSequentiallyConsistent(T expected_value, T desired_value) {
    return this->compare_exchange_weak(expected_value, desired_value, std::memory_order_seq_cst);
  }

  // Atomically replace the value with desired value if it matches the expected value. Doesn't
  // imply ordering or synchronization constraints.
  bool CompareExchangeStrongRelaxed(T expected_value, T desired_value) {
    return this->compare_exchange_strong(expected_value, desired_value, std::memory_order_relaxed);
  }

  // The same, except it may fail spuriously.
  bool CompareExchangeWeakRelaxed(T expected_value, T desired_value) {
    return this->compare_exchange_weak(expected_value, desired_value, std::memory_order_relaxed);
  }

  // Atomically replace the value with desired value if it matches the expected value. Prior writes
  // made to other memory locations by the thread that did the release become visible in this
  // thread.
  bool CompareExchangeWeakAcquire(T expected_value, T desired_value) {
    return this->compare_exchange_weak(expected_value, desired_value, std::memory_order_acquire);
  }

  // Atomically replace the value with desired value if it matches the expected value. prior writes
  // to other memory locations become visible to the threads that do a consume or an acquire on the
  // same location.
  bool CompareExchangeWeakRelease(T expected_value, T desired_value) {
    return this->compare_exchange_weak(expected_value, desired_value, std::memory_order_release);
  }

  T FetchAndAddSequentiallyConsistent(const T value) {
    return this->fetch_add(value, std::memory_order_seq_cst);  // Return old_value.
  }

  T FetchAndSubSequentiallyConsistent(const T value) {
    return this->fetch_sub(value, std::memory_order_seq_cst);  // Return old value.
  }

  T FetchAndOrSequentiallyConsistent(const T value) {
    return this->fetch_or(value, std::memory_order_seq_cst);  // Return old_value.
  }

  T FetchAndAndSequentiallyConsistent(const T value) {
    return this->fetch_and(value, std::memory_order_seq_cst);  // Return old_value.
  }

  volatile T* Address() {
    return reinterpret_cast<T*>(this);
  }

  static T MaxValue() {
    return std::numeric_limits<T>::max();
  }
};

#else

template<typename T> class Atomic;

// Helper class for Atomic to deal separately with size 8 and small
// objects.  Should not be used directly.

template<int SZ, class T> struct AtomicHelper {
  friend class Atomic<T>;

 private:
  COMPILE_ASSERT(sizeof(T) <= 4, bad_atomic_helper_arg);

  static T LoadRelaxed(const volatile T* loc) {
    // sizeof(T) <= 4
    return *loc;
  }

  static void StoreRelaxed(volatile T* loc, T desired) {
    // sizeof(T) <= 4
    *loc = desired;
  }

  static bool CompareExchangeStrongSequentiallyConsistent(volatile T* loc,
                                                  T expected_value, T desired_value) {
    // sizeof(T) <= 4
    return __sync_bool_compare_and_swap(loc, expected_value, desired_value);
  }
};

// Interpret the bit pattern of input (type U) as type V. Requires the size
// of V >= size of U (compile-time checked).
// Reproduced here from utils.h to keep dependencies small.
template<typename U, typename V>
static inline V bit_cast_atomic(U in) {
  COMPILE_ASSERT(sizeof(U) == sizeof(V), size_of_u_not_eq_size_of_v);
  union {
    U u;
    V v;
  } tmp;
  tmp.u = in;
  return tmp.v;
}

template<class T> struct AtomicHelper<8, T> {
  friend class Atomic<T>;

 private:
  COMPILE_ASSERT(sizeof(T) == 8, bad_large_atomic_helper_arg);

  static T LoadRelaxed(const volatile T* loc) {
    // sizeof(T) == 8
    volatile const int64_t* loc_ptr =
              reinterpret_cast<volatile const int64_t*>(loc);
    return bit_cast_atomic<int64_t, T>(QuasiAtomic::Read64(loc_ptr));
  }

  static void StoreRelaxed(volatile T* loc, T desired) {
    // sizeof(T) == 8
    volatile int64_t* loc_ptr =
                reinterpret_cast<volatile int64_t*>(loc);
    QuasiAtomic::Write64(loc_ptr, bit_cast_atomic<T, int64_t>(desired));
  }


  static bool CompareExchangeStrongSequentiallyConsistent(volatile T* loc,
                                                  T expected_value, T desired_value) {
    // sizeof(T) == 8
    volatile int64_t* loc_ptr = reinterpret_cast<volatile int64_t*>(loc);
    return QuasiAtomic::Cas64(bit_cast_atomic<T, int64_t>(expected_value),
                              bit_cast_atomic<T, int64_t>(desired_value),
                              loc_ptr);
  }
};

template<typename T>
class PACKED(sizeof(T)) Atomic {
 private:
  COMPILE_ASSERT(sizeof(T) <= 4 || sizeof(T) == 8, bad_atomic_arg);

 public:
  Atomic<T>() : value_(0) { }

  explicit Atomic<T>(T value) : value_(value) { }

  // Load from memory without ordering or synchronization constraints.
  T LoadRelaxed() const {
    return AtomicHelper<sizeof(T), T>::LoadRelaxed(&value_);
  }

  // Word tearing allowed, but may race.
  T LoadJavaData() const {
    return value_;
  }

  // Load from memory with a total ordering.
  T LoadSequentiallyConsistent() const;

  // Store to memory without ordering or synchronization constraints.
  void StoreRelaxed(T desired) {
    AtomicHelper<sizeof(T), T>::StoreRelaxed(&value_, desired);
  }

  // Word tearing allowed, but may race.
  void StoreJavaData(T desired) {
    value_ = desired;
  }

  // Store to memory with release ordering.
  void StoreRelease(T desired);

  // Store to memory with a total ordering.
  void StoreSequentiallyConsistent(T desired);

  // Atomically replace the value with desired value if it matches the expected value.
  // Participates in total ordering of atomic operations.
  bool CompareExchangeStrongSequentiallyConsistent(T expected_value, T desired_value) {
    return AtomicHelper<sizeof(T), T>::
        CompareExchangeStrongSequentiallyConsistent(&value_, expected_value, desired_value);
  }

  // The same, but may fail spuriously.
  bool CompareExchangeWeakSequentiallyConsistent(T expected_value, T desired_value) {
    // TODO: Take advantage of the fact that it may fail spuriously.
    return AtomicHelper<sizeof(T), T>::
        CompareExchangeStrongSequentiallyConsistent(&value_, expected_value, desired_value);
  }

  // Atomically replace the value with desired value if it matches the expected value. Doesn't
  // imply ordering or synchronization constraints.
  bool CompareExchangeStrongRelaxed(T expected_value, T desired_value) {
    // TODO: make this relaxed.
    return CompareExchangeStrongSequentiallyConsistent(expected_value, desired_value);
  }

  // The same, but may fail spuriously.
  bool CompareExchangeWeakRelaxed(T expected_value, T desired_value) {
    // TODO: Take advantage of the fact that it may fail spuriously.
    // TODO: make this relaxed.
    return CompareExchangeStrongSequentiallyConsistent(expected_value, desired_value);
  }

  // Atomically replace the value with desired value if it matches the expected value. Prior accesses
  // made to other memory locations by the thread that did the release become visible in this
  // thread.
  bool CompareExchangeWeakAcquire(T expected_value, T desired_value) {
    // TODO: make this acquire.
    return CompareExchangeWeakSequentiallyConsistent(expected_value, desired_value);
  }

  // Atomically replace the value with desired value if it matches the expected value. Prior accesses
  // to other memory locations become visible to the threads that do a consume or an acquire on the
  // same location.
  bool CompareExchangeWeakRelease(T expected_value, T desired_value) {
    // TODO: make this release.
    return CompareExchangeWeakSequentiallyConsistent(expected_value, desired_value);
  }

  volatile T* Address() {
    return &value_;
  }

  T FetchAndAddSequentiallyConsistent(const T value) {
    if (sizeof(T) <= 4) {
      return __sync_fetch_and_add(&value_, value);  // Return old value.
    } else {
      T expected;
      do {
        expected = LoadRelaxed();
      } while (!CompareExchangeWeakSequentiallyConsistent(expected, expected + value));
      return expected;
    }
  }

  T FetchAndSubSequentiallyConsistent(const T value) {
    if (sizeof(T) <= 4) {
      return __sync_fetch_and_sub(&value_, value);  // Return old value.
    } else {
      return FetchAndAddSequentiallyConsistent(-value);
    }
  }

  T FetchAndOrSequentiallyConsistent(const T value) {
    if (sizeof(T) <= 4) {
      return __sync_fetch_and_or(&value_, value);  // Return old value.
    } else {
      T expected;
      do {
        expected = LoadRelaxed();
      } while (!CompareExchangeWeakSequentiallyConsistent(expected, expected | value));
      return expected;
    }
  }

  T FetchAndAndSequentiallyConsistent(const T value) {
    if (sizeof(T) <= 4) {
      return __sync_fetch_and_and(&value_, value);  // Return old value.
    } else {
      T expected;
      do {
        expected = LoadRelaxed();
      } while (!CompareExchangeWeakSequentiallyConsistent(expected, expected & value));
      return expected;
    }
  }

  T operator++() {  // Prefix operator.
    if (sizeof(T) <= 4) {
      return __sync_add_and_fetch(&value_, 1);  // Return new value.
    } else {
      return FetchAndAddSequentiallyConsistent(1) + 1;
    }
  }

  T operator++(int) {  // Postfix operator.
    return FetchAndAddSequentiallyConsistent(1);
  }

  T operator--() {  // Prefix operator.
    if (sizeof(T) <= 4) {
      return __sync_sub_and_fetch(&value_, 1);  // Return new value.
    } else {
      return FetchAndSubSequentiallyConsistent(1) - 1;
    }
  }

  T operator--(int) {  // Postfix operator.
    return FetchAndSubSequentiallyConsistent(1);
  }

  static T MaxValue() {
    return std::numeric_limits<T>::max();
  }


 private:
  volatile T value_;
};
#endif

typedef Atomic<int32_t> AtomicInteger;

COMPILE_ASSERT(sizeof(AtomicInteger) == sizeof(int32_t), weird_atomic_int_size);
COMPILE_ASSERT(alignof(AtomicInteger) == alignof(int32_t),
               atomic_int_alignment_differs_from_that_of_underlying_type);
COMPILE_ASSERT(sizeof(Atomic<int64_t>) == sizeof(int64_t), weird_atomic_int64_size);
#if defined(__LP64__)
  COMPILE_ASSERT(alignof(Atomic<int64_t>) == alignof(int64_t),
                 atomic_int64_alignment_differs_from_that_of_underlying_type);
#endif
// The above fails on x86-32.
// This is OK, since we explicitly arrange for alignment of 8-byte fields.


#if !ART_HAVE_STDATOMIC
template<typename T>
inline T Atomic<T>::LoadSequentiallyConsistent() const {
  T result = value_;
  if (sizeof(T) != 8 || !QuasiAtomic::LongAtomicsUseMutexes()) {
    QuasiAtomic::ThreadFenceAcquire();
    // We optimistically assume this suffices for store atomicity.
    // On ARMv8 we strengthen ThreadFenceAcquire to make that true.
  }
  return result;
}

template<typename T>
inline void Atomic<T>::StoreRelease(T desired) {
  if (sizeof(T) != 8 || !QuasiAtomic::LongAtomicsUseMutexes()) {
    QuasiAtomic::ThreadFenceRelease();
  }
  StoreRelaxed(desired);
}

template<typename T>
inline void Atomic<T>::StoreSequentiallyConsistent(T desired) {
  if (sizeof(T) != 8 || !QuasiAtomic::LongAtomicsUseMutexes()) {
    QuasiAtomic::ThreadFenceRelease();
  }
  StoreRelaxed(desired);
  if (sizeof(T) != 8 || !QuasiAtomic::LongAtomicsUseMutexes()) {
    QuasiAtomic::ThreadFenceSequentiallyConsistent();
  }
}

#endif

}  // namespace art

#endif  // ART_RUNTIME_ATOMIC_H_