summaryrefslogtreecommitdiffstats
path: root/runtime/base/bit_utils.h
blob: 797215822c36411c017412f2f16ed252b980ead9 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
/*
 * Copyright (C) 2015 The Android Open Source Project
 *
 * Licensed under the Apache License, Version 2.0 (the "License");
 * you may not use this file except in compliance with the License.
 * You may obtain a copy of the License at
 *
 *      http://www.apache.org/licenses/LICENSE-2.0
 *
 * Unless required by applicable law or agreed to in writing, software
 * distributed under the License is distributed on an "AS IS" BASIS,
 * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
 * See the License for the specific language governing permissions and
 * limitations under the License.
 */

#ifndef ART_RUNTIME_BASE_BIT_UTILS_H_
#define ART_RUNTIME_BASE_BIT_UTILS_H_

#include <iterator>
#include <limits>
#include <type_traits>

#include "base/logging.h"
#include "base/iteration_range.h"

namespace art {

template<typename T>
static constexpr int CLZ(T x) {
  static_assert(std::is_integral<T>::value, "T must be integral");
  // TODO: assert unsigned. There is currently many uses with signed values.
  static_assert(sizeof(T) <= sizeof(long long),  // NOLINT [runtime/int] [4]
                "T too large, must be smaller than long long");
  return (sizeof(T) == sizeof(uint32_t))
      ? __builtin_clz(x)  // TODO: __builtin_clz[ll] has undefined behavior for x=0
      : __builtin_clzll(x);
}

template<typename T>
static constexpr int CTZ(T x) {
  static_assert(std::is_integral<T>::value, "T must be integral");
  // TODO: assert unsigned. There is currently many uses with signed values.
  return (sizeof(T) == sizeof(uint32_t))
      ? __builtin_ctz(x)
      : __builtin_ctzll(x);
}

template<typename T>
static constexpr int POPCOUNT(T x) {
  return (sizeof(T) == sizeof(uint32_t))
      ? __builtin_popcount(x)
      : __builtin_popcountll(x);
}

// Find the bit position of the most significant bit (0-based), or -1 if there were no bits set.
template <typename T>
static constexpr ssize_t MostSignificantBit(T value) {
  static_assert(std::is_integral<T>::value, "T must be integral");
  static_assert(std::is_unsigned<T>::value, "T must be unsigned");
  static_assert(std::numeric_limits<T>::radix == 2, "Unexpected radix!");
  return (value == 0) ? -1 : std::numeric_limits<T>::digits - 1 - CLZ(value);
}

// Find the bit position of the least significant bit (0-based), or -1 if there were no bits set.
template <typename T>
static constexpr ssize_t LeastSignificantBit(T value) {
  static_assert(std::is_integral<T>::value, "T must be integral");
  static_assert(std::is_unsigned<T>::value, "T must be unsigned");
  return (value == 0) ? -1 : CTZ(value);
}

// How many bits (minimally) does it take to store the constant 'value'? i.e. 1 for 1, 3 for 5, etc.
template <typename T>
static constexpr size_t MinimumBitsToStore(T value) {
  return static_cast<size_t>(MostSignificantBit(value) + 1);
}

template <typename T>
static constexpr inline T RoundUpToPowerOfTwo(T x) {
  static_assert(std::is_integral<T>::value, "T must be integral");
  static_assert(std::is_unsigned<T>::value, "T must be unsigned");
  // NOTE: Undefined if x > (1 << (std::numeric_limits<T>::digits - 1)).
  return (x < 2u) ? x : static_cast<T>(1u) << (std::numeric_limits<T>::digits - CLZ(x - 1u));
}

template<typename T>
static constexpr bool IsPowerOfTwo(T x) {
  static_assert(std::is_integral<T>::value, "T must be integral");
  // TODO: assert unsigned. There is currently many uses with signed values.
  return (x & (x - 1)) == 0;
}

template<typename T>
static inline int WhichPowerOf2(T x) {
  static_assert(std::is_integral<T>::value, "T must be integral");
  // TODO: assert unsigned. There is currently many uses with signed values.
  DCHECK((x != 0) && IsPowerOfTwo(x));
  return CTZ(x);
}

// For rounding integers.
// NOTE: In the absence of std::omit_from_type_deduction<T> or std::identity<T>, use std::decay<T>.
template<typename T>
static constexpr T RoundDown(T x, typename std::decay<T>::type n) WARN_UNUSED;

template<typename T>
static constexpr T RoundDown(T x, typename std::decay<T>::type n) {
  return
      DCHECK_CONSTEXPR(IsPowerOfTwo(n), , T(0))
      (x & -n);
}

template<typename T>
static constexpr T RoundUp(T x, typename std::remove_reference<T>::type n) WARN_UNUSED;

template<typename T>
static constexpr T RoundUp(T x, typename std::remove_reference<T>::type n) {
  return RoundDown(x + n - 1, n);
}

// For aligning pointers.
template<typename T>
static inline T* AlignDown(T* x, uintptr_t n) WARN_UNUSED;

template<typename T>
static inline T* AlignDown(T* x, uintptr_t n) {
  return reinterpret_cast<T*>(RoundDown(reinterpret_cast<uintptr_t>(x), n));
}

template<typename T>
static inline T* AlignUp(T* x, uintptr_t n) WARN_UNUSED;

template<typename T>
static inline T* AlignUp(T* x, uintptr_t n) {
  return reinterpret_cast<T*>(RoundUp(reinterpret_cast<uintptr_t>(x), n));
}

template<int n, typename T>
static inline bool IsAligned(T x) {
  static_assert((n & (n - 1)) == 0, "n is not a power of two");
  return (x & (n - 1)) == 0;
}

template<int n, typename T>
static inline bool IsAligned(T* x) {
  return IsAligned<n>(reinterpret_cast<const uintptr_t>(x));
}

template<typename T>
static inline bool IsAlignedParam(T x, int n) {
  return (x & (n - 1)) == 0;
}

#define CHECK_ALIGNED(value, alignment) \
  CHECK(::art::IsAligned<alignment>(value)) << reinterpret_cast<const void*>(value)

#define DCHECK_ALIGNED(value, alignment) \
  DCHECK(::art::IsAligned<alignment>(value)) << reinterpret_cast<const void*>(value)

#define DCHECK_ALIGNED_PARAM(value, alignment) \
  DCHECK(::art::IsAlignedParam(value, alignment)) << reinterpret_cast<const void*>(value)

// Like sizeof, but count how many bits a type takes. Pass type explicitly.
template <typename T>
static constexpr size_t BitSizeOf() {
  static_assert(std::is_integral<T>::value, "T must be integral");
  typedef typename std::make_unsigned<T>::type unsigned_type;
  static_assert(sizeof(T) == sizeof(unsigned_type), "Unexpected type size mismatch!");
  static_assert(std::numeric_limits<unsigned_type>::radix == 2, "Unexpected radix!");
  return std::numeric_limits<unsigned_type>::digits;
}

// Like sizeof, but count how many bits a type takes. Infers type from parameter.
template <typename T>
static constexpr size_t BitSizeOf(T /*x*/) {
  return BitSizeOf<T>();
}

static inline uint16_t Low16Bits(uint32_t value) {
  return static_cast<uint16_t>(value);
}

static inline uint16_t High16Bits(uint32_t value) {
  return static_cast<uint16_t>(value >> 16);
}

static inline uint32_t Low32Bits(uint64_t value) {
  return static_cast<uint32_t>(value);
}

static inline uint32_t High32Bits(uint64_t value) {
  return static_cast<uint32_t>(value >> 32);
}

// Check whether an N-bit two's-complement representation can hold value.
template <typename T>
static inline bool IsInt(size_t N, T value) {
  if (N == BitSizeOf<T>()) {
    return true;
  } else {
    CHECK_LT(0u, N);
    CHECK_LT(N, BitSizeOf<T>());
    T limit = static_cast<T>(1) << (N - 1u);
    return (-limit <= value) && (value < limit);
  }
}

template <typename T>
static constexpr T GetIntLimit(size_t bits) {
  return
      DCHECK_CONSTEXPR(bits > 0, "bits cannot be zero", 0)
      DCHECK_CONSTEXPR(bits < BitSizeOf<T>(), "kBits must be < max.", 0)
      static_cast<T>(1) << (bits - 1);
}

template <size_t kBits, typename T>
static constexpr bool IsInt(T value) {
  static_assert(kBits > 0, "kBits cannot be zero.");
  static_assert(kBits <= BitSizeOf<T>(), "kBits must be <= max.");
  static_assert(std::is_signed<T>::value, "Needs a signed type.");
  // Corner case for "use all bits." Can't use the limits, as they would overflow, but it is
  // trivially true.
  return (kBits == BitSizeOf<T>()) ?
      true :
      (-GetIntLimit<T>(kBits) <= value) && (value < GetIntLimit<T>(kBits));
}

template <size_t kBits, typename T>
static constexpr bool IsUint(T value) {
  static_assert(kBits > 0, "kBits cannot be zero.");
  static_assert(kBits <= BitSizeOf<T>(), "kBits must be <= max.");
  static_assert(std::is_integral<T>::value, "Needs an integral type.");
  // Corner case for "use all bits." Can't use the limits, as they would overflow, but it is
  // trivially true.
  // NOTE: To avoid triggering assertion in GetIntLimit(kBits+1) if kBits+1==BitSizeOf<T>(),
  // use GetIntLimit(kBits)*2u. The unsigned arithmetic works well for us if it overflows.
  return (0 <= value) &&
      (kBits == BitSizeOf<T>() ||
          (static_cast<typename std::make_unsigned<T>::type>(value) <=
               GetIntLimit<typename std::make_unsigned<T>::type>(kBits) * 2u - 1u));
}

template <size_t kBits, typename T>
static constexpr bool IsAbsoluteUint(T value) {
  static_assert(kBits <= BitSizeOf<T>(), "kBits must be <= max.");
  static_assert(std::is_integral<T>::value, "Needs an integral type.");
  typedef typename std::make_unsigned<T>::type unsigned_type;
  return (kBits == BitSizeOf<T>())
      ? true
      : IsUint<kBits>(value < 0
                      ? static_cast<unsigned_type>(-1 - value) + 1u  // Avoid overflow.
                      : static_cast<unsigned_type>(value));
}

// Using the Curiously Recurring Template Pattern to implement everything shared
// by LowToHighBitIterator and HighToLowBitIterator, i.e. everything but operator*().
template <typename T, typename Iter>
class BitIteratorBase
    : public std::iterator<std::forward_iterator_tag, uint32_t, ptrdiff_t, void, void> {
  static_assert(std::is_integral<T>::value, "T must be integral");
  static_assert(std::is_unsigned<T>::value, "T must be unsigned");

  static_assert(sizeof(T) == sizeof(uint32_t) || sizeof(T) == sizeof(uint64_t), "Unsupported size");

 public:
  BitIteratorBase() : bits_(0u) { }
  explicit BitIteratorBase(T bits) : bits_(bits) { }

  Iter& operator++() {
    DCHECK_NE(bits_, 0u);
    uint32_t bit = *static_cast<Iter&>(*this);
    bits_ &= ~(static_cast<T>(1u) << bit);
    return static_cast<Iter&>(*this);
  }

  Iter& operator++(int) {
    Iter tmp(static_cast<Iter&>(*this));
    ++*this;
    return tmp;
  }

 protected:
  T bits_;

  template <typename U, typename I>
  friend bool operator==(const BitIteratorBase<U, I>& lhs, const BitIteratorBase<U, I>& rhs);
};

template <typename T, typename Iter>
bool operator==(const BitIteratorBase<T, Iter>& lhs, const BitIteratorBase<T, Iter>& rhs) {
  return lhs.bits_ == rhs.bits_;
}

template <typename T, typename Iter>
bool operator!=(const BitIteratorBase<T, Iter>& lhs, const BitIteratorBase<T, Iter>& rhs) {
  return !(lhs == rhs);
}

template <typename T>
class LowToHighBitIterator : public BitIteratorBase<T, LowToHighBitIterator<T>> {
 public:
  using BitIteratorBase<T, LowToHighBitIterator<T>>::BitIteratorBase;

  uint32_t operator*() const {
    DCHECK_NE(this->bits_, 0u);
    return CTZ(this->bits_);
  }
};

template <typename T>
class HighToLowBitIterator : public BitIteratorBase<T, HighToLowBitIterator<T>> {
 public:
  using BitIteratorBase<T, HighToLowBitIterator<T>>::BitIteratorBase;

  uint32_t operator*() const {
    DCHECK_NE(this->bits_, 0u);
    static_assert(std::numeric_limits<T>::radix == 2, "Unexpected radix!");
    return std::numeric_limits<T>::digits - 1u - CLZ(this->bits_);
  }
};

template <typename T>
IterationRange<LowToHighBitIterator<T>> LowToHighBits(T bits) {
  return IterationRange<LowToHighBitIterator<T>>(
      LowToHighBitIterator<T>(bits), LowToHighBitIterator<T>());
}

template <typename T>
IterationRange<HighToLowBitIterator<T>> HighToLowBits(T bits) {
  return IterationRange<HighToLowBitIterator<T>>(
      HighToLowBitIterator<T>(bits), HighToLowBitIterator<T>());
}

}  // namespace art

#endif  // ART_RUNTIME_BASE_BIT_UTILS_H_