1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
|
/*
* Copyright (C) 2011 The Android Open Source Project
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
#include "bit_vector.h"
#include <limits>
#include <sstream>
#include "allocator.h"
#include "bit_vector-inl.h"
namespace art {
// TODO: replace excessive argument defaulting when we are at gcc 4.7
// or later on host with delegating constructor support. Specifically,
// starts_bits and storage_size/storage are mutually exclusive.
BitVector::BitVector(uint32_t start_bits,
bool expandable,
Allocator* allocator,
uint32_t storage_size,
uint32_t* storage)
: storage_(storage),
storage_size_(storage_size),
allocator_(allocator),
expandable_(expandable) {
static_assert(sizeof(*storage_) == kWordBytes, "word bytes");
static_assert(sizeof(*storage_) * 8u == kWordBits, "word bits");
if (storage_ == nullptr) {
storage_size_ = BitsToWords(start_bits);
storage_ = static_cast<uint32_t*>(allocator_->Alloc(storage_size_ * kWordBytes));
}
}
BitVector::~BitVector() {
allocator_->Free(storage_);
}
bool BitVector::SameBitsSet(const BitVector *src) const {
int our_highest = GetHighestBitSet();
int src_highest = src->GetHighestBitSet();
// If the highest bit set is different, we are different.
if (our_highest != src_highest) {
return false;
}
// If the highest bit set is -1, both are cleared, we are the same.
// If the highest bit set is 0, both have a unique bit set, we are the same.
if (our_highest <= 0) {
return true;
}
// Get the highest bit set's cell's index
// No need of highest + 1 here because it can't be 0 so BitsToWords will work here.
int our_highest_index = BitsToWords(our_highest);
// This memcmp is enough: we know that the highest bit set is the same for both:
// - Therefore, min_size goes up to at least that, we are thus comparing at least what we need to, but not less.
// ie. we are comparing all storage cells that could have difference, if both vectors have cells above our_highest_index,
// they are automatically at 0.
return (memcmp(storage_, src->GetRawStorage(), our_highest_index * kWordBytes) == 0);
}
bool BitVector::IsSubsetOf(const BitVector *other) const {
int this_highest = GetHighestBitSet();
int other_highest = other->GetHighestBitSet();
// If the highest bit set is -1, this is empty and a trivial subset.
if (this_highest < 0) {
return true;
}
// If the highest bit set is higher, this cannot be a subset.
if (this_highest > other_highest) {
return false;
}
// Compare each 32-bit word.
size_t this_highest_index = BitsToWords(this_highest + 1);
for (size_t i = 0; i < this_highest_index; ++i) {
uint32_t this_storage = storage_[i];
uint32_t other_storage = other->storage_[i];
if ((this_storage | other_storage) != other_storage) {
return false;
}
}
return true;
}
void BitVector::Intersect(const BitVector* src) {
uint32_t src_storage_size = src->storage_size_;
// Get the minimum size between us and source.
uint32_t min_size = (storage_size_ < src_storage_size) ? storage_size_ : src_storage_size;
uint32_t idx;
for (idx = 0; idx < min_size; idx++) {
storage_[idx] &= src->GetRawStorageWord(idx);
}
// Now, due to this being an intersection, there are two possibilities:
// - Either src was larger than us: we don't care, all upper bits would thus be 0.
// - Either we are larger than src: we don't care, all upper bits would have been 0 too.
// So all we need to do is set all remaining bits to 0.
for (; idx < storage_size_; idx++) {
storage_[idx] = 0;
}
}
bool BitVector::Union(const BitVector* src) {
// Get the highest bit to determine how much we need to expand.
int highest_bit = src->GetHighestBitSet();
bool changed = false;
// If src has no bit set, we are done: there is no need for a union with src.
if (highest_bit == -1) {
return changed;
}
// Update src_size to how many cells we actually care about: where the bit is + 1.
uint32_t src_size = BitsToWords(highest_bit + 1);
// Is the storage size smaller than src's?
if (storage_size_ < src_size) {
changed = true;
EnsureSize(highest_bit);
// Paranoid: storage size should be big enough to hold this bit now.
DCHECK_LT(static_cast<uint32_t> (highest_bit), storage_size_ * kWordBits);
}
for (uint32_t idx = 0; idx < src_size; idx++) {
uint32_t existing = storage_[idx];
uint32_t update = existing | src->GetRawStorageWord(idx);
if (existing != update) {
changed = true;
storage_[idx] = update;
}
}
return changed;
}
bool BitVector::UnionIfNotIn(const BitVector* union_with, const BitVector* not_in) {
// Get the highest bit to determine how much we need to expand.
int highest_bit = union_with->GetHighestBitSet();
bool changed = false;
// If src has no bit set, we are done: there is no need for a union with src.
if (highest_bit == -1) {
return changed;
}
// Update union_with_size to how many cells we actually care about: where the bit is + 1.
uint32_t union_with_size = BitsToWords(highest_bit + 1);
// Is the storage size smaller than src's?
if (storage_size_ < union_with_size) {
EnsureSize(highest_bit);
// Paranoid: storage size should be big enough to hold this bit now.
DCHECK_LT(static_cast<uint32_t> (highest_bit), storage_size_ * kWordBits);
}
uint32_t not_in_size = not_in->GetStorageSize();
uint32_t idx = 0;
for (; idx < std::min(not_in_size, union_with_size); idx++) {
uint32_t existing = storage_[idx];
uint32_t update = existing |
(union_with->GetRawStorageWord(idx) & ~not_in->GetRawStorageWord(idx));
if (existing != update) {
changed = true;
storage_[idx] = update;
}
}
for (; idx < union_with_size; idx++) {
uint32_t existing = storage_[idx];
uint32_t update = existing | union_with->GetRawStorageWord(idx);
if (existing != update) {
changed = true;
storage_[idx] = update;
}
}
return changed;
}
void BitVector::Subtract(const BitVector *src) {
uint32_t src_size = src->storage_size_;
// We only need to operate on bytes up to the smaller of the sizes of the two operands.
unsigned int min_size = (storage_size_ > src_size) ? src_size : storage_size_;
// Difference until max, we know both accept it:
// There is no need to do more:
// If we are bigger than src, the upper bits are unchanged.
// If we are smaller than src, the non-existant upper bits are 0 and thus can't get subtracted.
for (uint32_t idx = 0; idx < min_size; idx++) {
storage_[idx] &= (~(src->GetRawStorageWord(idx)));
}
}
uint32_t BitVector::NumSetBits() const {
uint32_t count = 0;
for (uint32_t word = 0; word < storage_size_; word++) {
count += POPCOUNT(storage_[word]);
}
return count;
}
uint32_t BitVector::NumSetBits(uint32_t end) const {
DCHECK_LE(end, storage_size_ * kWordBits);
return NumSetBits(storage_, end);
}
void BitVector::SetInitialBits(uint32_t num_bits) {
// If num_bits is 0, clear everything.
if (num_bits == 0) {
ClearAllBits();
return;
}
// Set the highest bit we want to set to get the BitVector allocated if need be.
SetBit(num_bits - 1);
uint32_t idx;
// We can set every storage element with -1.
for (idx = 0; idx < WordIndex(num_bits); idx++) {
storage_[idx] = std::numeric_limits<uint32_t>::max();
}
// Handle the potentially last few bits.
uint32_t rem_num_bits = num_bits & 0x1f;
if (rem_num_bits != 0) {
storage_[idx] = (1U << rem_num_bits) - 1;
++idx;
}
// Now set the upper ones to 0.
for (; idx < storage_size_; idx++) {
storage_[idx] = 0;
}
}
int BitVector::GetHighestBitSet() const {
unsigned int max = storage_size_;
for (int idx = max - 1; idx >= 0; idx--) {
// If not 0, we have more work: check the bits.
uint32_t value = storage_[idx];
if (value != 0) {
// Return highest bit set in value plus bits from previous storage indexes.
return 31 - CLZ(value) + (idx * kWordBits);
}
}
// All zero, therefore return -1.
return -1;
}
void BitVector::Copy(const BitVector *src) {
// Get highest bit set, we only need to copy till then.
int highest_bit = src->GetHighestBitSet();
// If nothing is set, clear everything.
if (highest_bit == -1) {
ClearAllBits();
return;
}
// Set upper bit to ensure right size before copy.
SetBit(highest_bit);
// Now set until highest bit's storage.
uint32_t size = 1 + (highest_bit / kWordBits);
memcpy(storage_, src->GetRawStorage(), kWordBytes * size);
// Set upper bits to 0.
uint32_t left = storage_size_ - size;
if (left > 0) {
memset(storage_ + size, 0, kWordBytes * left);
}
}
#if defined(__clang__) && defined(__ARM_64BIT_STATE)
// b/19180814 When POPCOUNT is inlined, boot up failed on arm64 devices.
__attribute__((optnone))
#endif
uint32_t BitVector::NumSetBits(const uint32_t* storage, uint32_t end) {
uint32_t word_end = WordIndex(end);
uint32_t partial_word_bits = end & 0x1f;
uint32_t count = 0u;
for (uint32_t word = 0u; word < word_end; word++) {
count += POPCOUNT(storage[word]);
}
if (partial_word_bits != 0u) {
count += POPCOUNT(storage[word_end] & ~(0xffffffffu << partial_word_bits));
}
return count;
}
void BitVector::Dump(std::ostream& os, const char *prefix) const {
std::ostringstream buffer;
DumpHelper(prefix, buffer);
os << buffer.str() << std::endl;
}
void BitVector::DumpHelper(const char* prefix, std::ostringstream& buffer) const {
// Initialize it.
if (prefix != nullptr) {
buffer << prefix;
}
buffer << '(';
for (size_t i = 0; i < storage_size_ * kWordBits; i++) {
buffer << IsBitSet(i);
}
buffer << ')';
}
void BitVector::EnsureSize(uint32_t idx) {
if (idx >= storage_size_ * kWordBits) {
DCHECK(expandable_) << "Attempted to expand a non-expandable bitmap to position " << idx;
/* Round up to word boundaries for "idx+1" bits */
uint32_t new_size = BitsToWords(idx + 1);
DCHECK_GT(new_size, storage_size_);
uint32_t *new_storage =
static_cast<uint32_t*>(allocator_->Alloc(new_size * kWordBytes));
memcpy(new_storage, storage_, storage_size_ * kWordBytes);
// Zero out the new storage words.
memset(&new_storage[storage_size_], 0, (new_size - storage_size_) * kWordBytes);
// TODO: collect stats on space wasted because of resize.
// Free old storage.
allocator_->Free(storage_);
// Set fields.
storage_ = new_storage;
storage_size_ = new_size;
}
}
} // namespace art
|