1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
|
/*
* Copyright (C) 2013 The Android Open Source Project
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
#ifndef ART_RUNTIME_BASE_HISTOGRAM_INL_H_
#define ART_RUNTIME_BASE_HISTOGRAM_INL_H_
#include "histogram.h"
#include "utils.h"
#include <algorithm>
#include <cmath>
#include <limits>
#include <ostream>
namespace art {
template <class Value> inline void Histogram<Value>::AddValue(Value value) {
CHECK_GE(value, 0.0);
if (value >= max_) {
Value new_max = ((value + 1) / bucket_width_ + 1) * bucket_width_;
DCHECK_GT(new_max, max_);
GrowBuckets(new_max);
}
BucketiseValue(value);
new_values_added_ = true;
}
template <class Value>
inline Histogram<Value>::Histogram(const std::string name)
: kAdjust(1000),
kBucketWidth(5),
kInitialBucketCount(10),
bucket_width_(kBucketWidth),
bucket_count_(kInitialBucketCount) {
name_ = name;
Reset();
}
template <class Value>
inline void Histogram<Value>::GrowBuckets(Value new_max) {
while (max_ < new_max) {
max_ += bucket_width_;
ranges_.push_back(max_);
frequency_.push_back(0);
bucket_count_++;
}
}
template <class Value> inline size_t Histogram<Value>::FindBucket(Value val) {
// Since this is only a linear histogram, bucket index can be found simply with
// dividing the value by the bucket width.
DCHECK_GE(val, min_);
DCHECK_LE(val, max_);
size_t bucket_idx = static_cast<size_t>((double)(val - min_) / bucket_width_);
DCHECK_GE(bucket_idx, 0ul);
DCHECK_LE(bucket_idx, bucket_count_);
return bucket_idx;
}
template <class Value>
inline void Histogram<Value>::BucketiseValue(Value value) {
CHECK_LT(value, max_);
sum_ += value;
sum_of_squares_ += value * value;
size_t bucket_idx = FindBucket(value);
sample_size_++;
if (value > max_value_added_) {
max_value_added_ = value;
}
if (value < min_value_added_) {
min_value_added_ = value;
}
frequency_[bucket_idx]++;
}
template <class Value> inline void Histogram<Value>::Initialize() {
DCHECK_GT(bucket_count_, 0ul);
size_t idx = 0;
for (; idx < bucket_count_; idx++) {
ranges_.push_back(min_ + static_cast<Value>(idx) * (bucket_width_));
frequency_.push_back(0);
}
// Cumulative frequency and ranges has a length of 1 over frequency.
ranges_.push_back(min_ + idx * bucket_width_);
max_ = bucket_width_ * bucket_count_;
}
template <class Value> inline void Histogram<Value>::Reset() {
bucket_width_ = kBucketWidth;
bucket_count_ = kInitialBucketCount;
max_ = bucket_width_ * bucket_count_;
sum_of_squares_ = 0;
sample_size_ = 0;
min_ = 0;
sum_ = 0;
min_value_added_ = std::numeric_limits<Value>::max();
max_value_added_ = std::numeric_limits<Value>::min();
new_values_added_ = false;
ranges_.clear();
frequency_.clear();
cumulative_freq_.clear();
cumulative_perc_.clear();
Initialize();
}
template <class Value> inline void Histogram<Value>::BuildRanges() {
for (size_t idx = 0; idx < bucket_count_; ++idx) {
ranges_.push_back(min_ + idx * bucket_width_);
}
}
template <class Value> inline double Histogram<Value>::Mean() const {
DCHECK_GT(sample_size_, 0ull);
return static_cast<double>(sum_) / static_cast<double>(sample_size_);
}
template <class Value> inline double Histogram<Value>::Variance() const {
DCHECK_GT(sample_size_, 0ull);
// Using algorithms for calculating variance over a population:
// http://en.wikipedia.org/wiki/Algorithms_for_calculating_variance
Value sum_squared = sum_ * sum_;
double sum_squared_by_n_squared =
static_cast<double>(sum_squared) /
static_cast<double>(sample_size_ * sample_size_);
double sum_of_squares_by_n =
static_cast<double>(sum_of_squares_) / static_cast<double>(sample_size_);
return sum_of_squares_by_n - sum_squared_by_n_squared;
}
template <class Value>
inline void Histogram<Value>::PrintBins(std::ostream &os) {
DCHECK_GT(sample_size_, 0ull);
DCHECK(!new_values_added_);
size_t bin_idx = 0;
while (bin_idx < cumulative_freq_.size()) {
if (bin_idx > 0 &&
cumulative_perc_[bin_idx] == cumulative_perc_[bin_idx - 1]) {
bin_idx++;
continue;
}
os << ranges_[bin_idx] << ": " << cumulative_freq_[bin_idx] << "\t"
<< cumulative_perc_[bin_idx] * 100.0 << "%\n";
bin_idx++;
}
}
template <class Value>
inline void Histogram<Value>::PrintConfidenceIntervals(std::ostream &os,
double interval) const {
DCHECK_GT(interval, 0);
DCHECK_LT(interval, 1.0);
double per_0 = (1.0 - interval) / 2.0;
double per_1 = per_0 + interval;
os << Name() << ":\t";
TimeUnit unit = GetAppropriateTimeUnit(Mean() * kAdjust);
os << (interval * 100) << "% C.I. "
<< FormatDuration(Percentile(per_0) * kAdjust, unit);
os << "-" << FormatDuration(Percentile(per_1) * kAdjust, unit) << " ";
os << "Avg: " << FormatDuration(Mean() * kAdjust, unit) << " Max: ";
os << FormatDuration(Max() * kAdjust, unit) << "\n";
}
template <class Value> inline void Histogram<Value>::BuildCDF() {
DCHECK_EQ(cumulative_freq_.size(), 0ull);
DCHECK_EQ(cumulative_perc_.size(), 0ull);
uint64_t accumulated = 0;
cumulative_freq_.push_back(accumulated);
cumulative_perc_.push_back(0.0);
for (size_t idx = 0; idx < frequency_.size(); idx++) {
accumulated += frequency_[idx];
cumulative_freq_.push_back(accumulated);
cumulative_perc_.push_back(static_cast<double>(accumulated) /
static_cast<double>(sample_size_));
}
DCHECK_EQ(*(cumulative_freq_.end() - 1), sample_size_);
DCHECK_EQ(*(cumulative_perc_.end() - 1), 1.0);
}
template <class Value> inline void Histogram<Value>::CreateHistogram() {
DCHECK_GT(sample_size_, 0ull);
// Create a histogram only if new values are added.
if (!new_values_added_)
return;
// Reset cumulative values in case this is not the first time creating histogram.
cumulative_freq_.clear();
cumulative_perc_.clear();
BuildCDF();
new_values_added_ = false;
}
template <class Value>
inline double Histogram<Value>::Percentile(double per) const {
DCHECK_GT(cumulative_perc_.size(), 0ull);
size_t idx, upper_idx = 0, lower_idx = 0;
for (idx = 0; idx < cumulative_perc_.size(); idx++) {
if (per <= cumulative_perc_[idx]) {
upper_idx = idx;
break;
}
if (per >= cumulative_perc_[idx] && idx != 0 &&
cumulative_perc_[idx] != cumulative_perc_[idx - 1]) {
lower_idx = idx;
}
}
double upper_value = static_cast<double>(ranges_[upper_idx]);
double lower_value = static_cast<double>(ranges_[lower_idx]);
double lower_perc = cumulative_perc_[lower_idx];
double upper_perc = cumulative_perc_[upper_idx];
if (per == lower_perc) {
return lower_value;
}
if (per == upper_perc) {
return upper_value;
}
DCHECK_GT(upper_perc, lower_perc);
double value = lower_value + (upper_value - lower_value) *
(per - lower_perc) / (upper_perc - lower_perc);
if (value < min_value_added_) {
value = min_value_added_;
} else if (value > max_value_added_) {
value = max_value_added_;
}
return value;
}
} // namespace art
#endif // ART_RUNTIME_BASE_HISTOGRAM_INL_H_
|