summaryrefslogtreecommitdiffstats
path: root/runtime/base/mutex.h
blob: 9dc7deab84d1d82c135a3ab63c92f53cc3e9fa56 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
/*
 * Copyright (C) 2011 The Android Open Source Project
 *
 * Licensed under the Apache License, Version 2.0 (the "License");
 * you may not use this file except in compliance with the License.
 * You may obtain a copy of the License at
 *
 *      http://www.apache.org/licenses/LICENSE-2.0
 *
 * Unless required by applicable law or agreed to in writing, software
 * distributed under the License is distributed on an "AS IS" BASIS,
 * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
 * See the License for the specific language governing permissions and
 * limitations under the License.
 */

#ifndef ART_RUNTIME_BASE_MUTEX_H_
#define ART_RUNTIME_BASE_MUTEX_H_

#include <pthread.h>
#include <stdint.h>

#include <iosfwd>
#include <string>

#include "atomic.h"
#include "base/logging.h"
#include "base/macros.h"
#include "globals.h"

#if defined(__APPLE__)
#define ART_USE_FUTEXES 0
#else
#define ART_USE_FUTEXES 1
#endif

// Currently Darwin doesn't support locks with timeouts.
#if !defined(__APPLE__)
#define HAVE_TIMED_RWLOCK 1
#else
#define HAVE_TIMED_RWLOCK 0
#endif

namespace art {

class LOCKABLE ReaderWriterMutex;
class ScopedContentionRecorder;
class Thread;

// LockLevel is used to impose a lock hierarchy [1] where acquisition of a Mutex at a higher or
// equal level to a lock a thread holds is invalid. The lock hierarchy achieves a cycle free
// partial ordering and thereby cause deadlock situations to fail checks.
//
// [1] http://www.drdobbs.com/parallel/use-lock-hierarchies-to-avoid-deadlock/204801163
enum LockLevel {
  kLoggingLock = 0,
  kMemMapsLock,
  kSwapMutexesLock,
  kUnexpectedSignalLock,
  kThreadSuspendCountLock,
  kAbortLock,
  kJdwpSocketLock,
  kRosAllocGlobalLock,
  kRosAllocBracketLock,
  kRosAllocBulkFreeLock,
  kAllocSpaceLock,
  kReferenceProcessorLock,
  kDexFileMethodInlinerLock,
  kDexFileToMethodInlinerMapLock,
  kMarkSweepMarkStackLock,
  kTransactionLogLock,
  kInternTableLock,
  kMonitorPoolLock,
  kDefaultMutexLevel,
  kMarkSweepLargeObjectLock,
  kPinTableLock,
  kLoadLibraryLock,
  kJdwpObjectRegistryLock,
  kModifyLdtLock,
  kAllocatedThreadIdsLock,
  kClassLinkerClassesLock,
  kBreakpointLock,
  kMonitorLock,
  kMonitorListLock,
  kThreadListLock,
  kBreakpointInvokeLock,
  kDeoptimizationLock,
  kTraceLock,
  kProfilerLock,
  kJdwpEventListLock,
  kJdwpAttachLock,
  kJdwpStartLock,
  kRuntimeShutdownLock,
  kHeapBitmapLock,
  kMutatorLock,
  kZygoteCreationLock,

  kLockLevelCount  // Must come last.
};
std::ostream& operator<<(std::ostream& os, const LockLevel& rhs);

const bool kDebugLocking = kIsDebugBuild;

// Record Log contention information, dumpable via SIGQUIT.
#ifdef ART_USE_FUTEXES
// To enable lock contention logging, set this to true.
const bool kLogLockContentions = false;
#else
// Keep this false as lock contention logging is supported only with
// futex.
const bool kLogLockContentions = false;
#endif
const size_t kContentionLogSize = 4;
const size_t kContentionLogDataSize = kLogLockContentions ? 1 : 0;
const size_t kAllMutexDataSize = kLogLockContentions ? 1 : 0;

// Base class for all Mutex implementations
class BaseMutex {
 public:
  const char* GetName() const {
    return name_;
  }

  virtual bool IsMutex() const { return false; }
  virtual bool IsReaderWriterMutex() const { return false; }

  virtual void Dump(std::ostream& os) const = 0;

  static void DumpAll(std::ostream& os);

 protected:
  friend class ConditionVariable;

  BaseMutex(const char* name, LockLevel level);
  virtual ~BaseMutex();
  void RegisterAsLocked(Thread* self);
  void RegisterAsUnlocked(Thread* self);
  void CheckSafeToWait(Thread* self);

  friend class ScopedContentionRecorder;

  void RecordContention(uint64_t blocked_tid, uint64_t owner_tid, uint64_t nano_time_blocked);
  void DumpContention(std::ostream& os) const;

  const LockLevel level_;  // Support for lock hierarchy.
  const char* const name_;

  // A log entry that records contention but makes no guarantee that either tid will be held live.
  struct ContentionLogEntry {
    ContentionLogEntry() : blocked_tid(0), owner_tid(0) {}
    uint64_t blocked_tid;
    uint64_t owner_tid;
    AtomicInteger count;
  };
  struct ContentionLogData {
    ContentionLogEntry contention_log[kContentionLogSize];
    // The next entry in the contention log to be updated. Value ranges from 0 to
    // kContentionLogSize - 1.
    AtomicInteger cur_content_log_entry;
    // Number of times the Mutex has been contended.
    AtomicInteger contention_count;
    // Sum of time waited by all contenders in ns.
    volatile uint64_t wait_time;
    void AddToWaitTime(uint64_t value);
    ContentionLogData() : wait_time(0) {}
  };
  ContentionLogData contention_log_data_[kContentionLogDataSize];

 public:
  bool HasEverContended() const {
    if (kLogLockContentions) {
      return contention_log_data_->contention_count.LoadSequentiallyConsistent() > 0;
    }
    return false;
  }
};

// A Mutex is used to achieve mutual exclusion between threads. A Mutex can be used to gain
// exclusive access to what it guards. A Mutex can be in one of two states:
// - Free - not owned by any thread,
// - Exclusive - owned by a single thread.
//
// The effect of locking and unlocking operations on the state is:
// State     | ExclusiveLock | ExclusiveUnlock
// -------------------------------------------
// Free      | Exclusive     | error
// Exclusive | Block*        | Free
// * Mutex is not reentrant and so an attempt to ExclusiveLock on the same thread will result in
//   an error. Being non-reentrant simplifies Waiting on ConditionVariables.
std::ostream& operator<<(std::ostream& os, const Mutex& mu);
class LOCKABLE Mutex : public BaseMutex {
 public:
  explicit Mutex(const char* name, LockLevel level = kDefaultMutexLevel, bool recursive = false);
  ~Mutex();

  virtual bool IsMutex() const { return true; }

  // Block until mutex is free then acquire exclusive access.
  void ExclusiveLock(Thread* self) EXCLUSIVE_LOCK_FUNCTION();
  void Lock(Thread* self) EXCLUSIVE_LOCK_FUNCTION() {  ExclusiveLock(self); }

  // Returns true if acquires exclusive access, false otherwise.
  bool ExclusiveTryLock(Thread* self) EXCLUSIVE_TRYLOCK_FUNCTION(true);
  bool TryLock(Thread* self) EXCLUSIVE_TRYLOCK_FUNCTION(true) { return ExclusiveTryLock(self); }

  // Release exclusive access.
  void ExclusiveUnlock(Thread* self) UNLOCK_FUNCTION();
  void Unlock(Thread* self) UNLOCK_FUNCTION() {  ExclusiveUnlock(self); }

  // Is the current thread the exclusive holder of the Mutex.
  bool IsExclusiveHeld(const Thread* self) const;

  // Assert that the Mutex is exclusively held by the current thread.
  void AssertExclusiveHeld(const Thread* self) {
    if (kDebugLocking && (gAborting == 0)) {
      CHECK(IsExclusiveHeld(self)) << *this;
    }
  }
  void AssertHeld(const Thread* self) { AssertExclusiveHeld(self); }

  // Assert that the Mutex is not held by the current thread.
  void AssertNotHeldExclusive(const Thread* self) {
    if (kDebugLocking && (gAborting == 0)) {
      CHECK(!IsExclusiveHeld(self)) << *this;
    }
  }
  void AssertNotHeld(const Thread* self) { AssertNotHeldExclusive(self); }

  // Id associated with exclusive owner. No memory ordering semantics if called from a thread other
  // than the owner.
  uint64_t GetExclusiveOwnerTid() const;

  // Returns how many times this Mutex has been locked, it is better to use AssertHeld/NotHeld.
  unsigned int GetDepth() const {
    return recursion_count_;
  }

  virtual void Dump(std::ostream& os) const;

 private:
#if ART_USE_FUTEXES
  // 0 is unheld, 1 is held.
  AtomicInteger state_;
  // Exclusive owner.
  volatile uint64_t exclusive_owner_;
  // Number of waiting contenders.
  AtomicInteger num_contenders_;
#else
  pthread_mutex_t mutex_;
  volatile uint64_t exclusive_owner_;  // Guarded by mutex_.
#endif
  const bool recursive_;  // Can the lock be recursively held?
  unsigned int recursion_count_;
  friend class ConditionVariable;
  DISALLOW_COPY_AND_ASSIGN(Mutex);
};

// A ReaderWriterMutex is used to achieve mutual exclusion between threads, similar to a Mutex.
// Unlike a Mutex a ReaderWriterMutex can be used to gain exclusive (writer) or shared (reader)
// access to what it guards. A flaw in relation to a Mutex is that it cannot be used with a
// condition variable. A ReaderWriterMutex can be in one of three states:
// - Free - not owned by any thread,
// - Exclusive - owned by a single thread,
// - Shared(n) - shared amongst n threads.
//
// The effect of locking and unlocking operations on the state is:
//
// State     | ExclusiveLock | ExclusiveUnlock | SharedLock       | SharedUnlock
// ----------------------------------------------------------------------------
// Free      | Exclusive     | error           | SharedLock(1)    | error
// Exclusive | Block         | Free            | Block            | error
// Shared(n) | Block         | error           | SharedLock(n+1)* | Shared(n-1) or Free
// * for large values of n the SharedLock may block.
std::ostream& operator<<(std::ostream& os, const ReaderWriterMutex& mu);
class LOCKABLE ReaderWriterMutex : public BaseMutex {
 public:
  explicit ReaderWriterMutex(const char* name, LockLevel level = kDefaultMutexLevel);
  ~ReaderWriterMutex();

  virtual bool IsReaderWriterMutex() const { return true; }

  // Block until ReaderWriterMutex is free then acquire exclusive access.
  void ExclusiveLock(Thread* self) EXCLUSIVE_LOCK_FUNCTION();
  void WriterLock(Thread* self) EXCLUSIVE_LOCK_FUNCTION() {  ExclusiveLock(self); }

  // Release exclusive access.
  void ExclusiveUnlock(Thread* self) UNLOCK_FUNCTION();
  void WriterUnlock(Thread* self) UNLOCK_FUNCTION() {  ExclusiveUnlock(self); }

  // Block until ReaderWriterMutex is free and acquire exclusive access. Returns true on success
  // or false if timeout is reached.
#if HAVE_TIMED_RWLOCK
  bool ExclusiveLockWithTimeout(Thread* self, int64_t ms, int32_t ns)
      EXCLUSIVE_TRYLOCK_FUNCTION(true);
#endif

  // Block until ReaderWriterMutex is shared or free then acquire a share on the access.
  void SharedLock(Thread* self) SHARED_LOCK_FUNCTION() ALWAYS_INLINE;
  void ReaderLock(Thread* self) SHARED_LOCK_FUNCTION() { SharedLock(self); }

  // Try to acquire share of ReaderWriterMutex.
  bool SharedTryLock(Thread* self) EXCLUSIVE_TRYLOCK_FUNCTION(true);

  // Release a share of the access.
  void SharedUnlock(Thread* self) UNLOCK_FUNCTION() ALWAYS_INLINE;
  void ReaderUnlock(Thread* self) UNLOCK_FUNCTION() { SharedUnlock(self); }

  // Is the current thread the exclusive holder of the ReaderWriterMutex.
  bool IsExclusiveHeld(const Thread* self) const;

  // Assert the current thread has exclusive access to the ReaderWriterMutex.
  void AssertExclusiveHeld(const Thread* self) {
    if (kDebugLocking && (gAborting == 0)) {
      CHECK(IsExclusiveHeld(self)) << *this;
    }
  }
  void AssertWriterHeld(const Thread* self) { AssertExclusiveHeld(self); }

  // Assert the current thread doesn't have exclusive access to the ReaderWriterMutex.
  void AssertNotExclusiveHeld(const Thread* self) {
    if (kDebugLocking && (gAborting == 0)) {
      CHECK(!IsExclusiveHeld(self)) << *this;
    }
  }
  void AssertNotWriterHeld(const Thread* self) { AssertNotExclusiveHeld(self); }

  // Is the current thread a shared holder of the ReaderWriterMutex.
  bool IsSharedHeld(const Thread* self) const;

  // Assert the current thread has shared access to the ReaderWriterMutex.
  void AssertSharedHeld(const Thread* self) {
    if (kDebugLocking && (gAborting == 0)) {
      // TODO: we can only assert this well when self != NULL.
      CHECK(IsSharedHeld(self) || self == NULL) << *this;
    }
  }
  void AssertReaderHeld(const Thread* self) { AssertSharedHeld(self); }

  // Assert the current thread doesn't hold this ReaderWriterMutex either in shared or exclusive
  // mode.
  void AssertNotHeld(const Thread* self) {
    if (kDebugLocking && (gAborting == 0)) {
      CHECK(!IsSharedHeld(self)) << *this;
    }
  }

  // Id associated with exclusive owner. No memory ordering semantics if called from a thread other
  // than the owner.
  uint64_t GetExclusiveOwnerTid() const;

  virtual void Dump(std::ostream& os) const;

 private:
#if ART_USE_FUTEXES
  // -1 implies held exclusive, +ve shared held by state_ many owners.
  AtomicInteger state_;
  // Exclusive owner. Modification guarded by this mutex.
  volatile uint64_t exclusive_owner_;
  // Number of contenders waiting for a reader share.
  AtomicInteger num_pending_readers_;
  // Number of contenders waiting to be the writer.
  AtomicInteger num_pending_writers_;
#else
  pthread_rwlock_t rwlock_;
  volatile uint64_t exclusive_owner_;  // Guarded by rwlock_.
#endif
  DISALLOW_COPY_AND_ASSIGN(ReaderWriterMutex);
};

// ConditionVariables allow threads to queue and sleep. Threads may then be resumed individually
// (Signal) or all at once (Broadcast).
class ConditionVariable {
 public:
  explicit ConditionVariable(const char* name, Mutex& mutex);
  ~ConditionVariable();

  void Broadcast(Thread* self);
  void Signal(Thread* self);
  // TODO: No thread safety analysis on Wait and TimedWait as they call mutex operations via their
  //       pointer copy, thereby defeating annotalysis.
  void Wait(Thread* self) NO_THREAD_SAFETY_ANALYSIS;
  void TimedWait(Thread* self, int64_t ms, int32_t ns) NO_THREAD_SAFETY_ANALYSIS;
  // Variant of Wait that should be used with caution. Doesn't validate that no mutexes are held
  // when waiting.
  // TODO: remove this.
  void WaitHoldingLocks(Thread* self) NO_THREAD_SAFETY_ANALYSIS;

 private:
  const char* const name_;
  // The Mutex being used by waiters. It is an error to mix condition variables between different
  // Mutexes.
  Mutex& guard_;
#if ART_USE_FUTEXES
  // A counter that is modified by signals and broadcasts. This ensures that when a waiter gives up
  // their Mutex and another thread takes it and signals, the waiting thread observes that sequence_
  // changed and doesn't enter the wait. Modified while holding guard_, but is read by futex wait
  // without guard_ held.
  AtomicInteger sequence_;
  // Number of threads that have come into to wait, not the length of the waiters on the futex as
  // waiters may have been requeued onto guard_. Guarded by guard_.
  volatile int32_t num_waiters_;
#else
  pthread_cond_t cond_;
#endif
  DISALLOW_COPY_AND_ASSIGN(ConditionVariable);
};

// Scoped locker/unlocker for a regular Mutex that acquires mu upon construction and releases it
// upon destruction.
class SCOPED_LOCKABLE MutexLock {
 public:
  explicit MutexLock(Thread* self, Mutex& mu) EXCLUSIVE_LOCK_FUNCTION(mu) : self_(self), mu_(mu) {
    mu_.ExclusiveLock(self_);
  }

  ~MutexLock() UNLOCK_FUNCTION() {
    mu_.ExclusiveUnlock(self_);
  }

 private:
  Thread* const self_;
  Mutex& mu_;
  DISALLOW_COPY_AND_ASSIGN(MutexLock);
};
// Catch bug where variable name is omitted. "MutexLock (lock);" instead of "MutexLock mu(lock)".
#define MutexLock(x) COMPILE_ASSERT(0, mutex_lock_declaration_missing_variable_name)

// Scoped locker/unlocker for a ReaderWriterMutex that acquires read access to mu upon
// construction and releases it upon destruction.
class SCOPED_LOCKABLE ReaderMutexLock {
 public:
  explicit ReaderMutexLock(Thread* self, ReaderWriterMutex& mu) EXCLUSIVE_LOCK_FUNCTION(mu) :
      self_(self), mu_(mu) {
    mu_.SharedLock(self_);
  }

  ~ReaderMutexLock() UNLOCK_FUNCTION() {
    mu_.SharedUnlock(self_);
  }

 private:
  Thread* const self_;
  ReaderWriterMutex& mu_;
  DISALLOW_COPY_AND_ASSIGN(ReaderMutexLock);
};
// Catch bug where variable name is omitted. "ReaderMutexLock (lock);" instead of
// "ReaderMutexLock mu(lock)".
#define ReaderMutexLock(x) COMPILE_ASSERT(0, reader_mutex_lock_declaration_missing_variable_name)

// Scoped locker/unlocker for a ReaderWriterMutex that acquires write access to mu upon
// construction and releases it upon destruction.
class SCOPED_LOCKABLE WriterMutexLock {
 public:
  explicit WriterMutexLock(Thread* self, ReaderWriterMutex& mu) EXCLUSIVE_LOCK_FUNCTION(mu) :
      self_(self), mu_(mu) {
    mu_.ExclusiveLock(self_);
  }

  ~WriterMutexLock() UNLOCK_FUNCTION() {
    mu_.ExclusiveUnlock(self_);
  }

 private:
  Thread* const self_;
  ReaderWriterMutex& mu_;
  DISALLOW_COPY_AND_ASSIGN(WriterMutexLock);
};
// Catch bug where variable name is omitted. "WriterMutexLock (lock);" instead of
// "WriterMutexLock mu(lock)".
#define WriterMutexLock(x) COMPILE_ASSERT(0, writer_mutex_lock_declaration_missing_variable_name)

// Global mutexes corresponding to the levels above.
class Locks {
 public:
  static void Init();

  // The mutator_lock_ is used to allow mutators to execute in a shared (reader) mode or to block
  // mutators by having an exclusive (writer) owner. In normal execution each mutator thread holds
  // a share on the mutator_lock_. The garbage collector may also execute with shared access but
  // at times requires exclusive access to the heap (not to be confused with the heap meta-data
  // guarded by the heap_lock_ below). When the garbage collector requires exclusive access it asks
  // the mutators to suspend themselves which also involves usage of the thread_suspend_count_lock_
  // to cover weaknesses in using ReaderWriterMutexes with ConditionVariables. We use a condition
  // variable to wait upon in the suspension logic as releasing and then re-acquiring a share on
  // the mutator lock doesn't necessarily allow the exclusive user (e.g the garbage collector)
  // chance to acquire the lock.
  //
  // Thread suspension:
  // Shared users                                  | Exclusive user
  // (holding mutator lock and in kRunnable state) |   .. running ..
  //   .. running ..                               | Request thread suspension by:
  //   .. running ..                               |   - acquiring thread_suspend_count_lock_
  //   .. running ..                               |   - incrementing Thread::suspend_count_ on
  //   .. running ..                               |     all mutator threads
  //   .. running ..                               |   - releasing thread_suspend_count_lock_
  //   .. running ..                               | Block trying to acquire exclusive mutator lock
  // Poll Thread::suspend_count_ and enter full    |   .. blocked ..
  // suspend code.                                 |   .. blocked ..
  // Change state to kSuspended                    |   .. blocked ..
  // x: Release share on mutator_lock_             | Carry out exclusive access
  // Acquire thread_suspend_count_lock_            |   .. exclusive ..
  // while Thread::suspend_count_ > 0              |   .. exclusive ..
  //   - wait on Thread::resume_cond_              |   .. exclusive ..
  //     (releases thread_suspend_count_lock_)     |   .. exclusive ..
  //   .. waiting ..                               | Release mutator_lock_
  //   .. waiting ..                               | Request thread resumption by:
  //   .. waiting ..                               |   - acquiring thread_suspend_count_lock_
  //   .. waiting ..                               |   - decrementing Thread::suspend_count_ on
  //   .. waiting ..                               |     all mutator threads
  //   .. waiting ..                               |   - notifying on Thread::resume_cond_
  //    - re-acquire thread_suspend_count_lock_    |   - releasing thread_suspend_count_lock_
  // Release thread_suspend_count_lock_            |  .. running ..
  // Acquire share on mutator_lock_                |  .. running ..
  //  - This could block but the thread still      |  .. running ..
  //    has a state of kSuspended and so this      |  .. running ..
  //    isn't an issue.                            |  .. running ..
  // Acquire thread_suspend_count_lock_            |  .. running ..
  //  - we poll here as we're transitioning into   |  .. running ..
  //    kRunnable and an individual thread suspend |  .. running ..
  //    request (e.g for debugging) won't try      |  .. running ..
  //    to acquire the mutator lock (which would   |  .. running ..
  //    block as we hold the mutator lock). This   |  .. running ..
  //    poll ensures that if the suspender thought |  .. running ..
  //    we were suspended by incrementing our      |  .. running ..
  //    Thread::suspend_count_ and then reading    |  .. running ..
  //    our state we go back to waiting on         |  .. running ..
  //    Thread::resume_cond_.                      |  .. running ..
  // can_go_runnable = Thread::suspend_count_ == 0 |  .. running ..
  // Release thread_suspend_count_lock_            |  .. running ..
  // if can_go_runnable                            |  .. running ..
  //   Change state to kRunnable                   |  .. running ..
  // else                                          |  .. running ..
  //   Goto x                                      |  .. running ..
  //  .. running ..                                |  .. running ..
  static ReaderWriterMutex* mutator_lock_;

  // Allow reader-writer mutual exclusion on the mark and live bitmaps of the heap.
  static ReaderWriterMutex* heap_bitmap_lock_ ACQUIRED_AFTER(mutator_lock_);

  // Guards shutdown of the runtime.
  static Mutex* runtime_shutdown_lock_ ACQUIRED_AFTER(heap_bitmap_lock_);

  // Guards background profiler global state.
  static Mutex* profiler_lock_ ACQUIRED_AFTER(runtime_shutdown_lock_);

  // Guards trace (ie traceview) requests.
  static Mutex* trace_lock_ ACQUIRED_AFTER(profiler_lock_);

  // The thread_list_lock_ guards ThreadList::list_. It is also commonly held to stop threads
  // attaching and detaching.
  static Mutex* thread_list_lock_ ACQUIRED_AFTER(trace_lock_);

  // Guards breakpoints.
  static Mutex* breakpoint_lock_ ACQUIRED_AFTER(thread_list_lock_);

  // Guards lists of classes within the class linker.
  static ReaderWriterMutex* classlinker_classes_lock_ ACQUIRED_AFTER(breakpoint_lock_);

  // When declaring any Mutex add DEFAULT_MUTEX_ACQUIRED_AFTER to use annotalysis to check the code
  // doesn't try to hold a higher level Mutex.
  #define DEFAULT_MUTEX_ACQUIRED_AFTER ACQUIRED_AFTER(Locks::classlinker_classes_lock_)

  // Guard the allocation/deallocation of thread ids.
  static Mutex* allocated_thread_ids_lock_ ACQUIRED_AFTER(classlinker_classes_lock_);

  // Guards modification of the LDT on x86.
  static Mutex* modify_ldt_lock_ ACQUIRED_AFTER(allocated_thread_ids_lock_);

  // Guards intern table.
  static Mutex* intern_table_lock_ ACQUIRED_AFTER(modify_ldt_lock_);

  // Have an exclusive aborting thread.
  static Mutex* abort_lock_ ACQUIRED_AFTER(classlinker_classes_lock_);

  // Allow mutual exclusion when manipulating Thread::suspend_count_.
  // TODO: Does the trade-off of a per-thread lock make sense?
  static Mutex* thread_suspend_count_lock_ ACQUIRED_AFTER(abort_lock_);

  // One unexpected signal at a time lock.
  static Mutex* unexpected_signal_lock_ ACQUIRED_AFTER(thread_suspend_count_lock_);

  // Guards the maps in mem_map.
  static Mutex* mem_maps_lock_ ACQUIRED_AFTER(unexpected_signal_lock_);

  // Have an exclusive logging thread.
  static Mutex* logging_lock_ ACQUIRED_AFTER(unexpected_signal_lock_);
};

}  // namespace art

#endif  // ART_RUNTIME_BASE_MUTEX_H_