summaryrefslogtreecommitdiffstats
path: root/runtime/elf_file.cc
blob: bb33978761dc48f910a389ea65eb1fdee1f7144d (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
/*
 * Copyright (C) 2012 The Android Open Source Project
 *
 * Licensed under the Apache License, Version 2.0 (the "License");
 * you may not use this file except in compliance with the License.
 * You may obtain a copy of the License at
 *
 *      http://www.apache.org/licenses/LICENSE-2.0
 *
 * Unless required by applicable law or agreed to in writing, software
 * distributed under the License is distributed on an "AS IS" BASIS,
 * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
 * See the License for the specific language governing permissions and
 * limitations under the License.
 */

#include "elf_file.h"

#include <sys/types.h>
#include <unistd.h>

#include "base/logging.h"
#include "base/stringprintf.h"
#include "base/stl_util.h"
#include "dwarf.h"
#include "leb128.h"
#include "utils.h"
#include "instruction_set.h"

namespace art {

// -------------------------------------------------------------------
// Binary GDB JIT Interface as described in
//   http://sourceware.org/gdb/onlinedocs/gdb/Declarations.html
extern "C" {
  typedef enum {
    JIT_NOACTION = 0,
    JIT_REGISTER_FN,
    JIT_UNREGISTER_FN
  } JITAction;

  struct JITCodeEntry {
    JITCodeEntry* next_;
    JITCodeEntry* prev_;
    const byte *symfile_addr_;
    uint64_t symfile_size_;
  };

  struct JITDescriptor {
    uint32_t version_;
    uint32_t action_flag_;
    JITCodeEntry* relevant_entry_;
    JITCodeEntry* first_entry_;
  };

  // GDB will place breakpoint into this function.
  // To prevent GCC from inlining or removing it we place noinline attribute
  // and inline assembler statement inside.
  void __attribute__((noinline)) __jit_debug_register_code() {
    __asm__("");
  }

  // GDB will inspect contents of this descriptor.
  // Static initialization is necessary to prevent GDB from seeing
  // uninitialized descriptor.
  JITDescriptor __jit_debug_descriptor = { 1, JIT_NOACTION, nullptr, nullptr };
}


static JITCodeEntry* CreateCodeEntry(const byte *symfile_addr,
                                     uintptr_t symfile_size) {
  JITCodeEntry* entry = new JITCodeEntry;
  entry->symfile_addr_ = symfile_addr;
  entry->symfile_size_ = symfile_size;
  entry->prev_ = nullptr;

  // TODO: Do we need a lock here?
  entry->next_ = __jit_debug_descriptor.first_entry_;
  if (entry->next_ != nullptr) {
    entry->next_->prev_ = entry;
  }
  __jit_debug_descriptor.first_entry_ = entry;
  __jit_debug_descriptor.relevant_entry_ = entry;

  __jit_debug_descriptor.action_flag_ = JIT_REGISTER_FN;
  __jit_debug_register_code();
  return entry;
}


static void UnregisterCodeEntry(JITCodeEntry* entry) {
  // TODO: Do we need a lock here?
  if (entry->prev_ != nullptr) {
    entry->prev_->next_ = entry->next_;
  } else {
    __jit_debug_descriptor.first_entry_ = entry->next_;
  }

  if (entry->next_ != nullptr) {
    entry->next_->prev_ = entry->prev_;
  }

  __jit_debug_descriptor.relevant_entry_ = entry;
  __jit_debug_descriptor.action_flag_ = JIT_UNREGISTER_FN;
  __jit_debug_register_code();
  delete entry;
}

ElfFile::ElfFile(File* file, bool writable, bool program_header_only)
  : file_(file),
    writable_(writable),
    program_header_only_(program_header_only),
    header_(nullptr),
    base_address_(nullptr),
    program_headers_start_(nullptr),
    section_headers_start_(nullptr),
    dynamic_program_header_(nullptr),
    dynamic_section_start_(nullptr),
    symtab_section_start_(nullptr),
    dynsym_section_start_(nullptr),
    strtab_section_start_(nullptr),
    dynstr_section_start_(nullptr),
    hash_section_start_(nullptr),
    symtab_symbol_table_(nullptr),
    dynsym_symbol_table_(nullptr),
    jit_elf_image_(nullptr),
    jit_gdb_entry_(nullptr) {
  CHECK(file != nullptr);
}

ElfFile* ElfFile::Open(File* file, bool writable, bool program_header_only,
                       std::string* error_msg) {
  std::unique_ptr<ElfFile> elf_file(new ElfFile(file, writable, program_header_only));
  int prot;
  int flags;
  if (writable) {
    prot = PROT_READ | PROT_WRITE;
    flags = MAP_SHARED;
  } else {
    prot = PROT_READ;
    flags = MAP_PRIVATE;
  }
  if (!elf_file->Setup(prot, flags, error_msg)) {
    return nullptr;
  }
  return elf_file.release();
}

ElfFile* ElfFile::Open(File* file, int prot, int flags, std::string* error_msg) {
  std::unique_ptr<ElfFile> elf_file(new ElfFile(file, (prot & PROT_WRITE) == PROT_WRITE, false));
  if (!elf_file->Setup(prot, flags, error_msg)) {
    return nullptr;
  }
  return elf_file.release();
}

bool ElfFile::Setup(int prot, int flags, std::string* error_msg) {
  int64_t temp_file_length = file_->GetLength();
  if (temp_file_length < 0) {
    errno = -temp_file_length;
    *error_msg = StringPrintf("Failed to get length of file: '%s' fd=%d: %s",
                              file_->GetPath().c_str(), file_->Fd(), strerror(errno));
    return false;
  }
  size_t file_length = static_cast<size_t>(temp_file_length);
  if (file_length < sizeof(Elf32_Ehdr)) {
    *error_msg = StringPrintf("File size of %zd bytes not large enough to contain ELF header of "
                              "%zd bytes: '%s'", file_length, sizeof(Elf32_Ehdr),
                              file_->GetPath().c_str());
    return false;
  }

  if (program_header_only_) {
    // first just map ELF header to get program header size information
    size_t elf_header_size = sizeof(Elf32_Ehdr);
    if (!SetMap(MemMap::MapFile(elf_header_size, prot, flags, file_->Fd(), 0,
                                file_->GetPath().c_str(), error_msg),
                error_msg)) {
      return false;
    }
    // then remap to cover program header
    size_t program_header_size = header_->e_phoff + (header_->e_phentsize * header_->e_phnum);
    if (file_length < program_header_size) {
      *error_msg = StringPrintf("File size of %zd bytes not large enough to contain ELF program "
                                "header of %zd bytes: '%s'", file_length,
                                sizeof(Elf32_Ehdr), file_->GetPath().c_str());
      return false;
    }
    if (!SetMap(MemMap::MapFile(program_header_size, prot, flags, file_->Fd(), 0,
                                file_->GetPath().c_str(), error_msg),
                error_msg)) {
      *error_msg = StringPrintf("Failed to map ELF program headers: %s", error_msg->c_str());
      return false;
    }
  } else {
    // otherwise map entire file
    if (!SetMap(MemMap::MapFile(file_->GetLength(), prot, flags, file_->Fd(), 0,
                                file_->GetPath().c_str(), error_msg),
                error_msg)) {
      *error_msg = StringPrintf("Failed to map ELF file: %s", error_msg->c_str());
      return false;
    }
  }

  // Either way, the program header is relative to the elf header
  program_headers_start_ = Begin() + GetHeader().e_phoff;

  if (!program_header_only_) {
    // Setup section headers.
    section_headers_start_ = Begin() + GetHeader().e_shoff;

    // Find .dynamic section info from program header
    dynamic_program_header_ = FindProgamHeaderByType(PT_DYNAMIC);
    if (dynamic_program_header_ == nullptr) {
      *error_msg = StringPrintf("Failed to find PT_DYNAMIC program header in ELF file: '%s'",
                                file_->GetPath().c_str());
      return false;
    }

    dynamic_section_start_
        = reinterpret_cast<Elf32_Dyn*>(Begin() + GetDynamicProgramHeader().p_offset);

    // Find other sections from section headers
    for (Elf32_Word i = 0; i < GetSectionHeaderNum(); i++) {
      Elf32_Shdr& section_header = GetSectionHeader(i);
      byte* section_addr = Begin() + section_header.sh_offset;
      switch (section_header.sh_type) {
        case SHT_SYMTAB: {
          symtab_section_start_ = reinterpret_cast<Elf32_Sym*>(section_addr);
          break;
        }
        case SHT_DYNSYM: {
          dynsym_section_start_ = reinterpret_cast<Elf32_Sym*>(section_addr);
          break;
        }
        case SHT_STRTAB: {
          // TODO: base these off of sh_link from .symtab and .dynsym above
          if ((section_header.sh_flags & SHF_ALLOC) != 0) {
            dynstr_section_start_ = reinterpret_cast<char*>(section_addr);
          } else {
            strtab_section_start_ = reinterpret_cast<char*>(section_addr);
          }
          break;
        }
        case SHT_DYNAMIC: {
          if (reinterpret_cast<byte*>(dynamic_section_start_) != section_addr) {
            LOG(WARNING) << "Failed to find matching SHT_DYNAMIC for PT_DYNAMIC in "
                         << file_->GetPath() << ": " << std::hex
                         << reinterpret_cast<void*>(dynamic_section_start_)
                         << " != " << reinterpret_cast<void*>(section_addr);
            return false;
          }
          break;
        }
        case SHT_HASH: {
          hash_section_start_ = reinterpret_cast<Elf32_Word*>(section_addr);
          break;
        }
      }
    }
  }
  return true;
}

ElfFile::~ElfFile() {
  STLDeleteElements(&segments_);
  delete symtab_symbol_table_;
  delete dynsym_symbol_table_;
  delete jit_elf_image_;
  if (jit_gdb_entry_) {
    UnregisterCodeEntry(jit_gdb_entry_);
  }
}

bool ElfFile::SetMap(MemMap* map, std::string* error_msg) {
  if (map == nullptr) {
    // MemMap::Open should have already set an error.
    DCHECK(!error_msg->empty());
    return false;
  }
  map_.reset(map);
  CHECK(map_.get() != nullptr) << file_->GetPath();
  CHECK(map_->Begin() != nullptr) << file_->GetPath();

  header_ = reinterpret_cast<Elf32_Ehdr*>(map_->Begin());
  if ((ELFMAG0 != header_->e_ident[EI_MAG0])
      || (ELFMAG1 != header_->e_ident[EI_MAG1])
      || (ELFMAG2 != header_->e_ident[EI_MAG2])
      || (ELFMAG3 != header_->e_ident[EI_MAG3])) {
    *error_msg = StringPrintf("Failed to find ELF magic value %d %d %d %d in %s, found %d %d %d %d",
                              ELFMAG0, ELFMAG1, ELFMAG2, ELFMAG3,
                              file_->GetPath().c_str(),
                              header_->e_ident[EI_MAG0],
                              header_->e_ident[EI_MAG1],
                              header_->e_ident[EI_MAG2],
                              header_->e_ident[EI_MAG3]);
    return false;
  }
  if (ELFCLASS32 != header_->e_ident[EI_CLASS]) {
    *error_msg = StringPrintf("Failed to find expected EI_CLASS value %d in %s, found %d",
                              ELFCLASS32,
                              file_->GetPath().c_str(),
                              header_->e_ident[EI_CLASS]);
    return false;
  }
  if (ELFDATA2LSB != header_->e_ident[EI_DATA]) {
    *error_msg = StringPrintf("Failed to find expected EI_DATA value %d in %s, found %d",
                              ELFDATA2LSB,
                              file_->GetPath().c_str(),
                              header_->e_ident[EI_CLASS]);
    return false;
  }
  if (EV_CURRENT != header_->e_ident[EI_VERSION]) {
    *error_msg = StringPrintf("Failed to find expected EI_VERSION value %d in %s, found %d",
                              EV_CURRENT,
                              file_->GetPath().c_str(),
                              header_->e_ident[EI_CLASS]);
    return false;
  }
  if (ET_DYN != header_->e_type) {
    *error_msg = StringPrintf("Failed to find expected e_type value %d in %s, found %d",
                              ET_DYN,
                              file_->GetPath().c_str(),
                              header_->e_type);
    return false;
  }
  if (EV_CURRENT != header_->e_version) {
    *error_msg = StringPrintf("Failed to find expected e_version value %d in %s, found %d",
                              EV_CURRENT,
                              file_->GetPath().c_str(),
                              header_->e_version);
    return false;
  }
  if (0 != header_->e_entry) {
    *error_msg = StringPrintf("Failed to find expected e_entry value %d in %s, found %d",
                              0,
                              file_->GetPath().c_str(),
                              header_->e_entry);
    return false;
  }
  if (0 == header_->e_phoff) {
    *error_msg = StringPrintf("Failed to find non-zero e_phoff value in %s",
                              file_->GetPath().c_str());
    return false;
  }
  if (0 == header_->e_shoff) {
    *error_msg = StringPrintf("Failed to find non-zero e_shoff value in %s",
                              file_->GetPath().c_str());
    return false;
  }
  if (0 == header_->e_ehsize) {
    *error_msg = StringPrintf("Failed to find non-zero e_ehsize value in %s",
                              file_->GetPath().c_str());
    return false;
  }
  if (0 == header_->e_phentsize) {
    *error_msg = StringPrintf("Failed to find non-zero e_phentsize value in %s",
                              file_->GetPath().c_str());
    return false;
  }
  if (0 == header_->e_phnum) {
    *error_msg = StringPrintf("Failed to find non-zero e_phnum value in %s",
                              file_->GetPath().c_str());
    return false;
  }
  if (0 == header_->e_shentsize) {
    *error_msg = StringPrintf("Failed to find non-zero e_shentsize value in %s",
                              file_->GetPath().c_str());
    return false;
  }
  if (0 == header_->e_shnum) {
    *error_msg = StringPrintf("Failed to find non-zero e_shnum value in %s",
                              file_->GetPath().c_str());
    return false;
  }
  if (0 == header_->e_shstrndx) {
    *error_msg = StringPrintf("Failed to find non-zero e_shstrndx value in %s",
                              file_->GetPath().c_str());
    return false;
  }
  if (header_->e_shstrndx >= header_->e_shnum) {
    *error_msg = StringPrintf("Failed to find e_shnum value %d less than %d in %s",
                              header_->e_shstrndx,
                              header_->e_shnum,
                              file_->GetPath().c_str());
    return false;
  }

  if (!program_header_only_) {
    if (header_->e_phoff >= Size()) {
      *error_msg = StringPrintf("Failed to find e_phoff value %d less than %zd in %s",
                                header_->e_phoff,
                                Size(),
                                file_->GetPath().c_str());
      return false;
    }
    if (header_->e_shoff >= Size()) {
      *error_msg = StringPrintf("Failed to find e_shoff value %d less than %zd in %s",
                                header_->e_shoff,
                                Size(),
                                file_->GetPath().c_str());
      return false;
    }
  }
  return true;
}


Elf32_Ehdr& ElfFile::GetHeader() const {
  CHECK(header_ != nullptr);
  return *header_;
}

byte* ElfFile::GetProgramHeadersStart() const {
  CHECK(program_headers_start_ != nullptr);
  return program_headers_start_;
}

byte* ElfFile::GetSectionHeadersStart() const {
  CHECK(section_headers_start_ != nullptr);
  return section_headers_start_;
}

Elf32_Phdr& ElfFile::GetDynamicProgramHeader() const {
  CHECK(dynamic_program_header_ != nullptr);
  return *dynamic_program_header_;
}

Elf32_Dyn* ElfFile::GetDynamicSectionStart() const {
  CHECK(dynamic_section_start_ != nullptr);
  return dynamic_section_start_;
}

Elf32_Sym* ElfFile::GetSymbolSectionStart(Elf32_Word section_type) const {
  CHECK(IsSymbolSectionType(section_type)) << file_->GetPath() << " " << section_type;
  Elf32_Sym* symbol_section_start;
  switch (section_type) {
    case SHT_SYMTAB: {
      symbol_section_start = symtab_section_start_;
      break;
    }
    case SHT_DYNSYM: {
      symbol_section_start = dynsym_section_start_;
      break;
    }
    default: {
      LOG(FATAL) << section_type;
      symbol_section_start = nullptr;
    }
  }
  CHECK(symbol_section_start != nullptr);
  return symbol_section_start;
}

const char* ElfFile::GetStringSectionStart(Elf32_Word section_type) const {
  CHECK(IsSymbolSectionType(section_type)) << file_->GetPath() << " " << section_type;
  const char* string_section_start;
  switch (section_type) {
    case SHT_SYMTAB: {
      string_section_start = strtab_section_start_;
      break;
    }
    case SHT_DYNSYM: {
      string_section_start = dynstr_section_start_;
      break;
    }
    default: {
      LOG(FATAL) << section_type;
      string_section_start = nullptr;
    }
  }
  CHECK(string_section_start != nullptr);
  return string_section_start;
}

const char* ElfFile::GetString(Elf32_Word section_type, Elf32_Word i) const {
  CHECK(IsSymbolSectionType(section_type)) << file_->GetPath() << " " << section_type;
  if (i == 0) {
    return nullptr;
  }
  const char* string_section_start = GetStringSectionStart(section_type);
  const char* string = string_section_start + i;
  return string;
}

Elf32_Word* ElfFile::GetHashSectionStart() const {
  CHECK(hash_section_start_ != nullptr);
  return hash_section_start_;
}

Elf32_Word ElfFile::GetHashBucketNum() const {
  return GetHashSectionStart()[0];
}

Elf32_Word ElfFile::GetHashChainNum() const {
  return GetHashSectionStart()[1];
}

Elf32_Word ElfFile::GetHashBucket(size_t i) const {
  CHECK_LT(i, GetHashBucketNum());
  // 0 is nbucket, 1 is nchain
  return GetHashSectionStart()[2 + i];
}

Elf32_Word ElfFile::GetHashChain(size_t i) const {
  CHECK_LT(i, GetHashChainNum());
  // 0 is nbucket, 1 is nchain, & chains are after buckets
  return GetHashSectionStart()[2 + GetHashBucketNum() + i];
}

Elf32_Word ElfFile::GetProgramHeaderNum() const {
  return GetHeader().e_phnum;
}

Elf32_Phdr& ElfFile::GetProgramHeader(Elf32_Word i) const {
  CHECK_LT(i, GetProgramHeaderNum()) << file_->GetPath();
  byte* program_header = GetProgramHeadersStart() + (i * GetHeader().e_phentsize);
  CHECK_LT(program_header, End()) << file_->GetPath();
  return *reinterpret_cast<Elf32_Phdr*>(program_header);
}

Elf32_Phdr* ElfFile::FindProgamHeaderByType(Elf32_Word type) const {
  for (Elf32_Word i = 0; i < GetProgramHeaderNum(); i++) {
    Elf32_Phdr& program_header = GetProgramHeader(i);
    if (program_header.p_type == type) {
      return &program_header;
    }
  }
  return nullptr;
}

Elf32_Word ElfFile::GetSectionHeaderNum() const {
  return GetHeader().e_shnum;
}

Elf32_Shdr& ElfFile::GetSectionHeader(Elf32_Word i) const {
  // Can only access arbitrary sections when we have the whole file, not just program header.
  // Even if we Load(), it doesn't bring in all the sections.
  CHECK(!program_header_only_) << file_->GetPath();
  CHECK_LT(i, GetSectionHeaderNum()) << file_->GetPath();
  byte* section_header = GetSectionHeadersStart() + (i * GetHeader().e_shentsize);
  CHECK_LT(section_header, End()) << file_->GetPath();
  return *reinterpret_cast<Elf32_Shdr*>(section_header);
}

Elf32_Shdr* ElfFile::FindSectionByType(Elf32_Word type) const {
  // Can only access arbitrary sections when we have the whole file, not just program header.
  // We could change this to switch on known types if they were detected during loading.
  CHECK(!program_header_only_) << file_->GetPath();
  for (Elf32_Word i = 0; i < GetSectionHeaderNum(); i++) {
    Elf32_Shdr& section_header = GetSectionHeader(i);
    if (section_header.sh_type == type) {
      return &section_header;
    }
  }
  return nullptr;
}

// from bionic
static unsigned elfhash(const char *_name) {
  const unsigned char *name = (const unsigned char *) _name;
  unsigned h = 0, g;

  while (*name) {
    h = (h << 4) + *name++;
    g = h & 0xf0000000;
    h ^= g;
    h ^= g >> 24;
  }
  return h;
}

Elf32_Shdr& ElfFile::GetSectionNameStringSection() const {
  return GetSectionHeader(GetHeader().e_shstrndx);
}

const byte* ElfFile::FindDynamicSymbolAddress(const std::string& symbol_name) const {
  const Elf32_Sym* sym = FindDynamicSymbol(symbol_name);
  if (sym != nullptr) {
    return base_address_ + sym->st_value;
  } else {
    return nullptr;
  }
}

const Elf32_Sym* ElfFile::FindDynamicSymbol(const std::string& symbol_name) const {
  Elf32_Word hash = elfhash(symbol_name.c_str());
  Elf32_Word bucket_index = hash % GetHashBucketNum();
  Elf32_Word symbol_and_chain_index = GetHashBucket(bucket_index);
  while (symbol_and_chain_index != 0 /* STN_UNDEF */) {
    Elf32_Sym& symbol = GetSymbol(SHT_DYNSYM, symbol_and_chain_index);
    const char* name = GetString(SHT_DYNSYM, symbol.st_name);
    if (symbol_name == name) {
      return &symbol;
    }
    symbol_and_chain_index = GetHashChain(symbol_and_chain_index);
  }
  return nullptr;
}

bool ElfFile::IsSymbolSectionType(Elf32_Word section_type) {
  return ((section_type == SHT_SYMTAB) || (section_type == SHT_DYNSYM));
}

Elf32_Word ElfFile::GetSymbolNum(Elf32_Shdr& section_header) const {
  CHECK(IsSymbolSectionType(section_header.sh_type))
      << file_->GetPath() << " " << section_header.sh_type;
  CHECK_NE(0U, section_header.sh_entsize) << file_->GetPath();
  return section_header.sh_size / section_header.sh_entsize;
}

Elf32_Sym& ElfFile::GetSymbol(Elf32_Word section_type,
                              Elf32_Word i) const {
  return *(GetSymbolSectionStart(section_type) + i);
}

ElfFile::SymbolTable** ElfFile::GetSymbolTable(Elf32_Word section_type) {
  CHECK(IsSymbolSectionType(section_type)) << file_->GetPath() << " " << section_type;
  switch (section_type) {
    case SHT_SYMTAB: {
      return &symtab_symbol_table_;
    }
    case SHT_DYNSYM: {
      return &dynsym_symbol_table_;
    }
    default: {
      LOG(FATAL) << section_type;
      return nullptr;
    }
  }
}

Elf32_Sym* ElfFile::FindSymbolByName(Elf32_Word section_type,
                                     const std::string& symbol_name,
                                     bool build_map) {
  CHECK(!program_header_only_) << file_->GetPath();
  CHECK(IsSymbolSectionType(section_type)) << file_->GetPath() << " " << section_type;

  SymbolTable** symbol_table = GetSymbolTable(section_type);
  if (*symbol_table != nullptr || build_map) {
    if (*symbol_table == nullptr) {
      DCHECK(build_map);
      *symbol_table = new SymbolTable;
      Elf32_Shdr* symbol_section = FindSectionByType(section_type);
      CHECK(symbol_section != nullptr) << file_->GetPath();
      Elf32_Shdr& string_section = GetSectionHeader(symbol_section->sh_link);
      for (uint32_t i = 0; i < GetSymbolNum(*symbol_section); i++) {
        Elf32_Sym& symbol = GetSymbol(section_type, i);
        unsigned char type = ELF32_ST_TYPE(symbol.st_info);
        if (type == STT_NOTYPE) {
          continue;
        }
        const char* name = GetString(string_section, symbol.st_name);
        if (name == nullptr) {
          continue;
        }
        std::pair<SymbolTable::iterator, bool> result =
            (*symbol_table)->insert(std::make_pair(name, &symbol));
        if (!result.second) {
          // If a duplicate, make sure it has the same logical value. Seen on x86.
          CHECK_EQ(symbol.st_value, result.first->second->st_value);
          CHECK_EQ(symbol.st_size, result.first->second->st_size);
          CHECK_EQ(symbol.st_info, result.first->second->st_info);
          CHECK_EQ(symbol.st_other, result.first->second->st_other);
          CHECK_EQ(symbol.st_shndx, result.first->second->st_shndx);
        }
      }
    }
    CHECK(*symbol_table != nullptr);
    SymbolTable::const_iterator it = (*symbol_table)->find(symbol_name);
    if (it == (*symbol_table)->end()) {
      return nullptr;
    }
    return it->second;
  }

  // Fall back to linear search
  Elf32_Shdr* symbol_section = FindSectionByType(section_type);
  CHECK(symbol_section != nullptr) << file_->GetPath();
  Elf32_Shdr& string_section = GetSectionHeader(symbol_section->sh_link);
  for (uint32_t i = 0; i < GetSymbolNum(*symbol_section); i++) {
    Elf32_Sym& symbol = GetSymbol(section_type, i);
    const char* name = GetString(string_section, symbol.st_name);
    if (name == nullptr) {
      continue;
    }
    if (symbol_name == name) {
      return &symbol;
    }
  }
  return nullptr;
}

Elf32_Addr ElfFile::FindSymbolAddress(Elf32_Word section_type,
                                      const std::string& symbol_name,
                                      bool build_map) {
  Elf32_Sym* symbol = FindSymbolByName(section_type, symbol_name, build_map);
  if (symbol == nullptr) {
    return 0;
  }
  return symbol->st_value;
}

const char* ElfFile::GetString(Elf32_Shdr& string_section, Elf32_Word i) const {
  CHECK(!program_header_only_) << file_->GetPath();
  // TODO: remove this static_cast from enum when using -std=gnu++0x
  CHECK_EQ(static_cast<Elf32_Word>(SHT_STRTAB), string_section.sh_type) << file_->GetPath();
  CHECK_LT(i, string_section.sh_size) << file_->GetPath();
  if (i == 0) {
    return nullptr;
  }
  byte* strings = Begin() + string_section.sh_offset;
  byte* string = strings + i;
  CHECK_LT(string, End()) << file_->GetPath();
  return reinterpret_cast<const char*>(string);
}

Elf32_Word ElfFile::GetDynamicNum() const {
  return GetDynamicProgramHeader().p_filesz / sizeof(Elf32_Dyn);
}

Elf32_Dyn& ElfFile::GetDynamic(Elf32_Word i) const {
  CHECK_LT(i, GetDynamicNum()) << file_->GetPath();
  return *(GetDynamicSectionStart() + i);
}

Elf32_Word ElfFile::FindDynamicValueByType(Elf32_Sword type) const {
  for (Elf32_Word i = 0; i < GetDynamicNum(); i++) {
    Elf32_Dyn& elf_dyn = GetDynamic(i);
    if (elf_dyn.d_tag == type) {
      return elf_dyn.d_un.d_val;
    }
  }
  return 0;
}

Elf32_Rel* ElfFile::GetRelSectionStart(Elf32_Shdr& section_header) const {
  CHECK(SHT_REL == section_header.sh_type) << file_->GetPath() << " " << section_header.sh_type;
  return reinterpret_cast<Elf32_Rel*>(Begin() + section_header.sh_offset);
}

Elf32_Word ElfFile::GetRelNum(Elf32_Shdr& section_header) const {
  CHECK(SHT_REL == section_header.sh_type) << file_->GetPath() << " " << section_header.sh_type;
  CHECK_NE(0U, section_header.sh_entsize) << file_->GetPath();
  return section_header.sh_size / section_header.sh_entsize;
}

Elf32_Rel& ElfFile::GetRel(Elf32_Shdr& section_header, Elf32_Word i) const {
  CHECK(SHT_REL == section_header.sh_type) << file_->GetPath() << " " << section_header.sh_type;
  CHECK_LT(i, GetRelNum(section_header)) << file_->GetPath();
  return *(GetRelSectionStart(section_header) + i);
}

Elf32_Rela* ElfFile::GetRelaSectionStart(Elf32_Shdr& section_header) const {
  CHECK(SHT_RELA == section_header.sh_type) << file_->GetPath() << " " << section_header.sh_type;
  return reinterpret_cast<Elf32_Rela*>(Begin() + section_header.sh_offset);
}

Elf32_Word ElfFile::GetRelaNum(Elf32_Shdr& section_header) const {
  CHECK(SHT_RELA == section_header.sh_type) << file_->GetPath() << " " << section_header.sh_type;
  return section_header.sh_size / section_header.sh_entsize;
}

Elf32_Rela& ElfFile::GetRela(Elf32_Shdr& section_header, Elf32_Word i) const {
  CHECK(SHT_RELA == section_header.sh_type) << file_->GetPath() << " " << section_header.sh_type;
  CHECK_LT(i, GetRelaNum(section_header)) << file_->GetPath();
  return *(GetRelaSectionStart(section_header) + i);
}

// Base on bionic phdr_table_get_load_size
size_t ElfFile::GetLoadedSize() const {
  Elf32_Addr min_vaddr = 0xFFFFFFFFu;
  Elf32_Addr max_vaddr = 0x00000000u;
  for (Elf32_Word i = 0; i < GetProgramHeaderNum(); i++) {
    Elf32_Phdr& program_header = GetProgramHeader(i);
    if (program_header.p_type != PT_LOAD) {
      continue;
    }
    Elf32_Addr begin_vaddr = program_header.p_vaddr;
    if (begin_vaddr < min_vaddr) {
       min_vaddr = begin_vaddr;
    }
    Elf32_Addr end_vaddr = program_header.p_vaddr + program_header.p_memsz;
    if (end_vaddr > max_vaddr) {
      max_vaddr = end_vaddr;
    }
  }
  min_vaddr = RoundDown(min_vaddr, kPageSize);
  max_vaddr = RoundUp(max_vaddr, kPageSize);
  CHECK_LT(min_vaddr, max_vaddr) << file_->GetPath();
  size_t loaded_size = max_vaddr - min_vaddr;
  return loaded_size;
}

bool ElfFile::Load(bool executable, std::string* error_msg) {
  CHECK(program_header_only_) << file_->GetPath();

  if (executable) {
    InstructionSet elf_ISA = kNone;
    switch (GetHeader().e_machine) {
      case EM_ARM: {
        elf_ISA = kArm;
        break;
      }
      case EM_AARCH64: {
        elf_ISA = kArm64;
        break;
      }
      case EM_386: {
        elf_ISA = kX86;
        break;
      }
      case EM_X86_64: {
        elf_ISA = kX86_64;
        break;
      }
      case EM_MIPS: {
        elf_ISA = kMips;
        break;
      }
    }

    if (elf_ISA != kRuntimeISA) {
      std::ostringstream oss;
      oss << "Expected ISA " << kRuntimeISA << " but found " << elf_ISA;
      *error_msg = oss.str();
      return false;
    }
  }

  for (Elf32_Word i = 0; i < GetProgramHeaderNum(); i++) {
    Elf32_Phdr& program_header = GetProgramHeader(i);

    // Record .dynamic header information for later use
    if (program_header.p_type == PT_DYNAMIC) {
      dynamic_program_header_ = &program_header;
      continue;
    }

    // Not something to load, move on.
    if (program_header.p_type != PT_LOAD) {
      continue;
    }

    // Found something to load.

    // If p_vaddr is zero, it must be the first loadable segment,
    // since they must be in order.  Since it is zero, there isn't a
    // specific address requested, so first request a contiguous chunk
    // of required size for all segments, but with no
    // permissions. We'll then carve that up with the proper
    // permissions as we load the actual segments. If p_vaddr is
    // non-zero, the segments require the specific address specified,
    // which either was specified in the file because we already set
    // base_address_ after the first zero segment).
    int64_t temp_file_length = file_->GetLength();
    if (temp_file_length < 0) {
      errno = -temp_file_length;
      *error_msg = StringPrintf("Failed to get length of file: '%s' fd=%d: %s",
                                file_->GetPath().c_str(), file_->Fd(), strerror(errno));
      return false;
    }
    size_t file_length = static_cast<size_t>(temp_file_length);
    if (program_header.p_vaddr == 0) {
      std::string reservation_name("ElfFile reservation for ");
      reservation_name += file_->GetPath();
      std::unique_ptr<MemMap> reserve(MemMap::MapAnonymous(reservation_name.c_str(),
                                                     nullptr, GetLoadedSize(), PROT_NONE, false,
                                                     error_msg));
      if (reserve.get() == nullptr) {
        *error_msg = StringPrintf("Failed to allocate %s: %s",
                                  reservation_name.c_str(), error_msg->c_str());
        return false;
      }
      base_address_ = reserve->Begin();
      segments_.push_back(reserve.release());
    }
    // empty segment, nothing to map
    if (program_header.p_memsz == 0) {
      continue;
    }
    byte* p_vaddr = base_address_ + program_header.p_vaddr;
    int prot = 0;
    if (executable && ((program_header.p_flags & PF_X) != 0)) {
      prot |= PROT_EXEC;
    }
    if ((program_header.p_flags & PF_W) != 0) {
      prot |= PROT_WRITE;
    }
    if ((program_header.p_flags & PF_R) != 0) {
      prot |= PROT_READ;
    }
    int flags = 0;
    if (writable_) {
      prot |= PROT_WRITE;
      flags |= MAP_SHARED;
    } else {
      flags |= MAP_PRIVATE;
    }
    if (file_length < (program_header.p_offset + program_header.p_memsz)) {
      *error_msg = StringPrintf("File size of %zd bytes not large enough to contain ELF segment "
                                "%d of %d bytes: '%s'", file_length, i,
                                program_header.p_offset + program_header.p_memsz,
                                file_->GetPath().c_str());
      return false;
    }
    std::unique_ptr<MemMap> segment(MemMap::MapFileAtAddress(p_vaddr,
                                                       program_header.p_memsz,
                                                       prot, flags, file_->Fd(),
                                                       program_header.p_offset,
                                                       true,  // implies MAP_FIXED
                                                       file_->GetPath().c_str(),
                                                       error_msg));
    if (segment.get() == nullptr) {
      *error_msg = StringPrintf("Failed to map ELF file segment %d from %s: %s",
                                i, file_->GetPath().c_str(), error_msg->c_str());
      return false;
    }
    if (segment->Begin() != p_vaddr) {
      *error_msg = StringPrintf("Failed to map ELF file segment %d from %s at expected address %p, "
                                "instead mapped to %p",
                                i, file_->GetPath().c_str(), p_vaddr, segment->Begin());
      return false;
    }
    segments_.push_back(segment.release());
  }

  // Now that we are done loading, .dynamic should be in memory to find .dynstr, .dynsym, .hash
  dynamic_section_start_
      = reinterpret_cast<Elf32_Dyn*>(base_address_ + GetDynamicProgramHeader().p_vaddr);
  for (Elf32_Word i = 0; i < GetDynamicNum(); i++) {
    Elf32_Dyn& elf_dyn = GetDynamic(i);
    byte* d_ptr = base_address_ + elf_dyn.d_un.d_ptr;
    switch (elf_dyn.d_tag) {
      case DT_HASH: {
        if (!ValidPointer(d_ptr)) {
          *error_msg = StringPrintf("DT_HASH value %p does not refer to a loaded ELF segment of %s",
                                    d_ptr, file_->GetPath().c_str());
          return false;
        }
        hash_section_start_ = reinterpret_cast<Elf32_Word*>(d_ptr);
        break;
      }
      case DT_STRTAB: {
        if (!ValidPointer(d_ptr)) {
          *error_msg = StringPrintf("DT_HASH value %p does not refer to a loaded ELF segment of %s",
                                    d_ptr, file_->GetPath().c_str());
          return false;
        }
        dynstr_section_start_ = reinterpret_cast<char*>(d_ptr);
        break;
      }
      case DT_SYMTAB: {
        if (!ValidPointer(d_ptr)) {
          *error_msg = StringPrintf("DT_HASH value %p does not refer to a loaded ELF segment of %s",
                                    d_ptr, file_->GetPath().c_str());
          return false;
        }
        dynsym_section_start_ = reinterpret_cast<Elf32_Sym*>(d_ptr);
        break;
      }
      case DT_NULL: {
        if (GetDynamicNum() != i+1) {
          *error_msg = StringPrintf("DT_NULL found after %d .dynamic entries, "
                                    "expected %d as implied by size of PT_DYNAMIC segment in %s",
                                    i + 1, GetDynamicNum(), file_->GetPath().c_str());
          return false;
        }
        break;
      }
    }
  }

  // Use GDB JIT support to do stack backtrace, etc.
  if (executable) {
    GdbJITSupport();
  }

  return true;
}

bool ElfFile::ValidPointer(const byte* start) const {
  for (size_t i = 0; i < segments_.size(); ++i) {
    const MemMap* segment = segments_[i];
    if (segment->Begin() <= start && start < segment->End()) {
      return true;
    }
  }
  return false;
}


Elf32_Shdr* ElfFile::FindSectionByName(const std::string& name) const {
  CHECK(!program_header_only_);
  Elf32_Shdr& shstrtab_sec = GetSectionNameStringSection();
  for (uint32_t i = 0; i < GetSectionHeaderNum(); i++) {
    Elf32_Shdr& shdr = GetSectionHeader(i);
    const char* sec_name = GetString(shstrtab_sec, shdr.sh_name);
    if (sec_name == nullptr) {
      continue;
    }
    if (name == sec_name) {
      return &shdr;
    }
  }
  return nullptr;
}

struct PACKED(1) FDE {
  uint32_t raw_length_;
  uint32_t GetLength() {
    return raw_length_ + sizeof(raw_length_);
  }
  uint32_t CIE_pointer;
  uint32_t initial_location;
  uint32_t address_range;
  uint8_t instructions[0];
};

static FDE* NextFDE(FDE* frame) {
  byte* fde_bytes = reinterpret_cast<byte*>(frame);
  fde_bytes += frame->GetLength();
  return reinterpret_cast<FDE*>(fde_bytes);
}

static bool IsFDE(FDE* frame) {
  // TODO This seems to be the constant everyone uses (for the .debug_frame
  // section at least), however we should investigate this further.
  const uint32_t kDwarfCIE_id = 0xffffffff;
  const uint32_t kReservedLengths[] = {0xffffffff, 0xfffffff0};
  return frame->CIE_pointer != kDwarfCIE_id &&
      frame->raw_length_ != kReservedLengths[0] && frame->raw_length_ != kReservedLengths[1];
}

// TODO This only works for 32-bit Elf Files.
static bool FixupDebugFrame(uintptr_t text_start, byte* dbg_frame, size_t dbg_frame_size) {
  FDE* last_frame = reinterpret_cast<FDE*>(dbg_frame + dbg_frame_size);
  FDE* frame = NextFDE(reinterpret_cast<FDE*>(dbg_frame));
  for (; frame < last_frame; frame = NextFDE(frame)) {
    if (!IsFDE(frame)) {
      return false;
    }
    frame->initial_location += text_start;
  }
  return true;
}

struct PACKED(1) DebugInfoHeader {
  uint32_t unit_length;  // TODO 32-bit specific size
  uint16_t version;
  uint32_t debug_abbrev_offset;  // TODO 32-bit specific size
  uint8_t  address_size;
};

// Returns -1 if it is variable length, which we will just disallow for now.
static int32_t FormLength(uint32_t att) {
  switch (att) {
    case DW_FORM_data1:
    case DW_FORM_flag:
    case DW_FORM_flag_present:
    case DW_FORM_ref1:
      return 1;

    case DW_FORM_data2:
    case DW_FORM_ref2:
      return 2;

    case DW_FORM_addr:        // TODO 32-bit only
    case DW_FORM_ref_addr:    // TODO 32-bit only
    case DW_FORM_sec_offset:  // TODO 32-bit only
    case DW_FORM_strp:        // TODO 32-bit only
    case DW_FORM_data4:
    case DW_FORM_ref4:
      return 4;

    case DW_FORM_data8:
    case DW_FORM_ref8:
    case DW_FORM_ref_sig8:
      return 8;

    case DW_FORM_block:
    case DW_FORM_block1:
    case DW_FORM_block2:
    case DW_FORM_block4:
    case DW_FORM_exprloc:
    case DW_FORM_indirect:
    case DW_FORM_ref_udata:
    case DW_FORM_sdata:
    case DW_FORM_string:
    case DW_FORM_udata:
    default:
      return -1;
  }
}

class DebugTag {
 public:
  const uint32_t index_;
  ~DebugTag() {}
  // Creates a new tag and moves data pointer up to the start of the next one.
  // nullptr means error.
  static DebugTag* Create(const byte** data_pointer) {
    const byte* data = *data_pointer;
    uint32_t index = DecodeUnsignedLeb128(&data);
    std::unique_ptr<DebugTag> tag(new DebugTag(index));
    tag->size_ = static_cast<uint32_t>(
        reinterpret_cast<uintptr_t>(data) - reinterpret_cast<uintptr_t>(*data_pointer));
    // skip the abbrev
    tag->tag_ = DecodeUnsignedLeb128(&data);
    tag->has_child_ = (*data == 0);
    data++;
    while (true) {
      uint32_t attr = DecodeUnsignedLeb128(&data);
      uint32_t form = DecodeUnsignedLeb128(&data);
      if (attr == 0 && form == 0) {
        break;
      } else if (attr == 0 || form == 0) {
        // Bad abbrev.
        return nullptr;
      }
      int32_t size = FormLength(form);
      if (size == -1) {
        return nullptr;
      }
      tag->AddAttribute(attr, static_cast<uint32_t>(size));
    }
    *data_pointer = data;
    return tag.release();
  }

  uint32_t GetSize() const {
    return size_;
  }

  bool HasChild() {
    return has_child_;
  }

  uint32_t GetTagNumber() {
    return tag_;
  }

  // Gets the offset of a particular attribute in this tag structure.
  // Interpretation of the data is left to the consumer. 0 is returned if the
  // tag does not contain the attribute.
  uint32_t GetOffsetOf(uint32_t dwarf_attribute) const {
    auto it = off_map_.find(dwarf_attribute);
    if (it == off_map_.end()) {
      return 0;
    } else {
      return it->second;
    }
  }

  // Gets the size of attribute
  uint32_t GetAttrSize(uint32_t dwarf_attribute) const {
    auto it = size_map_.find(dwarf_attribute);
    if (it == size_map_.end()) {
      return 0;
    } else {
      return it->second;
    }
  }

 private:
  explicit DebugTag(uint32_t index) : index_(index) {}
  void AddAttribute(uint32_t type, uint32_t attr_size) {
    off_map_.insert(std::pair<uint32_t, uint32_t>(type, size_));
    size_map_.insert(std::pair<uint32_t, uint32_t>(type, attr_size));
    size_ += attr_size;
  }
  std::map<uint32_t, uint32_t> off_map_;
  std::map<uint32_t, uint32_t> size_map_;
  uint32_t size_;
  uint32_t tag_;
  bool has_child_;
};

class DebugAbbrev {
 public:
  ~DebugAbbrev() {}
  static DebugAbbrev* Create(const byte* dbg_abbrev, size_t dbg_abbrev_size) {
    std::unique_ptr<DebugAbbrev> abbrev(new DebugAbbrev);
    const byte* last = dbg_abbrev + dbg_abbrev_size;
    while (dbg_abbrev < last) {
      std::unique_ptr<DebugTag> tag(DebugTag::Create(&dbg_abbrev));
      if (tag.get() == nullptr) {
        return nullptr;
      } else {
        abbrev->tags_.insert(std::pair<uint32_t, uint32_t>(tag->index_, abbrev->tag_list_.size()));
        abbrev->tag_list_.push_back(std::move(tag));
      }
    }
    return abbrev.release();
  }

  DebugTag* ReadTag(const byte* entry) {
    uint32_t tag_num = DecodeUnsignedLeb128(&entry);
    auto it = tags_.find(tag_num);
    if (it == tags_.end()) {
      return nullptr;
    } else {
      CHECK_GT(tag_list_.size(), it->second);
      return tag_list_.at(it->second).get();
    }
  }

 private:
  DebugAbbrev() {}
  std::map<uint32_t, uint32_t> tags_;
  std::vector<std::unique_ptr<DebugTag>> tag_list_;
};

class DebugInfoIterator {
 public:
  static DebugInfoIterator* Create(DebugInfoHeader* header, size_t frame_size,
                                   DebugAbbrev* abbrev) {
    std::unique_ptr<DebugInfoIterator> iter(new DebugInfoIterator(header, frame_size, abbrev));
    if (iter->GetCurrentTag() == nullptr) {
      return nullptr;
    } else {
      return iter.release();
    }
  }
  ~DebugInfoIterator() {}

  // Moves to the next DIE. Returns false if at last entry.
  // TODO Handle variable length attributes.
  bool next() {
    if (current_entry_ == nullptr || current_tag_ == nullptr) {
      return false;
    }
    current_entry_ += current_tag_->GetSize();
    if (current_entry_ >= last_entry_) {
      current_entry_ = nullptr;
      return false;
    }
    current_tag_ = abbrev_->ReadTag(current_entry_);
    if (current_tag_ == nullptr) {
      current_entry_ = nullptr;
      return false;
    } else {
      return true;
    }
  }

  const DebugTag* GetCurrentTag() {
    return const_cast<DebugTag*>(current_tag_);
  }
  byte* GetPointerToField(uint8_t dwarf_field) {
    if (current_tag_ == nullptr || current_entry_ == nullptr || current_entry_ >= last_entry_) {
      return nullptr;
    }
    uint32_t off = current_tag_->GetOffsetOf(dwarf_field);
    if (off == 0) {
      // tag does not have that field.
      return nullptr;
    } else {
      DCHECK_LT(off, current_tag_->GetSize());
      return current_entry_ + off;
    }
  }

 private:
  DebugInfoIterator(DebugInfoHeader* header, size_t frame_size, DebugAbbrev* abbrev)
      : abbrev_(abbrev),
        last_entry_(reinterpret_cast<byte*>(header) + frame_size),
        current_entry_(reinterpret_cast<byte*>(header) + sizeof(DebugInfoHeader)),
        current_tag_(abbrev_->ReadTag(current_entry_)) {}
  DebugAbbrev* abbrev_;
  byte* last_entry_;
  byte* current_entry_;
  DebugTag* current_tag_;
};

static bool FixupDebugInfo(uint32_t text_start, DebugInfoIterator* iter) {
  do {
    if (iter->GetCurrentTag()->GetAttrSize(DW_AT_low_pc) != sizeof(int32_t) ||
        iter->GetCurrentTag()->GetAttrSize(DW_AT_high_pc) != sizeof(int32_t)) {
      return false;
    }
    uint32_t* PC_low = reinterpret_cast<uint32_t*>(iter->GetPointerToField(DW_AT_low_pc));
    uint32_t* PC_high = reinterpret_cast<uint32_t*>(iter->GetPointerToField(DW_AT_high_pc));
    if (PC_low != nullptr && PC_high != nullptr) {
      *PC_low  += text_start;
      *PC_high += text_start;
    }
  } while (iter->next());
  return true;
}

static bool FixupDebugSections(const byte* dbg_abbrev, size_t dbg_abbrev_size,
                               uintptr_t text_start,
                               byte* dbg_info, size_t dbg_info_size,
                               byte* dbg_frame, size_t dbg_frame_size) {
  std::unique_ptr<DebugAbbrev> abbrev(DebugAbbrev::Create(dbg_abbrev, dbg_abbrev_size));
  if (abbrev.get() == nullptr) {
    return false;
  }
  std::unique_ptr<DebugInfoIterator> iter(
      DebugInfoIterator::Create(reinterpret_cast<DebugInfoHeader*>(dbg_info),
                                dbg_info_size, abbrev.get()));
  if (iter.get() == nullptr) {
    return false;
  }
  return FixupDebugInfo(text_start, iter.get())
      && FixupDebugFrame(text_start, dbg_frame, dbg_frame_size);
}

void ElfFile::GdbJITSupport() {
  // We only get here if we only are mapping the program header.
  DCHECK(program_header_only_);

  // Well, we need the whole file to do this.
  std::string error_msg;
  // Make it MAP_PRIVATE so we can just give it to gdb if all the necessary
  // sections are there.
  std::unique_ptr<ElfFile> all_ptr(Open(const_cast<File*>(file_), PROT_READ | PROT_WRITE,
                                        MAP_PRIVATE, &error_msg));
  if (all_ptr.get() == nullptr) {
    return;
  }
  ElfFile& all = *all_ptr;

  // Do we have interesting sections?
  const Elf32_Shdr* debug_info = all.FindSectionByName(".debug_info");
  const Elf32_Shdr* debug_abbrev = all.FindSectionByName(".debug_abbrev");
  const Elf32_Shdr* debug_frame = all.FindSectionByName(".debug_frame");
  const Elf32_Shdr* debug_str = all.FindSectionByName(".debug_str");
  const Elf32_Shdr* strtab_sec = all.FindSectionByName(".strtab");
  const Elf32_Shdr* symtab_sec = all.FindSectionByName(".symtab");
  Elf32_Shdr* text_sec = all.FindSectionByName(".text");
  if (debug_info == nullptr || debug_abbrev == nullptr || debug_frame == nullptr ||
      debug_str == nullptr || text_sec == nullptr || strtab_sec == nullptr || symtab_sec == nullptr) {
    return;
  }
#ifdef __LP64__
  if (true) {
    return;  // No ELF debug support in 64bit.
  }
#endif
  // We need to add in a strtab and symtab to the image.
  // all is MAP_PRIVATE so it can be written to freely.
  // We also already have strtab and symtab so we are fine there.
  Elf32_Ehdr& elf_hdr = all.GetHeader();
  elf_hdr.e_entry = 0;
  elf_hdr.e_phoff = 0;
  elf_hdr.e_phnum = 0;
  elf_hdr.e_phentsize = 0;
  elf_hdr.e_type = ET_EXEC;

  text_sec->sh_type = SHT_NOBITS;
  text_sec->sh_offset = 0;

  if (!FixupDebugSections(
        all.Begin() + debug_abbrev->sh_offset, debug_abbrev->sh_size, text_sec->sh_addr,
        all.Begin() + debug_info->sh_offset, debug_info->sh_size,
        all.Begin() + debug_frame->sh_offset, debug_frame->sh_size)) {
    LOG(ERROR) << "Failed to load GDB data";
    return;
  }

  jit_gdb_entry_ = CreateCodeEntry(all.Begin(), all.Size());
  gdb_file_mapping_.reset(all_ptr.release());
}

}  // namespace art