1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
|
/*
* Copyright (C) 2008 The Android Open Source Project
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
#include "fault_handler.h"
#include <sys/mman.h>
#include <sys/ucontext.h>
#include "base/macros.h"
#include "globals.h"
#include "base/logging.h"
#include "base/hex_dump.h"
#include "thread.h"
#include "mirror/art_method-inl.h"
#include "mirror/class-inl.h"
#include "mirror/dex_cache.h"
#include "mirror/object_array-inl.h"
#include "mirror/object-inl.h"
#include "object_utils.h"
#include "scoped_thread_state_change.h"
#include "verify_object-inl.h"
namespace art {
// Static fault manger object accessed by signal handler.
FaultManager fault_manager;
// Signal handler called on SIGSEGV.
static void art_fault_handler(int sig, siginfo_t* info, void* context) {
fault_manager.HandleFault(sig, info, context);
}
FaultManager::FaultManager() {
sigaction(SIGSEGV, nullptr, &oldaction_);
}
FaultManager::~FaultManager() {
sigaction(SIGSEGV, &oldaction_, nullptr); // Restore old handler.
}
void FaultManager::Init() {
struct sigaction action;
action.sa_sigaction = art_fault_handler;
sigemptyset(&action.sa_mask);
action.sa_flags = SA_SIGINFO | SA_ONSTACK;
#if !defined(__mips__)
action.sa_restorer = nullptr;
#endif
sigaction(SIGSEGV, &action, &oldaction_);
}
void FaultManager::HandleFault(int sig, siginfo_t* info, void* context) {
LOG(DEBUG) << "Handling fault";
if (IsInGeneratedCode(context, true)) {
LOG(DEBUG) << "in generated code, looking for handler";
for (const auto& handler : generated_code_handlers_) {
LOG(DEBUG) << "invoking Action on handler " << handler;
if (handler->Action(sig, info, context)) {
return;
}
}
}
for (const auto& handler : other_handlers_) {
if (handler->Action(sig, info, context)) {
return;
}
}
LOG(ERROR)<< "Caught unknown SIGSEGV in ART fault handler";
oldaction_.sa_sigaction(sig, info, context);
}
void FaultManager::AddHandler(FaultHandler* handler, bool generated_code) {
if (generated_code) {
generated_code_handlers_.push_back(handler);
} else {
other_handlers_.push_back(handler);
}
}
void FaultManager::RemoveHandler(FaultHandler* handler) {
auto it = std::find(generated_code_handlers_.begin(), generated_code_handlers_.end(), handler);
if (it != generated_code_handlers_.end()) {
generated_code_handlers_.erase(it);
return;
}
auto it2 = std::find(other_handlers_.begin(), other_handlers_.end(), handler);
if (it2 != other_handlers_.end()) {
other_handlers_.erase(it);
return;
}
LOG(FATAL) << "Attempted to remove non existent handler " << handler;
}
// This function is called within the signal handler. It checks that
// the mutator_lock is held (shared). No annotalysis is done.
bool FaultManager::IsInGeneratedCode(void* context, bool check_dex_pc) {
// We can only be running Java code in the current thread if it
// is in Runnable state.
LOG(DEBUG) << "Checking for generated code";
Thread* thread = Thread::Current();
if (thread == nullptr) {
LOG(DEBUG) << "no current thread";
return false;
}
ThreadState state = thread->GetState();
if (state != kRunnable) {
LOG(DEBUG) << "not runnable";
return false;
}
// Current thread is runnable.
// Make sure it has the mutator lock.
if (!Locks::mutator_lock_->IsSharedHeld(thread)) {
LOG(DEBUG) << "no lock";
return false;
}
mirror::ArtMethod* method_obj = 0;
uintptr_t return_pc = 0;
uintptr_t sp = 0;
// Get the architecture specific method address and return address. These
// are in architecture specific files in arch/<arch>/fault_handler_<arch>.
GetMethodAndReturnPCAndSP(context, &method_obj, &return_pc, &sp);
// If we don't have a potential method, we're outta here.
LOG(DEBUG) << "potential method: " << method_obj;
if (method_obj == 0 || !IsAligned<kObjectAlignment>(method_obj)) {
LOG(DEBUG) << "no method";
return false;
}
// Verify that the potential method is indeed a method.
// TODO: check the GC maps to make sure it's an object.
// Check that the class pointer inside the object is not null and is aligned.
// TODO: Method might be not a heap address, and GetClass could fault.
mirror::Class* cls = method_obj->GetClass<kVerifyNone>();
if (cls == nullptr) {
LOG(DEBUG) << "not a class";
return false;
}
if (!IsAligned<kObjectAlignment>(cls)) {
LOG(DEBUG) << "not aligned";
return false;
}
if (!VerifyClassClass(cls)) {
LOG(DEBUG) << "not a class class";
return false;
}
// Now make sure the class is a mirror::ArtMethod.
if (!cls->IsArtMethodClass()) {
LOG(DEBUG) << "not a method";
return false;
}
// We can be certain that this is a method now. Check if we have a GC map
// at the return PC address.
if (true || kIsDebugBuild) {
LOG(DEBUG) << "looking for dex pc for return pc " << std::hex << return_pc;
const void* code = Runtime::Current()->GetInstrumentation()->GetQuickCodeFor(method_obj);
uint32_t sought_offset = return_pc - reinterpret_cast<uintptr_t>(code);
LOG(DEBUG) << "pc offset: " << std::hex << sought_offset;
}
uint32_t dexpc = method_obj->ToDexPc(return_pc, false);
LOG(DEBUG) << "dexpc: " << dexpc;
return !check_dex_pc || dexpc != DexFile::kDexNoIndex;
}
FaultHandler::FaultHandler(FaultManager* manager) : manager_(manager) {
}
//
// Null pointer fault handler
//
NullPointerHandler::NullPointerHandler(FaultManager* manager) : FaultHandler(manager) {
manager_->AddHandler(this, true);
}
//
// Suspension fault handler
//
SuspensionHandler::SuspensionHandler(FaultManager* manager) : FaultHandler(manager) {
manager_->AddHandler(this, true);
}
//
// Stack overflow fault handler
//
StackOverflowHandler::StackOverflowHandler(FaultManager* manager) : FaultHandler(manager) {
manager_->AddHandler(this, true);
}
//
// Stack trace handler, used to help get a stack trace from SIGSEGV inside of compiled code.
//
JavaStackTraceHandler::JavaStackTraceHandler(FaultManager* manager) : FaultHandler(manager) {
manager_->AddHandler(this, false);
}
bool JavaStackTraceHandler::Action(int sig, siginfo_t* siginfo, void* context) {
// Make sure that we are in the generated code, but we may not have a dex pc.
if (manager_->IsInGeneratedCode(context, false)) {
LOG(ERROR) << "Dumping java stack trace for crash in generated code";
mirror::ArtMethod* method = nullptr;
uintptr_t return_pc = 0;
uintptr_t sp = 0;
manager_->GetMethodAndReturnPCAndSP(context, &method, &return_pc, &sp);
Thread* self = Thread::Current();
// Inside of generated code, sp[0] is the method, so sp is the frame.
mirror::ArtMethod** frame = reinterpret_cast<mirror::ArtMethod**>(sp);
self->SetTopOfStack(frame, 0); // Since we don't necessarily have a dex pc, pass in 0.
self->DumpJavaStack(LOG(ERROR));
}
return false; // Return false since we want to propagate the fault to the main signal handler.
}
} // namespace art
|