summaryrefslogtreecommitdiffstats
path: root/runtime/fault_handler.cc
blob: fede2f8ec3a7ad76de89e2ac116c2a95cd7b764c (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
/*
 * Copyright (C) 2008 The Android Open Source Project
 *
 * Licensed under the Apache License, Version 2.0 (the "License");
 * you may not use this file except in compliance with the License.
 * You may obtain a copy of the License at
 *
 *      http://www.apache.org/licenses/LICENSE-2.0
 *
 * Unless required by applicable law or agreed to in writing, software
 * distributed under the License is distributed on an "AS IS" BASIS,
 * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
 * See the License for the specific language governing permissions and
 * limitations under the License.
 */

#include "fault_handler.h"

#include <setjmp.h>
#include <sys/mman.h>
#include <sys/ucontext.h>
#include "base/stl_util.h"
#include "mirror/art_method.h"
#include "mirror/class.h"
#include "sigchain.h"
#include "thread-inl.h"
#include "verify_object-inl.h"

// Note on nested signal support
// -----------------------------
//
// Typically a signal handler should not need to deal with signals that occur within it.
// However, when a SIGSEGV occurs that is in generated code and is not one of the
// handled signals (implicit checks), we call a function to try to dump the stack
// to the log.  This enhances the debugging experience but may have the side effect
// that it may not work.  If the cause of the original SIGSEGV is a corrupted stack or other
// memory region, the stack backtrace code may run into trouble and may either crash
// or fail with an abort (SIGABRT).  In either case we don't want that (new) signal to
// mask the original signal and thus prevent useful debug output from being presented.
//
// In order to handle this situation, before we call the stack tracer we do the following:
//
// 1. shutdown the fault manager so that we are talking to the real signal management
//    functions rather than those in sigchain.
// 2. use pthread_sigmask to allow SIGSEGV and SIGABRT signals to be delivered to the
//    thread running the signal handler.
// 3. set the handler for SIGSEGV and SIGABRT to a secondary signal handler.
// 4. save the thread's state to the TLS of the current thread using 'setjmp'
//
// We then call the stack tracer and one of two things may happen:
// a. it completes successfully
// b. it crashes and a signal is raised.
//
// In the former case, we fall through and everything is fine.  In the latter case
// our secondary signal handler gets called in a signal context.  This results in
// a call to FaultManager::HandledNestedSignal(), an archirecture specific function
// whose purpose is to call 'longjmp' on the jmp_buf saved in the TLS of the current
// thread.  This results in a return with a non-zero value from 'setjmp'.  We detect this
// and write something to the log to tell the user that it happened.
//
// Regardless of how we got there, we reach the code after the stack tracer and we
// restore the signal states to their original values, reinstate the fault manager (thus
// reestablishing the signal chain) and continue.

// This is difficult to test with a runtime test.  To invoke the nested signal code
// on any signal, uncomment the following line and run something that throws a
// NullPointerException.
// #define TEST_NESTED_SIGNAL

namespace art {
// Static fault manger object accessed by signal handler.
FaultManager fault_manager;

extern "C" {
void art_sigsegv_fault() {
  // Set a breakpoint here to be informed when a SIGSEGV is unhandled by ART.
  VLOG(signals)<< "Caught unknown SIGSEGV in ART fault handler - chaining to next handler.";
}
}

// Signal handler called on SIGSEGV.
static void art_fault_handler(int sig, siginfo_t* info, void* context) {
  fault_manager.HandleFault(sig, info, context);
}

// Signal handler for dealing with a nested signal.
static void art_nested_signal_handler(int sig, siginfo_t* info, void* context) {
  fault_manager.HandleNestedSignal(sig, info, context);
}

FaultManager::FaultManager() : initialized_(false) {
  sigaction(SIGSEGV, nullptr, &oldaction_);
}

FaultManager::~FaultManager() {
}


void FaultManager::Init() {
  CHECK(!initialized_);
  struct sigaction action;
  action.sa_sigaction = art_fault_handler;
  sigemptyset(&action.sa_mask);
  action.sa_flags = SA_SIGINFO | SA_ONSTACK;
#if !defined(__APPLE__) && !defined(__mips__)
  action.sa_restorer = nullptr;
#endif

  // Set our signal handler now.
  int e = sigaction(SIGSEGV, &action, &oldaction_);
  if (e != 0) {
    VLOG(signals) << "Failed to claim SEGV: " << strerror(errno);
  }
  // Make sure our signal handler is called before any user handlers.
  ClaimSignalChain(SIGSEGV, &oldaction_);
  initialized_ = true;
}

void FaultManager::Release() {
  if (initialized_) {
    UnclaimSignalChain(SIGSEGV);
    initialized_ = false;
  }
}

void FaultManager::Shutdown() {
  if (initialized_) {
    Release();

    // Free all handlers.
    STLDeleteElements(&generated_code_handlers_);
    STLDeleteElements(&other_handlers_);
  }
}

void FaultManager::HandleFault(int sig, siginfo_t* info, void* context) {
  // BE CAREFUL ALLOCATING HERE INCLUDING USING LOG(...)
  //
  // If malloc calls abort, it will be holding its lock.
  // If the handler tries to call malloc, it will deadlock.

  VLOG(signals) << "Handling fault";
  if (IsInGeneratedCode(info, context, true)) {
    VLOG(signals) << "in generated code, looking for handler";
    for (const auto& handler : generated_code_handlers_) {
      VLOG(signals) << "invoking Action on handler " << handler;
      if (handler->Action(sig, info, context)) {
#ifdef TEST_NESTED_SIGNAL
        // In test mode we want to fall through to stack trace handler
        // on every signal (in reality this will cause a crash on the first
        // signal).
        break;
#else
        // We have handled a signal so it's time to return from the
        // signal handler to the appropriate place.
        return;
#endif
      }
    }
  }

  // We hit a signal we didn't handle.  This might be something for which
  // we can give more information about so call all registered handlers to see
  // if it is.

  Thread* self = Thread::Current();

  // Now set up the nested signal handler.

  // Release the fault manager so that it will remove the signal chain for
  // SIGSEGV and we call the real sigaction.
  fault_manager.Release();

  // The action for SIGSEGV should be the default handler now.

  // Unblock the signals we allow so that they can be delivered in the signal handler.
  sigset_t sigset;
  sigemptyset(&sigset);
  sigaddset(&sigset, SIGSEGV);
  sigaddset(&sigset, SIGABRT);
  pthread_sigmask(SIG_UNBLOCK, &sigset, nullptr);

  // If we get a signal in this code we want to invoke our nested signal
  // handler.
  struct sigaction action, oldsegvaction, oldabortaction;
  action.sa_sigaction = art_nested_signal_handler;

  // Explicitly mask out SIGSEGV and SIGABRT from the nested signal handler.  This
  // should be the default but we definitely don't want these happening in our
  // nested signal handler.
  sigemptyset(&action.sa_mask);
  sigaddset(&action.sa_mask, SIGSEGV);
  sigaddset(&action.sa_mask, SIGABRT);

  action.sa_flags = SA_SIGINFO | SA_ONSTACK;
#if !defined(__APPLE__) && !defined(__mips__)
  action.sa_restorer = nullptr;
#endif

  // Catch SIGSEGV and SIGABRT to invoke our nested handler
  int e1 = sigaction(SIGSEGV, &action, &oldsegvaction);
  int e2 = sigaction(SIGABRT, &action, &oldabortaction);
  if (e1 != 0 || e2 != 0) {
    LOG(ERROR) << "Unable to set up nested signal handler";
  } else {
    // Save the current state and call the handlers.  If anything causes a signal
    // our nested signal handler will be invoked and this will longjmp to the saved
    // state.
    if (setjmp(*self->GetNestedSignalState()) == 0) {
      for (const auto& handler : other_handlers_) {
        if (handler->Action(sig, info, context)) {
          // Restore the signal handlers, reinit the fault manager and return.  Signal was
          // handled.
          sigaction(SIGSEGV, &oldsegvaction, nullptr);
          sigaction(SIGABRT, &oldabortaction, nullptr);
          fault_manager.Init();
          return;
        }
      }
    } else {
      LOG(ERROR) << "Nested signal detected - original signal being reported";
    }

    // Restore the signal handlers.
    sigaction(SIGSEGV, &oldsegvaction, nullptr);
    sigaction(SIGABRT, &oldabortaction, nullptr);
  }

  // Now put the fault manager back in place.
  fault_manager.Init();

  // Set a breakpoint in this function to catch unhandled signals.
  art_sigsegv_fault();

  // Pass this on to the next handler in the chain, or the default if none.
  InvokeUserSignalHandler(sig, info, context);
}

void FaultManager::AddHandler(FaultHandler* handler, bool generated_code) {
  DCHECK(initialized_);
  if (generated_code) {
    generated_code_handlers_.push_back(handler);
  } else {
    other_handlers_.push_back(handler);
  }
}

void FaultManager::RemoveHandler(FaultHandler* handler) {
  auto it = std::find(generated_code_handlers_.begin(), generated_code_handlers_.end(), handler);
  if (it != generated_code_handlers_.end()) {
    generated_code_handlers_.erase(it);
    return;
  }
  auto it2 = std::find(other_handlers_.begin(), other_handlers_.end(), handler);
  if (it2 != other_handlers_.end()) {
    other_handlers_.erase(it);
    return;
  }
  LOG(FATAL) << "Attempted to remove non existent handler " << handler;
}

// This function is called within the signal handler.  It checks that
// the mutator_lock is held (shared).  No annotalysis is done.
bool FaultManager::IsInGeneratedCode(siginfo_t* siginfo, void* context, bool check_dex_pc) {
  // We can only be running Java code in the current thread if it
  // is in Runnable state.
  VLOG(signals) << "Checking for generated code";
  Thread* thread = Thread::Current();
  if (thread == nullptr) {
    VLOG(signals) << "no current thread";
    return false;
  }

  ThreadState state = thread->GetState();
  if (state != kRunnable) {
    VLOG(signals) << "not runnable";
    return false;
  }

  // Current thread is runnable.
  // Make sure it has the mutator lock.
  if (!Locks::mutator_lock_->IsSharedHeld(thread)) {
    VLOG(signals) << "no lock";
    return false;
  }

  mirror::ArtMethod* method_obj = 0;
  uintptr_t return_pc = 0;
  uintptr_t sp = 0;

  // Get the architecture specific method address and return address.  These
  // are in architecture specific files in arch/<arch>/fault_handler_<arch>.
  GetMethodAndReturnPcAndSp(siginfo, context, &method_obj, &return_pc, &sp);

  // If we don't have a potential method, we're outta here.
  VLOG(signals) << "potential method: " << method_obj;
  if (method_obj == 0 || !IsAligned<kObjectAlignment>(method_obj)) {
    VLOG(signals) << "no method";
    return false;
  }

  // Verify that the potential method is indeed a method.
  // TODO: check the GC maps to make sure it's an object.
  // Check that the class pointer inside the object is not null and is aligned.
  // TODO: Method might be not a heap address, and GetClass could fault.
  mirror::Class* cls = method_obj->GetClass<kVerifyNone>();
  if (cls == nullptr) {
    VLOG(signals) << "not a class";
    return false;
  }
  if (!IsAligned<kObjectAlignment>(cls)) {
    VLOG(signals) << "not aligned";
    return false;
  }


  if (!VerifyClassClass(cls)) {
    VLOG(signals) << "not a class class";
    return false;
  }

  // Now make sure the class is a mirror::ArtMethod.
  if (!cls->IsArtMethodClass()) {
    VLOG(signals) << "not a method";
    return false;
  }

  // We can be certain that this is a method now.  Check if we have a GC map
  // at the return PC address.
  if (true || kIsDebugBuild) {
    VLOG(signals) << "looking for dex pc for return pc " << std::hex << return_pc;
    const void* code = Runtime::Current()->GetInstrumentation()->GetQuickCodeFor(method_obj);
    uint32_t sought_offset = return_pc - reinterpret_cast<uintptr_t>(code);
    VLOG(signals) << "pc offset: " << std::hex << sought_offset;
  }
  uint32_t dexpc = method_obj->ToDexPc(return_pc, false);
  VLOG(signals) << "dexpc: " << dexpc;
  return !check_dex_pc || dexpc != DexFile::kDexNoIndex;
}

FaultHandler::FaultHandler(FaultManager* manager) : manager_(manager) {
}

//
// Null pointer fault handler
//
NullPointerHandler::NullPointerHandler(FaultManager* manager) : FaultHandler(manager) {
  manager_->AddHandler(this, true);
}

//
// Suspension fault handler
//
SuspensionHandler::SuspensionHandler(FaultManager* manager) : FaultHandler(manager) {
  manager_->AddHandler(this, true);
}

//
// Stack overflow fault handler
//
StackOverflowHandler::StackOverflowHandler(FaultManager* manager) : FaultHandler(manager) {
  manager_->AddHandler(this, true);
}

//
// Stack trace handler, used to help get a stack trace from SIGSEGV inside of compiled code.
//
JavaStackTraceHandler::JavaStackTraceHandler(FaultManager* manager) : FaultHandler(manager) {
  manager_->AddHandler(this, false);
}

bool JavaStackTraceHandler::Action(int sig, siginfo_t* siginfo, void* context) {
  // Make sure that we are in the generated code, but we may not have a dex pc.

#ifdef TEST_NESTED_SIGNAL
  bool in_generated_code = true;
#else
  bool in_generated_code = manager_->IsInGeneratedCode(siginfo, context, false);
#endif
  if (in_generated_code) {
    LOG(ERROR) << "Dumping java stack trace for crash in generated code";
    mirror::ArtMethod* method = nullptr;
    uintptr_t return_pc = 0;
    uintptr_t sp = 0;
    Thread* self = Thread::Current();

    manager_->GetMethodAndReturnPcAndSp(siginfo, context, &method, &return_pc, &sp);
    // Inside of generated code, sp[0] is the method, so sp is the frame.
    StackReference<mirror::ArtMethod>* frame =
        reinterpret_cast<StackReference<mirror::ArtMethod>*>(sp);
    self->SetTopOfStack(frame, 0);  // Since we don't necessarily have a dex pc, pass in 0.
#ifdef TEST_NESTED_SIGNAL
    // To test the nested signal handler we raise a signal here.  This will cause the
    // nested signal handler to be called and perform a longjmp back to the setjmp
    // above.
    abort();
#endif
    self->DumpJavaStack(LOG(ERROR));
  }

  return false;  // Return false since we want to propagate the fault to the main signal handler.
}

}   // namespace art