summaryrefslogtreecommitdiffstats
path: root/runtime/gc/accounting/atomic_stack.h
blob: 399832a377c2347ed7b462695e7bdb1293a0954a (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
/*
 * Copyright (C) 2012 The Android Open Source Project
 *
 * Licensed under the Apache License, Version 2.0 (the "License");
 * you may not use this file except in compliance with the License.
 * You may obtain a copy of the License at
 *
 *      http://www.apache.org/licenses/LICENSE-2.0
 *
 * Unless required by applicable law or agreed to in writing, software
 * distributed under the License is distributed on an "AS IS" BASIS,
 * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
 * See the License for the specific language governing permissions and
 * limitations under the License.
 */

#ifndef ART_RUNTIME_GC_ACCOUNTING_ATOMIC_STACK_H_
#define ART_RUNTIME_GC_ACCOUNTING_ATOMIC_STACK_H_

#include <algorithm>
#include <memory>
#include <string>

#include "atomic.h"
#include "base/logging.h"
#include "base/macros.h"
#include "mem_map.h"
#include "stack.h"
#include "utils.h"

namespace art {
namespace gc {
namespace accounting {

// Internal representation is StackReference<T>, so this only works with mirror::Object or it's
// subclasses.
template <typename T>
class AtomicStack {
 public:
  class ObjectComparator {
   public:
    // These two comparators are for std::binary_search.
    bool operator()(const T* a, const StackReference<T>& b) const NO_THREAD_SAFETY_ANALYSIS {
      return a < b.AsMirrorPtr();
    }
    bool operator()(const StackReference<T>& a, const T* b) const NO_THREAD_SAFETY_ANALYSIS {
      return a.AsMirrorPtr() < b;
    }
    // This comparator is for std::sort.
    bool operator()(const StackReference<T>& a, const StackReference<T>& b) const
        NO_THREAD_SAFETY_ANALYSIS {
      return a.AsMirrorPtr() < b.AsMirrorPtr();
    }
  };

  // Capacity is how many elements we can store in the stack.
  static AtomicStack* Create(const std::string& name, size_t growth_limit, size_t capacity) {
    std::unique_ptr<AtomicStack> mark_stack(new AtomicStack(name, growth_limit, capacity));
    mark_stack->Init();
    return mark_stack.release();
  }

  ~AtomicStack() {}

  void Reset() {
    DCHECK(mem_map_.get() != nullptr);
    DCHECK(begin_ != nullptr);
    front_index_.StoreRelaxed(0);
    back_index_.StoreRelaxed(0);
    debug_is_sorted_ = true;
    mem_map_->MadviseDontNeedAndZero();
  }

  // Beware: Mixing atomic pushes and atomic pops will cause ABA problem.

  // Returns false if we overflowed the stack.
  bool AtomicPushBackIgnoreGrowthLimit(T* value) SHARED_LOCKS_REQUIRED(Locks::mutator_lock_) {
    return AtomicPushBackInternal(value, capacity_);
  }

  // Returns false if we overflowed the stack.
  bool AtomicPushBack(T* value) SHARED_LOCKS_REQUIRED(Locks::mutator_lock_) {
    return AtomicPushBackInternal(value, growth_limit_);
  }

  // Atomically bump the back index by the given number of
  // slots. Returns false if we overflowed the stack.
  bool AtomicBumpBack(size_t num_slots, StackReference<T>** start_address,
                      StackReference<T>** end_address)
      SHARED_LOCKS_REQUIRED(Locks::mutator_lock_) {
    if (kIsDebugBuild) {
      debug_is_sorted_ = false;
    }
    int32_t index;
    int32_t new_index;
    do {
      index = back_index_.LoadRelaxed();
      new_index = index + num_slots;
      if (UNLIKELY(static_cast<size_t>(new_index) >= growth_limit_)) {
        // Stack overflow.
        return false;
      }
    } while (!back_index_.CompareExchangeWeakRelaxed(index, new_index));
    *start_address = begin_ + index;
    *end_address = begin_ + new_index;
    if (kIsDebugBuild) {
      // Sanity check that the memory is zero.
      for (int32_t i = index; i < new_index; ++i) {
        DCHECK_EQ(begin_[i].AsMirrorPtr(), static_cast<T*>(nullptr))
            << "i=" << i << " index=" << index << " new_index=" << new_index;
      }
    }
    return true;
  }

  void AssertAllZero() SHARED_LOCKS_REQUIRED(Locks::mutator_lock_) {
    if (kIsDebugBuild) {
      for (size_t i = 0; i < capacity_; ++i) {
        DCHECK_EQ(begin_[i].AsMirrorPtr(), static_cast<T*>(nullptr)) << "i=" << i;
      }
    }
  }

  void PushBack(T* value) SHARED_LOCKS_REQUIRED(Locks::mutator_lock_) {
    if (kIsDebugBuild) {
      debug_is_sorted_ = false;
    }
    const int32_t index = back_index_.LoadRelaxed();
    DCHECK_LT(static_cast<size_t>(index), growth_limit_);
    back_index_.StoreRelaxed(index + 1);
    begin_[index].Assign(value);
  }

  T* PopBack() SHARED_LOCKS_REQUIRED(Locks::mutator_lock_) {
    DCHECK_GT(back_index_.LoadRelaxed(), front_index_.LoadRelaxed());
    // Decrement the back index non atomically.
    back_index_.StoreRelaxed(back_index_.LoadRelaxed() - 1);
    return begin_[back_index_.LoadRelaxed()].AsMirrorPtr();
  }

  // Take an item from the front of the stack.
  T PopFront() {
    int32_t index = front_index_.LoadRelaxed();
    DCHECK_LT(index, back_index_.LoadRelaxed());
    front_index_.StoreRelaxed(index + 1);
    return begin_[index];
  }

  // Pop a number of elements.
  void PopBackCount(int32_t n) {
    DCHECK_GE(Size(), static_cast<size_t>(n));
    back_index_.FetchAndSubSequentiallyConsistent(n);
  }

  bool IsEmpty() const {
    return Size() == 0;
  }

  size_t Size() const {
    DCHECK_LE(front_index_.LoadRelaxed(), back_index_.LoadRelaxed());
    return back_index_.LoadRelaxed() - front_index_.LoadRelaxed();
  }

  StackReference<T>* Begin() const {
    return begin_ + front_index_.LoadRelaxed();
  }
  StackReference<T>* End() const {
    return begin_ + back_index_.LoadRelaxed();
  }

  size_t Capacity() const {
    return capacity_;
  }

  // Will clear the stack.
  void Resize(size_t new_capacity) {
    capacity_ = new_capacity;
    growth_limit_ = new_capacity;
    Init();
  }

  void Sort() {
    int32_t start_back_index = back_index_.LoadRelaxed();
    int32_t start_front_index = front_index_.LoadRelaxed();
    std::sort(Begin(), End(), ObjectComparator());
    CHECK_EQ(start_back_index, back_index_.LoadRelaxed());
    CHECK_EQ(start_front_index, front_index_.LoadRelaxed());
    if (kIsDebugBuild) {
      debug_is_sorted_ = true;
    }
  }

  bool ContainsSorted(const T* value) const SHARED_LOCKS_REQUIRED(Locks::mutator_lock_) {
    DCHECK(debug_is_sorted_);
    return std::binary_search(Begin(), End(), value, ObjectComparator());
  }

  bool Contains(const T* value) const SHARED_LOCKS_REQUIRED(Locks::mutator_lock_) {
    for (auto cur = Begin(), end = End(); cur != end; ++cur) {
      if (cur->AsMirrorPtr() == value) {
        return true;
      }
    }
    return false;
  }

 private:
  AtomicStack(const std::string& name, size_t growth_limit, size_t capacity)
      : name_(name),
        back_index_(0),
        front_index_(0),
        begin_(nullptr),
        growth_limit_(growth_limit),
        capacity_(capacity),
        debug_is_sorted_(true) {
  }

  // Returns false if we overflowed the stack.
  bool AtomicPushBackInternal(T* value, size_t limit) ALWAYS_INLINE
      SHARED_LOCKS_REQUIRED(Locks::mutator_lock_) {
    if (kIsDebugBuild) {
      debug_is_sorted_ = false;
    }
    int32_t index;
    do {
      index = back_index_.LoadRelaxed();
      if (UNLIKELY(static_cast<size_t>(index) >= limit)) {
        // Stack overflow.
        return false;
      }
    } while (!back_index_.CompareExchangeWeakRelaxed(index, index + 1));
    begin_[index].Assign(value);
    return true;
  }

  // Size in number of elements.
  void Init() {
    std::string error_msg;
    mem_map_.reset(MemMap::MapAnonymous(name_.c_str(), nullptr, capacity_ * sizeof(begin_[0]),
                                        PROT_READ | PROT_WRITE, false, false, &error_msg));
    CHECK(mem_map_.get() != nullptr) << "couldn't allocate mark stack.\n" << error_msg;
    uint8_t* addr = mem_map_->Begin();
    CHECK(addr != nullptr);
    debug_is_sorted_ = true;
    begin_ = reinterpret_cast<StackReference<T>*>(addr);
    Reset();
  }

  // Name of the mark stack.
  std::string name_;
  // Memory mapping of the atomic stack.
  std::unique_ptr<MemMap> mem_map_;
  // Back index (index after the last element pushed).
  AtomicInteger back_index_;
  // Front index, used for implementing PopFront.
  AtomicInteger front_index_;
  // Base of the atomic stack.
  StackReference<T>* begin_;
  // Current maximum which we can push back to, must be <= capacity_.
  size_t growth_limit_;
  // Maximum number of elements.
  size_t capacity_;
  // Whether or not the stack is sorted, only updated in debug mode to avoid performance overhead.
  bool debug_is_sorted_;

  DISALLOW_COPY_AND_ASSIGN(AtomicStack);
};

typedef AtomicStack<mirror::Object> ObjectStack;

}  // namespace accounting
}  // namespace gc
}  // namespace art

#endif  // ART_RUNTIME_GC_ACCOUNTING_ATOMIC_STACK_H_