1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
|
/*
* Copyright (C) 2011 The Android Open Source Project
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
#ifndef ART_RUNTIME_GC_ACCOUNTING_CARD_TABLE_INL_H_
#define ART_RUNTIME_GC_ACCOUNTING_CARD_TABLE_INL_H_
#include "base/logging.h"
#include "card_table.h"
#include "cutils/atomic-inline.h"
#include "space_bitmap.h"
#include "utils.h"
namespace art {
namespace gc {
namespace accounting {
static inline bool byte_cas(byte old_value, byte new_value, byte* address) {
// Little endian means most significant byte is on the left.
const size_t shift_in_bytes = reinterpret_cast<uintptr_t>(address) % sizeof(uintptr_t);
// Align the address down.
address -= shift_in_bytes;
const size_t shift_in_bits = shift_in_bytes * kBitsPerByte;
int32_t* word_address = reinterpret_cast<int32_t*>(address);
// Word with the byte we are trying to cas cleared.
const int32_t cur_word = *word_address & ~(0xFF << shift_in_bits);
const int32_t old_word = cur_word | (static_cast<int32_t>(old_value) << shift_in_bits);
const int32_t new_word = cur_word | (static_cast<int32_t>(new_value) << shift_in_bits);
bool success = android_atomic_cas(old_word, new_word, word_address) == 0;
return success;
}
template <typename Visitor>
inline size_t CardTable::Scan(SpaceBitmap* bitmap, byte* scan_begin, byte* scan_end,
const Visitor& visitor, const byte minimum_age) const {
DCHECK(bitmap->HasAddress(scan_begin));
DCHECK(bitmap->HasAddress(scan_end - 1)); // scan_end is the byte after the last byte we scan.
byte* card_cur = CardFromAddr(scan_begin);
byte* card_end = CardFromAddr(scan_end);
CheckCardValid(card_cur);
CheckCardValid(card_end);
size_t cards_scanned = 0;
// Handle any unaligned cards at the start.
while (!IsAligned<sizeof(word)>(card_cur) && card_cur < card_end) {
if (*card_cur >= minimum_age) {
uintptr_t start = reinterpret_cast<uintptr_t>(AddrFromCard(card_cur));
bitmap->VisitMarkedRange(start, start + kCardSize, visitor);
++cards_scanned;
}
++card_cur;
}
byte* aligned_end = card_end -
(reinterpret_cast<uintptr_t>(card_end) & (sizeof(uintptr_t) - 1));
uintptr_t* word_end = reinterpret_cast<uintptr_t*>(aligned_end);
for (uintptr_t* word_cur = reinterpret_cast<uintptr_t*>(card_cur); word_cur < word_end;
++word_cur) {
while (LIKELY(*word_cur == 0)) {
++word_cur;
if (UNLIKELY(word_cur >= word_end)) {
goto exit_for;
}
}
// Find the first dirty card.
uintptr_t start_word = *word_cur;
uintptr_t start = reinterpret_cast<uintptr_t>(AddrFromCard(reinterpret_cast<byte*>(word_cur)));
// TODO: Investigate if processing continuous runs of dirty cards with a single bitmap visit is
// more efficient.
for (size_t i = 0; i < sizeof(uintptr_t); ++i) {
if (static_cast<byte>(start_word) >= minimum_age) {
auto* card = reinterpret_cast<byte*>(word_cur) + i;
DCHECK(*card == static_cast<byte>(start_word) || *card == kCardDirty)
<< "card " << static_cast<size_t>(*card) << " word " << (start_word & 0xFF);
bitmap->VisitMarkedRange(start, start + kCardSize, visitor);
++cards_scanned;
}
start_word >>= 8;
start += kCardSize;
}
}
exit_for:
// Handle any unaligned cards at the end.
card_cur = reinterpret_cast<byte*>(word_end);
while (card_cur < card_end) {
if (*card_cur >= minimum_age) {
uintptr_t start = reinterpret_cast<uintptr_t>(AddrFromCard(card_cur));
bitmap->VisitMarkedRange(start, start + kCardSize, visitor);
++cards_scanned;
}
++card_cur;
}
return cards_scanned;
}
/*
* Visitor is expected to take in a card and return the new value. When a value is modified, the
* modify visitor is called.
* visitor: The visitor which modifies the cards. Returns the new value for a card given an old
* value.
* modified: Whenever the visitor modifies a card, this visitor is called on the card. Enables
* us to know which cards got cleared.
*/
template <typename Visitor, typename ModifiedVisitor>
inline void CardTable::ModifyCardsAtomic(byte* scan_begin, byte* scan_end, const Visitor& visitor,
const ModifiedVisitor& modified) {
byte* card_cur = CardFromAddr(scan_begin);
byte* card_end = CardFromAddr(AlignUp(scan_end, kCardSize));
CheckCardValid(card_cur);
CheckCardValid(card_end);
// Handle any unaligned cards at the start.
while (!IsAligned<sizeof(word)>(card_cur) && card_cur < card_end) {
byte expected, new_value;
do {
expected = *card_cur;
new_value = visitor(expected);
} while (expected != new_value && UNLIKELY(!byte_cas(expected, new_value, card_cur)));
if (expected != new_value) {
modified(card_cur, expected, new_value);
}
++card_cur;
}
// Handle unaligned cards at the end.
while (!IsAligned<sizeof(word)>(card_end) && card_end > card_cur) {
--card_end;
byte expected, new_value;
do {
expected = *card_end;
new_value = visitor(expected);
} while (expected != new_value && UNLIKELY(!byte_cas(expected, new_value, card_end)));
if (expected != new_value) {
modified(card_end, expected, new_value);
}
}
// Now we have the words, we can process words in parallel.
uintptr_t* word_cur = reinterpret_cast<uintptr_t*>(card_cur);
uintptr_t* word_end = reinterpret_cast<uintptr_t*>(card_end);
// TODO: This is not big endian safe.
union {
uintptr_t expected_word;
uint8_t expected_bytes[sizeof(uintptr_t)];
};
union {
uintptr_t new_word;
uint8_t new_bytes[sizeof(uintptr_t)];
};
// TODO: Parallelize.
while (word_cur < word_end) {
while (true) {
expected_word = *word_cur;
if (LIKELY(expected_word == 0)) {
break;
}
for (size_t i = 0; i < sizeof(uintptr_t); ++i) {
new_bytes[i] = visitor(expected_bytes[i]);
}
if (LIKELY(android_atomic_cas(expected_word, new_word,
reinterpret_cast<int32_t*>(word_cur)) == 0)) {
for (size_t i = 0; i < sizeof(uintptr_t); ++i) {
const byte expected_byte = expected_bytes[i];
const byte new_byte = new_bytes[i];
if (expected_byte != new_byte) {
modified(reinterpret_cast<byte*>(word_cur) + i, expected_byte, new_byte);
}
}
break;
}
}
++word_cur;
}
}
inline void* CardTable::AddrFromCard(const byte *card_addr) const {
DCHECK(IsValidCard(card_addr))
<< " card_addr: " << reinterpret_cast<const void*>(card_addr)
<< " begin: " << reinterpret_cast<void*>(mem_map_->Begin() + offset_)
<< " end: " << reinterpret_cast<void*>(mem_map_->End());
uintptr_t offset = card_addr - biased_begin_;
return reinterpret_cast<void*>(offset << kCardShift);
}
inline byte* CardTable::CardFromAddr(const void *addr) const {
byte *card_addr = biased_begin_ + (reinterpret_cast<uintptr_t>(addr) >> kCardShift);
// Sanity check the caller was asking for address covered by the card table
DCHECK(IsValidCard(card_addr)) << "addr: " << addr
<< " card_addr: " << reinterpret_cast<void*>(card_addr);
return card_addr;
}
inline void CardTable::CheckCardValid(byte* card) const {
DCHECK(IsValidCard(card))
<< " card_addr: " << reinterpret_cast<const void*>(card)
<< " begin: " << reinterpret_cast<void*>(mem_map_->Begin() + offset_)
<< " end: " << reinterpret_cast<void*>(mem_map_->End());
}
} // namespace accounting
} // namespace gc
} // namespace art
#endif // ART_RUNTIME_GC_ACCOUNTING_CARD_TABLE_INL_H_
|