summaryrefslogtreecommitdiffstats
path: root/runtime/gc/collector/mark_sweep.cc
blob: 865ee1383e9b9e3696496290fa7a976b64c1c27f (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
/*
 * Copyright (C) 2011 The Android Open Source Project
 *
 * Licensed under the Apache License, Version 2.0 (the "License");
 * you may not use this file except in compliance with the License.
 * You may obtain a copy of the License at
 *
 *      http://www.apache.org/licenses/LICENSE-2.0
 *
 * Unless required by applicable law or agreed to in writing, software
 * distributed under the License is distributed on an "AS IS" BASIS,
 * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
 * See the License for the specific language governing permissions and
 * limitations under the License.
 */

#include "mark_sweep.h"

#include <functional>
#include <numeric>
#include <climits>
#include <vector>

#include "base/logging.h"
#include "base/macros.h"
#include "base/mutex-inl.h"
#include "base/timing_logger.h"
#include "gc/accounting/card_table-inl.h"
#include "gc/accounting/heap_bitmap.h"
#include "gc/accounting/space_bitmap-inl.h"
#include "gc/heap.h"
#include "gc/space/image_space.h"
#include "gc/space/large_object_space.h"
#include "gc/space/space-inl.h"
#include "indirect_reference_table.h"
#include "intern_table.h"
#include "jni_internal.h"
#include "monitor.h"
#include "mark_sweep-inl.h"
#include "mirror/class-inl.h"
#include "mirror/class_loader.h"
#include "mirror/dex_cache.h"
#include "mirror/field.h"
#include "mirror/field-inl.h"
#include "mirror/object-inl.h"
#include "mirror/object_array.h"
#include "mirror/object_array-inl.h"
#include "runtime.h"
#include "thread-inl.h"
#include "thread_list.h"
#include "verifier/method_verifier.h"

using namespace art::mirror;

namespace art {
namespace gc {
namespace collector {

// Performance options.
static const bool kParallelMarkStack = true;
static const bool kDisableFinger = true; // TODO: Fix, bit rotten.
static const bool kUseMarkStackPrefetch = true;

// Profiling and information flags.
static const bool kCountClassesMarked = false;
static const bool kProfileLargeObjects = false;
static const bool kMeasureOverhead = false;
static const bool kCountTasks = false;
static const bool kCountJavaLangRefs = false;

class SetFingerVisitor {
 public:
  explicit SetFingerVisitor(MarkSweep* const mark_sweep) : mark_sweep_(mark_sweep) {}

  void operator ()(void* finger) const {
    mark_sweep_->SetFinger(reinterpret_cast<Object*>(finger));
  }

 private:
  MarkSweep* const mark_sweep_;
};

void MarkSweep::ImmuneSpace(space::ContinuousSpace* space) {
  // Bind live to mark bitmap if necessary.
  if (space->GetLiveBitmap() != space->GetMarkBitmap()) {
    BindLiveToMarkBitmap(space);
  }

  // Add the space to the immune region.
  if (immune_begin_ == NULL) {
    DCHECK(immune_end_ == NULL);
    SetImmuneRange(reinterpret_cast<Object*>(space->Begin()),
                   reinterpret_cast<Object*>(space->End()));
  } else {
    const std::vector<space::ContinuousSpace*>& spaces = GetHeap()->GetContinuousSpaces();
    const space::ContinuousSpace* prev_space = NULL;
    // Find out if the previous space is immune.
    // TODO: C++0x
    typedef std::vector<space::ContinuousSpace*>::const_iterator It;
    for (It it = spaces.begin(), end = spaces.end(); it != end; ++it) {
      if (*it == space) {
        break;
      }
      prev_space = *it;
    }

    // If previous space was immune, then extend the immune region. Relies on continuous spaces
    // being sorted by Heap::AddContinuousSpace.
    if (prev_space != NULL &&
        immune_begin_ <= reinterpret_cast<Object*>(prev_space->Begin()) &&
        immune_end_ >= reinterpret_cast<Object*>(prev_space->End())) {
      immune_begin_ = std::min(reinterpret_cast<Object*>(space->Begin()), immune_begin_);
      immune_end_ = std::max(reinterpret_cast<Object*>(space->End()), immune_end_);
    }
  }
}

void MarkSweep::BindBitmaps() {
  const std::vector<space::ContinuousSpace*>& spaces = GetHeap()->GetContinuousSpaces();
  WriterMutexLock mu(Thread::Current(), *Locks::heap_bitmap_lock_);

  // Mark all of the spaces we never collect as immune.
  typedef std::vector<space::ContinuousSpace*>::const_iterator It;
  for (It it = spaces.begin(), end = spaces.end(); it != end; ++it) {
    space::ContinuousSpace* space = *it;
    if (space->GetGcRetentionPolicy() == space::kGcRetentionPolicyNeverCollect) {
      ImmuneSpace(space);
    }
  }
}

MarkSweep::MarkSweep(Heap* heap, bool is_concurrent, const std::string& name_prefix)
    : GarbageCollector(heap,
                       name_prefix + (name_prefix.empty() ? "" : " ") +
                       (is_concurrent ? "concurrent mark sweep": "mark sweep")),
      current_mark_bitmap_(NULL),
      java_lang_Class_(NULL),
      mark_stack_(NULL),
      finger_(NULL),
      immune_begin_(NULL),
      immune_end_(NULL),
      soft_reference_list_(NULL),
      weak_reference_list_(NULL),
      finalizer_reference_list_(NULL),
      phantom_reference_list_(NULL),
      cleared_reference_list_(NULL),
      gc_barrier_(new Barrier(0)),
      large_object_lock_("mark sweep large object lock", kMarkSweepLargeObjectLock),
      mark_stack_expand_lock_("mark sweep mark stack expand lock"),
      is_concurrent_(is_concurrent),
      clear_soft_references_(false) {
}

void MarkSweep::InitializePhase() {
  timings_.Reset();
  timings_.StartSplit("InitializePhase");
  mark_stack_ = GetHeap()->mark_stack_.get();
  DCHECK(mark_stack_ != NULL);
  finger_ = NULL;
  SetImmuneRange(NULL, NULL);
  soft_reference_list_ = NULL;
  weak_reference_list_ = NULL;
  finalizer_reference_list_ = NULL;
  phantom_reference_list_ = NULL;
  cleared_reference_list_ = NULL;
  freed_bytes_ = 0;
  freed_objects_ = 0;
  class_count_ = 0;
  array_count_ = 0;
  other_count_ = 0;
  large_object_test_ = 0;
  large_object_mark_ = 0;
  classes_marked_ = 0;
  overhead_time_ = 0;
  work_chunks_created_ = 0;
  work_chunks_deleted_ = 0;
  reference_count_ = 0;
  java_lang_Class_ = Class::GetJavaLangClass();
  CHECK(java_lang_Class_ != NULL);
  FindDefaultMarkBitmap();
  // Do any pre GC verification.
  heap_->PreGcVerification(this);
}

void MarkSweep::ProcessReferences(Thread* self) {
  timings_.NewSplit("ProcessReferences");
  WriterMutexLock mu(self, *Locks::heap_bitmap_lock_);
  ProcessReferences(&soft_reference_list_, clear_soft_references_, &weak_reference_list_,
                    &finalizer_reference_list_, &phantom_reference_list_);
}

bool MarkSweep::HandleDirtyObjectsPhase() {
  Thread* self = Thread::Current();
  accounting::ObjectStack* allocation_stack = GetHeap()->allocation_stack_.get();
  Locks::mutator_lock_->AssertExclusiveHeld(self);

  {
    timings_.NewSplit("ReMarkRoots");
    WriterMutexLock mu(self, *Locks::heap_bitmap_lock_);

    // Re-mark root set.
    ReMarkRoots();

    // Scan dirty objects, this is only required if we are not doing concurrent GC.
    RecursiveMarkDirtyObjects(accounting::CardTable::kCardDirty);
  }

  ProcessReferences(self);

  // Only need to do this if we have the card mark verification on, and only during concurrent GC.
  if (GetHeap()->verify_missing_card_marks_) {
    WriterMutexLock mu(self, *Locks::heap_bitmap_lock_);
    // This second sweep makes sure that we don't have any objects in the live stack which point to
    // freed objects. These cause problems since their references may be previously freed objects.
    SweepArray(allocation_stack, false);
  } else {
    timings_.NewSplit("UnMarkAllocStack");
    WriterMutexLock mu(self, *Locks::heap_bitmap_lock_);
    // The allocation stack contains things allocated since the start of the GC. These may have been
    // marked during this GC meaning they won't be eligible for reclaiming in the next sticky GC.
    // Remove these objects from the mark bitmaps so that they will be eligible for sticky
    // collection.
    heap_->UnMarkAllocStack(GetHeap()->alloc_space_->GetMarkBitmap(),
                            GetHeap()->large_object_space_->GetMarkObjects(),
                            allocation_stack);
  }
  return true;
}

bool MarkSweep::IsConcurrent() const {
  return is_concurrent_;
}

void MarkSweep::MarkingPhase() {
  Heap* heap = GetHeap();
  Thread* self = Thread::Current();

  timings_.NewSplit("BindBitmaps");
  BindBitmaps();
  FindDefaultMarkBitmap();
  // Process dirty cards and add dirty cards to mod union tables.
  heap->ProcessCards(timings_);

  // Need to do this before the checkpoint since we don't want any threads to add references to
  // the live stack during the recursive mark.
  timings_.NewSplit("SwapStacks");
  heap->SwapStacks();

  WriterMutexLock mu(self, *Locks::heap_bitmap_lock_);
  if (Locks::mutator_lock_->IsExclusiveHeld(self)) {
    // If we exclusively hold the mutator lock, all threads must be suspended.
    timings_.NewSplit("MarkRoots");
    MarkRoots();
  } else {
    timings_.NewSplit("MarkRootsCheckpoint");
    MarkRootsCheckpoint(self);
    timings_.NewSplit("MarkNonThreadRoots");
    MarkNonThreadRoots();
  }
  timings_.NewSplit("MarkConcurrentRoots");
  MarkConcurrentRoots();

  heap->UpdateAndMarkModUnion(this, timings_, GetGcType());
  MarkReachableObjects();
}

void MarkSweep::MarkReachableObjects() {
  // Mark everything allocated since the last as GC live so that we can sweep concurrently,
  // knowing that new allocations won't be marked as live.
  timings_.NewSplit("MarkStackAsLive");
  accounting::ObjectStack* live_stack = heap_->GetLiveStack();
  heap_->MarkAllocStack(heap_->alloc_space_->GetLiveBitmap(),
                       heap_->large_object_space_->GetLiveObjects(),
                       live_stack);
  live_stack->Reset();
  // Recursively mark all the non-image bits set in the mark bitmap.
  RecursiveMark();
  DisableFinger();
}

void MarkSweep::ReclaimPhase() {
  Thread* self = Thread::Current();

  if (!IsConcurrent()) {
    ProcessReferences(self);
  }

  // Before freeing anything, lets verify the heap.
  if (kIsDebugBuild) {
    ReaderMutexLock mu(self, *Locks::heap_bitmap_lock_);
    VerifyImageRoots();
  }
  heap_->PreSweepingGcVerification(this);

  {
    WriterMutexLock mu(self, *Locks::heap_bitmap_lock_);

    // Reclaim unmarked objects.
    Sweep(false);

    // Swap the live and mark bitmaps for each space which we modified space. This is an
    // optimization that enables us to not clear live bits inside of the sweep. Only swaps unbound
    // bitmaps.
    timings_.NewSplit("SwapBitmaps");
    SwapBitmaps();

    // Unbind the live and mark bitmaps.
    UnBindBitmaps();
  }
}

void MarkSweep::SetImmuneRange(Object* begin, Object* end) {
  immune_begin_ = begin;
  immune_end_ = end;
}

void MarkSweep::FindDefaultMarkBitmap() {
  const std::vector<space::ContinuousSpace*>& spaces = GetHeap()->GetContinuousSpaces();
  // TODO: C++0x
  typedef std::vector<space::ContinuousSpace*>::const_iterator It;
  for (It it = spaces.begin(), end = spaces.end(); it != end; ++it) {
    space::ContinuousSpace* space = *it;
    if (space->GetGcRetentionPolicy() == space::kGcRetentionPolicyAlwaysCollect) {
      current_mark_bitmap_ = (*it)->GetMarkBitmap();
      CHECK(current_mark_bitmap_ != NULL);
      return;
    }
  }
  GetHeap()->DumpSpaces();
  LOG(FATAL) << "Could not find a default mark bitmap";
}

void MarkSweep::ExpandMarkStack() {
  // Rare case, no need to have Thread::Current be a parameter.
  MutexLock mu(Thread::Current(), mark_stack_expand_lock_);
  if (UNLIKELY(mark_stack_->Size() < mark_stack_->Capacity())) {
    // Someone else acquired the lock and expanded the mark stack before us.
    return;
  }
  std::vector<Object*> temp;
  temp.insert(temp.begin(), mark_stack_->Begin(), mark_stack_->End());
  mark_stack_->Resize(mark_stack_->Capacity() * 2);
  for (size_t i = 0; i < temp.size(); ++i) {
    mark_stack_->PushBack(temp[i]);
  }
}

inline void MarkSweep::MarkObjectNonNullParallel(const Object* obj, bool check_finger) {
  DCHECK(obj != NULL);
  if (MarkObjectParallel(obj)) {
    if (kDisableFinger || (check_finger && obj < finger_)) {
      while (UNLIKELY(!mark_stack_->AtomicPushBack(const_cast<Object*>(obj)))) {
        // Only reason a push can fail is that the mark stack is full.
        ExpandMarkStack();
      }
    }
  }
}

inline void MarkSweep::MarkObjectNonNull(const Object* obj, bool check_finger) {
  DCHECK(obj != NULL);

  if (obj >= immune_begin_ && obj < immune_end_) {
    DCHECK(IsMarked(obj));
    return;
  }

  // Try to take advantage of locality of references within a space, failing this find the space
  // the hard way.
  accounting::SpaceBitmap* object_bitmap = current_mark_bitmap_;
  if (UNLIKELY(!object_bitmap->HasAddress(obj))) {
    accounting::SpaceBitmap* new_bitmap = heap_->GetMarkBitmap()->GetContinuousSpaceBitmap(obj);
    if (LIKELY(new_bitmap != NULL)) {
      object_bitmap = new_bitmap;
    } else {
      MarkLargeObject(obj);
      return;
    }
  }

  // This object was not previously marked.
  if (!object_bitmap->Test(obj)) {
    object_bitmap->Set(obj);
    if (kDisableFinger || (check_finger && obj < finger_)) {
      // Do we need to expand the mark stack?
      if (UNLIKELY(mark_stack_->Size() >= mark_stack_->Capacity())) {
        ExpandMarkStack();
      }
      // The object must be pushed on to the mark stack.
      mark_stack_->PushBack(const_cast<Object*>(obj));
    }
  }
}

// Rare case, probably not worth inlining since it will increase instruction cache miss rate.
bool MarkSweep::MarkLargeObject(const Object* obj) {
  // TODO: support >1 discontinuous space.
  space::LargeObjectSpace* large_object_space = GetHeap()->GetLargeObjectsSpace();
  accounting::SpaceSetMap* large_objects = large_object_space->GetMarkObjects();
  if (kProfileLargeObjects) {
    ++large_object_test_;
  }
  if (UNLIKELY(!large_objects->Test(obj))) {
    if (!large_object_space->Contains(obj)) {
      LOG(ERROR) << "Tried to mark " << obj << " not contained by any spaces";
      LOG(ERROR) << "Attempting see if it's a bad root";
      VerifyRoots();
      LOG(FATAL) << "Can't mark bad root";
    }
    if (kProfileLargeObjects) {
      ++large_object_mark_;
    }
    large_objects->Set(obj);
    // Don't need to check finger since large objects never have any object references.
    return true;
  }
  return false;
}

inline bool MarkSweep::MarkObjectParallel(const Object* obj) {
  DCHECK(obj != NULL);

  if (obj >= immune_begin_ && obj < immune_end_) {
    DCHECK(IsMarked(obj));
    return false;
  }

  // Try to take advantage of locality of references within a space, failing this find the space
  // the hard way.
  accounting::SpaceBitmap* object_bitmap = current_mark_bitmap_;
  if (UNLIKELY(!object_bitmap->HasAddress(obj))) {
    accounting::SpaceBitmap* new_bitmap = heap_->GetMarkBitmap()->GetContinuousSpaceBitmap(obj);
    if (new_bitmap != NULL) {
      object_bitmap = new_bitmap;
    } else {
      // TODO: Remove the Thread::Current here?
      // TODO: Convert this to some kind of atomic marking?
      MutexLock mu(Thread::Current(), large_object_lock_);
      return MarkLargeObject(obj);
    }
  }

  // Return true if the object was not previously marked.
  return !object_bitmap->AtomicTestAndSet(obj);
}

// Used to mark objects when recursing.  Recursion is done by moving
// the finger across the bitmaps in address order and marking child
// objects.  Any newly-marked objects whose addresses are lower than
// the finger won't be visited by the bitmap scan, so those objects
// need to be added to the mark stack.
void MarkSweep::MarkObject(const Object* obj) {
  if (obj != NULL) {
    MarkObjectNonNull(obj, true);
  }
}

void MarkSweep::MarkRoot(const Object* obj) {
  if (obj != NULL) {
    MarkObjectNonNull(obj, false);
  }
}

void MarkSweep::MarkRootParallelCallback(const Object* root, void* arg) {
  DCHECK(root != NULL);
  DCHECK(arg != NULL);
  MarkSweep* mark_sweep = reinterpret_cast<MarkSweep*>(arg);
  mark_sweep->MarkObjectNonNullParallel(root, false);
}

void MarkSweep::MarkObjectCallback(const Object* root, void* arg) {
  DCHECK(root != NULL);
  DCHECK(arg != NULL);
  MarkSweep* mark_sweep = reinterpret_cast<MarkSweep*>(arg);
  mark_sweep->MarkObjectNonNull(root, false);
}

void MarkSweep::ReMarkObjectVisitor(const Object* root, void* arg) {
  DCHECK(root != NULL);
  DCHECK(arg != NULL);
  MarkSweep* mark_sweep = reinterpret_cast<MarkSweep*>(arg);
  mark_sweep->MarkObjectNonNull(root, true);
}

void MarkSweep::VerifyRootCallback(const Object* root, void* arg, size_t vreg,
                                   const StackVisitor* visitor) {
  reinterpret_cast<MarkSweep*>(arg)->VerifyRoot(root, vreg, visitor);
}

void MarkSweep::VerifyRoot(const Object* root, size_t vreg, const StackVisitor* visitor) {
  // See if the root is on any space bitmap.
  if (GetHeap()->GetLiveBitmap()->GetContinuousSpaceBitmap(root) == NULL) {
    space::LargeObjectSpace* large_object_space = GetHeap()->GetLargeObjectsSpace();
    if (!large_object_space->Contains(root)) {
      LOG(ERROR) << "Found invalid root: " << root;
      if (visitor != NULL) {
        LOG(ERROR) << visitor->DescribeLocation() << " in VReg: " << vreg;
      }
    }
  }
}

void MarkSweep::VerifyRoots() {
  Runtime::Current()->GetThreadList()->VerifyRoots(VerifyRootCallback, this);
}

// Marks all objects in the root set.
void MarkSweep::MarkRoots() {
  Runtime::Current()->VisitNonConcurrentRoots(MarkObjectCallback, this);
}

void MarkSweep::MarkNonThreadRoots() {
  Runtime::Current()->VisitNonThreadRoots(MarkObjectCallback, this);
}

void MarkSweep::MarkConcurrentRoots() {
  // Visit all runtime roots and clear dirty flags.
  Runtime::Current()->VisitConcurrentRoots(MarkObjectCallback, this, false, true);
}

class CheckObjectVisitor {
 public:
  explicit CheckObjectVisitor(MarkSweep* const mark_sweep) : mark_sweep_(mark_sweep) {}

  void operator ()(const Object* obj, const Object* ref, MemberOffset offset, bool is_static) const
      NO_THREAD_SAFETY_ANALYSIS {
    if (kDebugLocking) {
      Locks::heap_bitmap_lock_->AssertSharedHeld(Thread::Current());
    }
    mark_sweep_->CheckReference(obj, ref, offset, is_static);
  }

 private:
  MarkSweep* const mark_sweep_;
};

void MarkSweep::CheckObject(const Object* obj) {
  DCHECK(obj != NULL);
  CheckObjectVisitor visitor(this);
  VisitObjectReferences(obj, visitor);
}

void MarkSweep::VerifyImageRootVisitor(Object* root, void* arg) {
  DCHECK(root != NULL);
  DCHECK(arg != NULL);
  MarkSweep* mark_sweep = reinterpret_cast<MarkSweep*>(arg);
  DCHECK(mark_sweep->heap_->GetMarkBitmap()->Test(root));
  mark_sweep->CheckObject(root);
}

void MarkSweep::BindLiveToMarkBitmap(space::ContinuousSpace* space) {
  CHECK(space->IsDlMallocSpace());
  space::DlMallocSpace* alloc_space = space->AsDlMallocSpace();
  accounting::SpaceBitmap* live_bitmap = space->GetLiveBitmap();
  accounting::SpaceBitmap* mark_bitmap = alloc_space->mark_bitmap_.release();
  GetHeap()->GetMarkBitmap()->ReplaceBitmap(mark_bitmap, live_bitmap);
  alloc_space->temp_bitmap_.reset(mark_bitmap);
  alloc_space->mark_bitmap_.reset(live_bitmap);
}

class ScanObjectVisitor {
 public:
  explicit ScanObjectVisitor(MarkSweep* const mark_sweep) : mark_sweep_(mark_sweep) {}

  // TODO: Fixme when anotatalysis works with visitors.
  void operator ()(const Object* obj) const NO_THREAD_SAFETY_ANALYSIS {
    if (kDebugLocking) {
      Locks::mutator_lock_->AssertSharedHeld(Thread::Current());
      Locks::heap_bitmap_lock_->AssertExclusiveHeld(Thread::Current());
    }
    mark_sweep_->ScanObject(obj);
  }

 private:
  MarkSweep* const mark_sweep_;
};

void MarkSweep::ScanGrayObjects(byte minimum_age) {
  accounting::CardTable* card_table = GetHeap()->GetCardTable();
  const std::vector<space::ContinuousSpace*>& spaces = GetHeap()->GetContinuousSpaces();
  ScanObjectVisitor visitor(this);
  SetFingerVisitor finger_visitor(this);
  // TODO: C++0x
  typedef std::vector<space::ContinuousSpace*>::const_iterator It;
  for (It it = spaces.begin(), space_end = spaces.end(); it != space_end; ++it) {
    space::ContinuousSpace* space = *it;
    switch (space->GetGcRetentionPolicy()) {
      case space::kGcRetentionPolicyNeverCollect:
        timings_.NewSplit("ScanGrayImageSpaceObjects");
        break;
      case space::kGcRetentionPolicyFullCollect:
        timings_.NewSplit("ScanGrayZygoteSpaceObjects");
        break;
      case space::kGcRetentionPolicyAlwaysCollect:
        timings_.NewSplit("ScanGrayAllocSpaceObjects");
        break;
    }
    byte* begin = space->Begin();
    byte* end = space->End();
    // Image spaces are handled properly since live == marked for them.
    accounting::SpaceBitmap* mark_bitmap = space->GetMarkBitmap();
    card_table->Scan(mark_bitmap, begin, end, visitor, finger_visitor, minimum_age);
  }
}

class CheckBitmapVisitor {
 public:
  explicit CheckBitmapVisitor(MarkSweep* mark_sweep) : mark_sweep_(mark_sweep) {}

  void operator ()(const Object* obj) const NO_THREAD_SAFETY_ANALYSIS {
    if (kDebugLocking) {
      Locks::heap_bitmap_lock_->AssertSharedHeld(Thread::Current());
    }
    DCHECK(obj != NULL);
    mark_sweep_->CheckObject(obj);
  }

 private:
  MarkSweep* mark_sweep_;
};

void MarkSweep::VerifyImageRoots() {
  // Verify roots ensures that all the references inside the image space point
  // objects which are either in the image space or marked objects in the alloc
  // space
  CheckBitmapVisitor visitor(this);
  const std::vector<space::ContinuousSpace*>& spaces = GetHeap()->GetContinuousSpaces();
  // TODO: C++0x
  typedef std::vector<space::ContinuousSpace*>::const_iterator It;
  for (It it = spaces.begin(), end = spaces.end(); it != end; ++it) {
    if ((*it)->IsImageSpace()) {
      space::ImageSpace* space = (*it)->AsImageSpace();
      uintptr_t begin = reinterpret_cast<uintptr_t>(space->Begin());
      uintptr_t end = reinterpret_cast<uintptr_t>(space->End());
      accounting::SpaceBitmap* live_bitmap = space->GetLiveBitmap();
      DCHECK(live_bitmap != NULL);
      live_bitmap->VisitMarkedRange(begin, end, visitor, VoidFunctor());
    }
  }
}

// Populates the mark stack based on the set of marked objects and
// recursively marks until the mark stack is emptied.
void MarkSweep::RecursiveMark() {
  timings_.NewSplit("RecursiveMark");
  // RecursiveMark will build the lists of known instances of the Reference classes.
  // See DelayReferenceReferent for details.
  CHECK(soft_reference_list_ == NULL);
  CHECK(weak_reference_list_ == NULL);
  CHECK(finalizer_reference_list_ == NULL);
  CHECK(phantom_reference_list_ == NULL);
  CHECK(cleared_reference_list_ == NULL);

  const bool partial = GetGcType() == kGcTypePartial;
  SetFingerVisitor set_finger_visitor(this);
  ScanObjectVisitor scan_visitor(this);
  if (!kDisableFinger) {
    finger_ = NULL;
    const std::vector<space::ContinuousSpace*>& spaces = GetHeap()->GetContinuousSpaces();
    // TODO: C++0x
    typedef std::vector<space::ContinuousSpace*>::const_iterator It;
    for (It it = spaces.begin(), end = spaces.end(); it != end; ++it) {
      space::ContinuousSpace* space = *it;
      if ((space->GetGcRetentionPolicy() == space::kGcRetentionPolicyAlwaysCollect) ||
          (!partial && space->GetGcRetentionPolicy() == space::kGcRetentionPolicyFullCollect)) {
        current_mark_bitmap_ = space->GetMarkBitmap();
        if (current_mark_bitmap_ == NULL) {
          GetHeap()->DumpSpaces();
          LOG(FATAL) << "invalid bitmap";
        }
        // This function does not handle heap end increasing, so we must use the space end.
        uintptr_t begin = reinterpret_cast<uintptr_t>(space->Begin());
        uintptr_t end = reinterpret_cast<uintptr_t>(space->End());
        current_mark_bitmap_->VisitMarkedRange(begin, end, scan_visitor, set_finger_visitor);
      }
    }
  }
  DisableFinger();
  timings_.NewSplit("ProcessMarkStack");
  ProcessMarkStack();
}

bool MarkSweep::IsMarkedCallback(const Object* object, void* arg) {
  return
      reinterpret_cast<MarkSweep*>(arg)->IsMarked(object) ||
      !reinterpret_cast<MarkSweep*>(arg)->GetHeap()->GetLiveBitmap()->Test(object);
}

void MarkSweep::RecursiveMarkDirtyObjects(byte minimum_age) {
  ScanGrayObjects(minimum_age);
  timings_.NewSplit("ProcessMarkStack");
  ProcessMarkStack();
}

void MarkSweep::ReMarkRoots() {
  Runtime::Current()->VisitRoots(ReMarkObjectVisitor, this, true, true);
}

void MarkSweep::SweepJniWeakGlobals(IsMarkedTester is_marked, void* arg) {
  JavaVMExt* vm = Runtime::Current()->GetJavaVM();
  MutexLock mu(Thread::Current(), vm->weak_globals_lock);
  IndirectReferenceTable* table = &vm->weak_globals;
  typedef IndirectReferenceTable::iterator It;  // TODO: C++0x auto
  for (It it = table->begin(), end = table->end(); it != end; ++it) {
    const Object** entry = *it;
    if (!is_marked(*entry, arg)) {
      *entry = kClearedJniWeakGlobal;
    }
  }
}

struct ArrayMarkedCheck {
  accounting::ObjectStack* live_stack;
  MarkSweep* mark_sweep;
};

// Either marked or not live.
bool MarkSweep::IsMarkedArrayCallback(const Object* object, void* arg) {
  ArrayMarkedCheck* array_check = reinterpret_cast<ArrayMarkedCheck*>(arg);
  if (array_check->mark_sweep->IsMarked(object)) {
    return true;
  }
  accounting::ObjectStack* live_stack = array_check->live_stack;
  return std::find(live_stack->Begin(), live_stack->End(), object) == live_stack->End();
}

void MarkSweep::SweepSystemWeaksArray(accounting::ObjectStack* allocations) {
  Runtime* runtime = Runtime::Current();
  // The callbacks check
  // !is_marked where is_marked is the callback but we want
  // !IsMarked && IsLive
  // So compute !(!IsMarked && IsLive) which is equal to (IsMarked || !IsLive).
  // Or for swapped (IsLive || !IsMarked).

  ArrayMarkedCheck visitor;
  visitor.live_stack = allocations;
  visitor.mark_sweep = this;
  runtime->GetInternTable()->SweepInternTableWeaks(IsMarkedArrayCallback, &visitor);
  runtime->GetMonitorList()->SweepMonitorList(IsMarkedArrayCallback, &visitor);
  SweepJniWeakGlobals(IsMarkedArrayCallback, &visitor);
}

void MarkSweep::SweepSystemWeaks() {
  Runtime* runtime = Runtime::Current();
  // The callbacks check
  // !is_marked where is_marked is the callback but we want
  // !IsMarked && IsLive
  // So compute !(!IsMarked && IsLive) which is equal to (IsMarked || !IsLive).
  // Or for swapped (IsLive || !IsMarked).
  runtime->GetInternTable()->SweepInternTableWeaks(IsMarkedCallback, this);
  runtime->GetMonitorList()->SweepMonitorList(IsMarkedCallback, this);
  SweepJniWeakGlobals(IsMarkedCallback, this);
}

bool MarkSweep::VerifyIsLiveCallback(const Object* obj, void* arg) {
  reinterpret_cast<MarkSweep*>(arg)->VerifyIsLive(obj);
  // We don't actually want to sweep the object, so lets return "marked"
  return true;
}

void MarkSweep::VerifyIsLive(const Object* obj) {
  Heap* heap = GetHeap();
  if (!heap->GetLiveBitmap()->Test(obj)) {
    space::LargeObjectSpace* large_object_space = GetHeap()->GetLargeObjectsSpace();
    if (!large_object_space->GetLiveObjects()->Test(obj)) {
      if (std::find(heap->allocation_stack_->Begin(), heap->allocation_stack_->End(), obj) ==
          heap->allocation_stack_->End()) {
        // Object not found!
        heap->DumpSpaces();
        LOG(FATAL) << "Found dead object " << obj;
      }
    }
  }
}

void MarkSweep::VerifySystemWeaks() {
  Runtime* runtime = Runtime::Current();
  // Verify system weaks, uses a special IsMarked callback which always returns true.
  runtime->GetInternTable()->SweepInternTableWeaks(VerifyIsLiveCallback, this);
  runtime->GetMonitorList()->SweepMonitorList(VerifyIsLiveCallback, this);

  JavaVMExt* vm = runtime->GetJavaVM();
  MutexLock mu(Thread::Current(), vm->weak_globals_lock);
  IndirectReferenceTable* table = &vm->weak_globals;
  typedef IndirectReferenceTable::iterator It;  // TODO: C++0x auto
  for (It it = table->begin(), end = table->end(); it != end; ++it) {
    const Object** entry = *it;
    VerifyIsLive(*entry);
  }
}

struct SweepCallbackContext {
  MarkSweep* mark_sweep;
  space::AllocSpace* space;
  Thread* self;
};

class CheckpointMarkThreadRoots : public Closure {
 public:
  explicit CheckpointMarkThreadRoots(MarkSweep* mark_sweep) : mark_sweep_(mark_sweep) {}

  virtual void Run(Thread* thread) NO_THREAD_SAFETY_ANALYSIS {
    // Note: self is not necessarily equal to thread since thread may be suspended.
    Thread* self = Thread::Current();
    CHECK(thread == self || thread->IsSuspended() || thread->GetState() == kWaitingPerformingGc)
        << thread->GetState() << " thread " << thread << " self " << self;
    thread->VisitRoots(MarkSweep::MarkRootParallelCallback, mark_sweep_);
    mark_sweep_->GetBarrier().Pass(self);
  }

 private:
  MarkSweep* mark_sweep_;
};

void MarkSweep::MarkRootsCheckpoint(Thread* self) {
  CheckpointMarkThreadRoots check_point(this);
  ThreadList* thread_list = Runtime::Current()->GetThreadList();
  // Request the check point is run on all threads returning a count of the threads that must
  // run through the barrier including self.
  size_t barrier_count = thread_list->RunCheckpoint(&check_point);
  // Release locks then wait for all mutator threads to pass the barrier.
  // TODO: optimize to not release locks when there are no threads to wait for.
  Locks::heap_bitmap_lock_->ExclusiveUnlock(self);
  Locks::mutator_lock_->SharedUnlock(self);
  ThreadState old_state = self->SetState(kWaitingForCheckPointsToRun);
  CHECK_EQ(old_state, kWaitingPerformingGc);
  gc_barrier_->Increment(self, barrier_count);
  self->SetState(kWaitingPerformingGc);
  Locks::mutator_lock_->SharedLock(self);
  Locks::heap_bitmap_lock_->ExclusiveLock(self);
}

void MarkSweep::SweepCallback(size_t num_ptrs, Object** ptrs, void* arg) {
  SweepCallbackContext* context = static_cast<SweepCallbackContext*>(arg);
  MarkSweep* mark_sweep = context->mark_sweep;
  Heap* heap = mark_sweep->GetHeap();
  space::AllocSpace* space = context->space;
  Thread* self = context->self;
  Locks::heap_bitmap_lock_->AssertExclusiveHeld(self);
  // Use a bulk free, that merges consecutive objects before freeing or free per object?
  // Documentation suggests better free performance with merging, but this may be at the expensive
  // of allocation.
  size_t freed_objects = num_ptrs;
  // AllocSpace::FreeList clears the value in ptrs, so perform after clearing the live bit
  size_t freed_bytes = space->FreeList(self, num_ptrs, ptrs);
  heap->RecordFree(freed_objects, freed_bytes);
  mark_sweep->freed_objects_.fetch_add(freed_objects);
  mark_sweep->freed_bytes_.fetch_add(freed_bytes);
}

void MarkSweep::ZygoteSweepCallback(size_t num_ptrs, Object** ptrs, void* arg) {
  SweepCallbackContext* context = static_cast<SweepCallbackContext*>(arg);
  Locks::heap_bitmap_lock_->AssertExclusiveHeld(context->self);
  Heap* heap = context->mark_sweep->GetHeap();
  // We don't free any actual memory to avoid dirtying the shared zygote pages.
  for (size_t i = 0; i < num_ptrs; ++i) {
    Object* obj = static_cast<Object*>(ptrs[i]);
    heap->GetLiveBitmap()->Clear(obj);
    heap->GetCardTable()->MarkCard(obj);
  }
}

void MarkSweep::SweepArray(accounting::ObjectStack* allocations, bool swap_bitmaps) {
  size_t freed_bytes = 0;
  space::DlMallocSpace* space = heap_->GetAllocSpace();

  // If we don't swap bitmaps then newly allocated Weaks go into the live bitmap but not mark
  // bitmap, resulting in occasional frees of Weaks which are still in use.
  timings_.NewSplit("SweepSystemWeaks");
  SweepSystemWeaksArray(allocations);

  timings_.NewSplit("Process allocation stack");
  // Newly allocated objects MUST be in the alloc space and those are the only objects which we are
  // going to free.
  accounting::SpaceBitmap* live_bitmap = space->GetLiveBitmap();
  accounting::SpaceBitmap* mark_bitmap = space->GetMarkBitmap();
  space::LargeObjectSpace* large_object_space = GetHeap()->GetLargeObjectsSpace();
  accounting::SpaceSetMap* large_live_objects = large_object_space->GetLiveObjects();
  accounting::SpaceSetMap* large_mark_objects = large_object_space->GetMarkObjects();
  if (swap_bitmaps) {
    std::swap(live_bitmap, mark_bitmap);
    std::swap(large_live_objects, large_mark_objects);
  }

  size_t freed_large_objects = 0;
  size_t count = allocations->Size();
  Object** objects = const_cast<Object**>(allocations->Begin());
  Object** out = objects;

  // Empty the allocation stack.
  Thread* self = Thread::Current();
  for (size_t i = 0;i < count;++i) {
    Object* obj = objects[i];
    // There should only be objects in the AllocSpace/LargeObjectSpace in the allocation stack.
    if (LIKELY(mark_bitmap->HasAddress(obj))) {
      if (!mark_bitmap->Test(obj)) {
        // Don't bother un-marking since we clear the mark bitmap anyways.
        *(out++) = obj;
      }
    } else if (!large_mark_objects->Test(obj)) {
      ++freed_large_objects;
      freed_bytes += large_object_space->Free(self, obj);
    }
  }
  CHECK_EQ(count, allocations->Size());
  timings_.NewSplit("FreeList");

  size_t freed_objects = out - objects;
  freed_bytes += space->FreeList(self, freed_objects, objects);
  VLOG(heap) << "Freed " << freed_objects << "/" << count
             << " objects with size " << PrettySize(freed_bytes);
  heap_->RecordFree(freed_objects + freed_large_objects, freed_bytes);
  freed_objects_.fetch_add(freed_objects);
  freed_bytes_.fetch_add(freed_bytes);

  timings_.NewSplit("ResetStack");
  allocations->Reset();
}

void MarkSweep::Sweep(bool swap_bitmaps) {
  DCHECK(mark_stack_->IsEmpty());

  // If we don't swap bitmaps then newly allocated Weaks go into the live bitmap but not mark
  // bitmap, resulting in occasional frees of Weaks which are still in use.
  timings_.NewSplit("SweepSystemWeaks");
  SweepSystemWeaks();

  const bool partial = (GetGcType() == kGcTypePartial);
  SweepCallbackContext scc;
  scc.mark_sweep = this;
  scc.self = Thread::Current();
  const std::vector<space::ContinuousSpace*>& spaces = GetHeap()->GetContinuousSpaces();
  // TODO: C++0x
  typedef std::vector<space::ContinuousSpace*>::const_iterator It;
  for (It it = spaces.begin(), end = spaces.end(); it != end; ++it) {
    space::ContinuousSpace* space = *it;
    // We always sweep always collect spaces.
    bool sweep_space = (space->GetGcRetentionPolicy() == space::kGcRetentionPolicyAlwaysCollect);
    if (!partial && !sweep_space) {
      // We sweep full collect spaces when the GC isn't a partial GC (ie its full).
      sweep_space = (space->GetGcRetentionPolicy() == space::kGcRetentionPolicyFullCollect);
    }
    if (sweep_space) {
      uintptr_t begin = reinterpret_cast<uintptr_t>(space->Begin());
      uintptr_t end = reinterpret_cast<uintptr_t>(space->End());
      scc.space = space->AsDlMallocSpace();
      accounting::SpaceBitmap* live_bitmap = space->GetLiveBitmap();
      accounting::SpaceBitmap* mark_bitmap = space->GetMarkBitmap();
      if (swap_bitmaps) {
        std::swap(live_bitmap, mark_bitmap);
      }
      if (!space->IsZygoteSpace()) {
        timings_.NewSplit("SweepAllocSpace");
        // Bitmaps are pre-swapped for optimization which enables sweeping with the heap unlocked.
        accounting::SpaceBitmap::SweepWalk(*live_bitmap, *mark_bitmap, begin, end,
                                           &SweepCallback, reinterpret_cast<void*>(&scc));
      } else {
        timings_.NewSplit("SweepZygote");
        // Zygote sweep takes care of dirtying cards and clearing live bits, does not free actual
        // memory.
        accounting::SpaceBitmap::SweepWalk(*live_bitmap, *mark_bitmap, begin, end,
                                           &ZygoteSweepCallback, reinterpret_cast<void*>(&scc));
      }
    }
  }

  timings_.NewSplit("SweepLargeObjects");
  SweepLargeObjects(swap_bitmaps);
}

void MarkSweep::SweepLargeObjects(bool swap_bitmaps) {
  // Sweep large objects
  space::LargeObjectSpace* large_object_space = GetHeap()->GetLargeObjectsSpace();
  accounting::SpaceSetMap* large_live_objects = large_object_space->GetLiveObjects();
  accounting::SpaceSetMap* large_mark_objects = large_object_space->GetMarkObjects();
  if (swap_bitmaps) {
    std::swap(large_live_objects, large_mark_objects);
  }
  accounting::SpaceSetMap::Objects& live_objects = large_live_objects->GetObjects();
  // O(n*log(n)) but hopefully there are not too many large objects.
  size_t freed_objects = 0;
  size_t freed_bytes = 0;
  Thread* self = Thread::Current();
  // TODO: C++0x
  typedef accounting::SpaceSetMap::Objects::iterator It;
  for (It it = live_objects.begin(), end = live_objects.end(); it != end; ++it) {
    if (!large_mark_objects->Test(*it)) {
      freed_bytes += large_object_space->Free(self, const_cast<Object*>(*it));
      ++freed_objects;
    }
  }
  freed_objects_.fetch_add(freed_objects);
  freed_bytes_.fetch_add(freed_bytes);
  GetHeap()->RecordFree(freed_objects, freed_bytes);
}

void MarkSweep::CheckReference(const Object* obj, const Object* ref, MemberOffset offset, bool is_static) {
  const std::vector<space::ContinuousSpace*>& spaces = GetHeap()->GetContinuousSpaces();
  // TODO: C++0x
  typedef std::vector<space::ContinuousSpace*>::const_iterator It;
  for (It it = spaces.begin(), end = spaces.end(); it != end; ++it) {
    space::ContinuousSpace* space = *it;
    if (space->IsDlMallocSpace() && space->Contains(ref)) {
      DCHECK(IsMarked(obj));

      bool is_marked = IsMarked(ref);
      if (!is_marked) {
        LOG(INFO) << *space;
        LOG(WARNING) << (is_static ? "Static ref'" : "Instance ref'") << PrettyTypeOf(ref)
                     << "' (" << reinterpret_cast<const void*>(ref) << ") in '" << PrettyTypeOf(obj)
                     << "' (" << reinterpret_cast<const void*>(obj) << ") at offset "
                     << reinterpret_cast<void*>(offset.Int32Value()) << " wasn't marked";

        const Class* klass = is_static ? obj->AsClass() : obj->GetClass();
        DCHECK(klass != NULL);
        const ObjectArray<Field>* fields = is_static ? klass->GetSFields() : klass->GetIFields();
        DCHECK(fields != NULL);
        bool found = false;
        for (int32_t i = 0; i < fields->GetLength(); ++i) {
          const Field* cur = fields->Get(i);
          if (cur->GetOffset().Int32Value() == offset.Int32Value()) {
            LOG(WARNING) << "Field referencing the alloc space was " << PrettyField(cur);
            found = true;
            break;
          }
        }
        if (!found) {
          LOG(WARNING) << "Could not find field in object alloc space with offset " << offset.Int32Value();
        }

        bool obj_marked = heap_->GetCardTable()->IsDirty(obj);
        if (!obj_marked) {
          LOG(WARNING) << "Object '" << PrettyTypeOf(obj) << "' "
                       << "(" << reinterpret_cast<const void*>(obj) << ") contains references to "
                       << "the alloc space, but wasn't card marked";
        }
      }
    }
    break;
  }
}

// Process the "referent" field in a java.lang.ref.Reference.  If the
// referent has not yet been marked, put it on the appropriate list in
// the gcHeap for later processing.
void MarkSweep::DelayReferenceReferent(Object* obj) {
  DCHECK(obj != NULL);
  Class* klass = obj->GetClass();
  DCHECK(klass != NULL);
  DCHECK(klass->IsReferenceClass());
  Object* pending = obj->GetFieldObject<Object*>(heap_->GetReferencePendingNextOffset(), false);
  Object* referent = heap_->GetReferenceReferent(obj);
  if (kCountJavaLangRefs) {
    ++reference_count_;
  }
  if (pending == NULL && referent != NULL && !IsMarked(referent)) {
    Object** list = NULL;
    if (klass->IsSoftReferenceClass()) {
      list = &soft_reference_list_;
    } else if (klass->IsWeakReferenceClass()) {
      list = &weak_reference_list_;
    } else if (klass->IsFinalizerReferenceClass()) {
      list = &finalizer_reference_list_;
    } else if (klass->IsPhantomReferenceClass()) {
      list = &phantom_reference_list_;
    }
    DCHECK(list != NULL) << PrettyClass(klass) << " " << std::hex << klass->GetAccessFlags();
    // TODO: One lock per list?
    heap_->EnqueuePendingReference(obj, list);
  }
}

void MarkSweep::ScanRoot(const Object* obj) {
  ScanObject(obj);
}

class MarkObjectVisitor {
 public:
  explicit MarkObjectVisitor(MarkSweep* const mark_sweep) : mark_sweep_(mark_sweep) {}

  // TODO: Fixme when anotatalysis works with visitors.
  void operator ()(const Object* /* obj */, const Object* ref, const MemberOffset& /* offset */,
                   bool /* is_static */) const
      NO_THREAD_SAFETY_ANALYSIS {
    if (kDebugLocking) {
      Locks::mutator_lock_->AssertSharedHeld(Thread::Current());
      Locks::heap_bitmap_lock_->AssertExclusiveHeld(Thread::Current());
    }
    mark_sweep_->MarkObject(ref);
  }

 private:
  MarkSweep* const mark_sweep_;
};

// Scans an object reference.  Determines the type of the reference
// and dispatches to a specialized scanning routine.
void MarkSweep::ScanObject(const Object* obj) {
  MarkObjectVisitor visitor(this);
  ScanObjectVisit(obj, visitor);
}

class MarkStackChunk : public Task {
 public:
  MarkStackChunk(ThreadPool* thread_pool, MarkSweep* mark_sweep, Object** begin, Object** end)
      : mark_sweep_(mark_sweep),
        thread_pool_(thread_pool),
        index_(0),
        length_(0),
        output_(NULL) {
    length_ = end - begin;
    if (begin != end) {
      // Cost not significant since we only do this for the initial set of mark stack chunks.
      memcpy(data_, begin, length_ * sizeof(*begin));
    }
    if (kCountTasks) {
      ++mark_sweep_->work_chunks_created_;
    }
  }

  ~MarkStackChunk() {
    DCHECK(output_ == NULL || output_->length_ == 0);
    DCHECK_GE(index_, length_);
    delete output_;
    if (kCountTasks) {
      ++mark_sweep_->work_chunks_deleted_;
    }
  }

  MarkSweep* const mark_sweep_;
  ThreadPool* const thread_pool_;
  static const size_t max_size = 1 * KB;
  // Index of which object we are scanning. Only needs to be atomic if we are doing work stealing.
  size_t index_;
  // Input / output mark stack. We add newly marked references to data_ until length reaches
  // max_size. This is an optimization so that less tasks are created.
  // TODO: Investigate using a bounded buffer FIFO.
  Object* data_[max_size];
  // How many elements in data_ we need to scan.
  size_t length_;
  // Output block, newly marked references get added to the ouput block so that another thread can
  // scan them.
  MarkStackChunk* output_;

  class MarkObjectParallelVisitor {
   public:
    explicit MarkObjectParallelVisitor(MarkStackChunk* chunk_task) : chunk_task_(chunk_task) {}

    void operator ()(const Object* /* obj */, const Object* ref,
                     const MemberOffset& /* offset */, bool /* is_static */) const {
      if (ref != NULL && chunk_task_->mark_sweep_->MarkObjectParallel(ref)) {
        chunk_task_->MarkStackPush(ref);
      }
    }

   private:
    MarkStackChunk* const chunk_task_;
  };

  // Push an object into the block.
  // Don't need to use atomic ++ since we only one thread is writing to an output block at any
  // given time.
  void Push(Object* obj) {
    CHECK(obj != NULL);
    data_[length_++] = obj;
  }

  void MarkStackPush(const Object* obj) {
    if (static_cast<size_t>(length_) < max_size) {
      Push(const_cast<Object*>(obj));
    } else {
      // Internal (thread-local) buffer is full, push to a new buffer instead.
      if (UNLIKELY(output_ == NULL)) {
        AllocateOutputChunk();
      } else if (UNLIKELY(static_cast<size_t>(output_->length_) == max_size)) {
        // Output block is full, queue it up for processing and obtain a new block.
        EnqueueOutput();
        AllocateOutputChunk();
      }
      output_->Push(const_cast<Object*>(obj));
    }
  }

  void ScanObject(Object* obj) {
    mark_sweep_->ScanObjectVisit(obj, MarkObjectParallelVisitor(this));
  }

  void EnqueueOutput() {
    if (output_ != NULL) {
      uint64_t start = 0;
      if (kMeasureOverhead) {
        start = NanoTime();
      }
      thread_pool_->AddTask(Thread::Current(), output_);
      output_ = NULL;
      if (kMeasureOverhead) {
        mark_sweep_->overhead_time_.fetch_add(NanoTime() - start);
      }
    }
  }

  void AllocateOutputChunk() {
    uint64_t start = 0;
    if (kMeasureOverhead) {
      start = NanoTime();
    }
    output_ = new MarkStackChunk(thread_pool_, mark_sweep_, NULL, NULL);
    if (kMeasureOverhead) {
      mark_sweep_->overhead_time_.fetch_add(NanoTime() - start);
    }
  }

  void Finalize() {
    EnqueueOutput();
    delete this;
  }

  // Scans all of the objects
  virtual void Run(Thread* self) {
    size_t index;
    while ((index = index_++) < length_) {
      if (kUseMarkStackPrefetch) {
        static const size_t prefetch_look_ahead = 1;
        __builtin_prefetch(data_[std::min(index + prefetch_look_ahead, length_ - 1)]);
      }
      Object* obj = data_[index];
      DCHECK(obj != NULL);
      ScanObject(obj);
    }
  }
};

void MarkSweep::ProcessMarkStackParallel() {
  CHECK(kDisableFinger) << "parallel mark stack processing cannot work when finger is enabled";
  Thread* self = Thread::Current();
  ThreadPool* thread_pool = GetHeap()->GetThreadPool();
  // Split the current mark stack up into work tasks.
  const size_t num_threads = thread_pool->GetThreadCount();
  const size_t stack_size = mark_stack_->Size();
  const size_t chunk_size =
      std::min((stack_size + num_threads - 1) / num_threads,
               static_cast<size_t>(MarkStackChunk::max_size));
  size_t index = 0;
  for (size_t i = 0; i < num_threads || index < stack_size; ++i) {
    Object** begin = &mark_stack_->Begin()[std::min(stack_size, index)];
    Object** end = &mark_stack_->Begin()[std::min(stack_size, index + chunk_size)];
    index += chunk_size;
    thread_pool->AddTask(self, new MarkStackChunk(thread_pool, this, begin, end));
  }
  thread_pool->StartWorkers(self);
  thread_pool->Wait(self, true, true);
  mark_stack_->Reset();
  //LOG(INFO) << "Idle wait time " << PrettyDuration(thread_pool->GetWaitTime());
  CHECK_EQ(work_chunks_created_, work_chunks_deleted_) << " some of the work chunks were leaked";
}

// Scan anything that's on the mark stack.
void MarkSweep::ProcessMarkStack() {
  ThreadPool* thread_pool = GetHeap()->GetThreadPool();
  if (kParallelMarkStack && thread_pool != NULL && thread_pool->GetThreadCount() > 0) {
    ProcessMarkStackParallel();
    return;
  }

  if (kUseMarkStackPrefetch) {
    const size_t fifo_size = 4;
    const size_t fifo_mask = fifo_size - 1;
    const Object* fifo[fifo_size];
    for (size_t i = 0;i < fifo_size;++i) {
      fifo[i] = NULL;
    }
    size_t fifo_pos = 0;
    size_t fifo_count = 0;
    for (;;) {
      const Object* obj = fifo[fifo_pos & fifo_mask];
      if (obj != NULL) {
        ScanObject(obj);
        fifo[fifo_pos & fifo_mask] = NULL;
        --fifo_count;
      }

      if (!mark_stack_->IsEmpty()) {
        const Object* obj = mark_stack_->PopBack();
        DCHECK(obj != NULL);
        fifo[fifo_pos & fifo_mask] = obj;
        __builtin_prefetch(obj);
        fifo_count++;
      }
      fifo_pos++;

      if (!fifo_count) {
        CHECK(mark_stack_->IsEmpty()) << mark_stack_->Size();
        break;
      }
    }
  } else {
    while (!mark_stack_->IsEmpty()) {
      const Object* obj = mark_stack_->PopBack();
      DCHECK(obj != NULL);
      ScanObject(obj);
    }
  }
}

// Walks the reference list marking any references subject to the
// reference clearing policy.  References with a black referent are
// removed from the list.  References with white referents biased
// toward saving are blackened and also removed from the list.
void MarkSweep::PreserveSomeSoftReferences(Object** list) {
  DCHECK(list != NULL);
  Object* clear = NULL;
  size_t counter = 0;

  DCHECK(mark_stack_->IsEmpty());

  while (*list != NULL) {
    Object* ref = heap_->DequeuePendingReference(list);
    Object* referent = heap_->GetReferenceReferent(ref);
    if (referent == NULL) {
      // Referent was cleared by the user during marking.
      continue;
    }
    bool is_marked = IsMarked(referent);
    if (!is_marked && ((++counter) & 1)) {
      // Referent is white and biased toward saving, mark it.
      MarkObject(referent);
      is_marked = true;
    }
    if (!is_marked) {
      // Referent is white, queue it for clearing.
      heap_->EnqueuePendingReference(ref, &clear);
    }
  }
  *list = clear;
  // Restart the mark with the newly black references added to the
  // root set.
  ProcessMarkStack();
}

inline bool MarkSweep::IsMarked(const Object* object) const
    SHARED_LOCKS_REQUIRED(Locks::heap_bitmap_lock_) {
  if (object >= immune_begin_ && object < immune_end_) {
    return true;
  }
  DCHECK(current_mark_bitmap_ != NULL);
  if (current_mark_bitmap_->HasAddress(object)) {
    return current_mark_bitmap_->Test(object);
  }
  return heap_->GetMarkBitmap()->Test(object);
}


// Unlink the reference list clearing references objects with white
// referents.  Cleared references registered to a reference queue are
// scheduled for appending by the heap worker thread.
void MarkSweep::ClearWhiteReferences(Object** list) {
  DCHECK(list != NULL);
  while (*list != NULL) {
    Object* ref = heap_->DequeuePendingReference(list);
    Object* referent = heap_->GetReferenceReferent(ref);
    if (referent != NULL && !IsMarked(referent)) {
      // Referent is white, clear it.
      heap_->ClearReferenceReferent(ref);
      if (heap_->IsEnqueuable(ref)) {
        heap_->EnqueueReference(ref, &cleared_reference_list_);
      }
    }
  }
  DCHECK(*list == NULL);
}

// Enqueues finalizer references with white referents.  White
// referents are blackened, moved to the zombie field, and the
// referent field is cleared.
void MarkSweep::EnqueueFinalizerReferences(Object** list) {
  DCHECK(list != NULL);
  MemberOffset zombie_offset = heap_->GetFinalizerReferenceZombieOffset();
  bool has_enqueued = false;
  while (*list != NULL) {
    Object* ref = heap_->DequeuePendingReference(list);
    Object* referent = heap_->GetReferenceReferent(ref);
    if (referent != NULL && !IsMarked(referent)) {
      MarkObject(referent);
      // If the referent is non-null the reference must queuable.
      DCHECK(heap_->IsEnqueuable(ref));
      ref->SetFieldObject(zombie_offset, referent, false);
      heap_->ClearReferenceReferent(ref);
      heap_->EnqueueReference(ref, &cleared_reference_list_);
      has_enqueued = true;
    }
  }
  if (has_enqueued) {
    ProcessMarkStack();
  }
  DCHECK(*list == NULL);
}

// Process reference class instances and schedule finalizations.
void MarkSweep::ProcessReferences(Object** soft_references, bool clear_soft,
                                  Object** weak_references,
                                  Object** finalizer_references,
                                  Object** phantom_references) {
  DCHECK(soft_references != NULL);
  DCHECK(weak_references != NULL);
  DCHECK(finalizer_references != NULL);
  DCHECK(phantom_references != NULL);

  // Unless we are in the zygote or required to clear soft references
  // with white references, preserve some white referents.
  if (!clear_soft && !Runtime::Current()->IsZygote()) {
    PreserveSomeSoftReferences(soft_references);
  }

  // Clear all remaining soft and weak references with white
  // referents.
  ClearWhiteReferences(soft_references);
  ClearWhiteReferences(weak_references);

  // Preserve all white objects with finalize methods and schedule
  // them for finalization.
  EnqueueFinalizerReferences(finalizer_references);

  // Clear all f-reachable soft and weak references with white
  // referents.
  ClearWhiteReferences(soft_references);
  ClearWhiteReferences(weak_references);

  // Clear all phantom references with white referents.
  ClearWhiteReferences(phantom_references);

  // At this point all reference lists should be empty.
  DCHECK(*soft_references == NULL);
  DCHECK(*weak_references == NULL);
  DCHECK(*finalizer_references == NULL);
  DCHECK(*phantom_references == NULL);
}

void MarkSweep::UnBindBitmaps() {
  const std::vector<space::ContinuousSpace*>& spaces = GetHeap()->GetContinuousSpaces();
  // TODO: C++0x
  typedef std::vector<space::ContinuousSpace*>::const_iterator It;
  for (It it = spaces.begin(), end = spaces.end(); it != end; ++it) {
    space::ContinuousSpace* space = *it;
    if (space->IsDlMallocSpace()) {
      space::DlMallocSpace* alloc_space = space->AsDlMallocSpace();
      if (alloc_space->temp_bitmap_.get() != NULL) {
        // At this point, the temp_bitmap holds our old mark bitmap.
        accounting::SpaceBitmap* new_bitmap = alloc_space->temp_bitmap_.release();
        GetHeap()->GetMarkBitmap()->ReplaceBitmap(alloc_space->mark_bitmap_.get(), new_bitmap);
        CHECK_EQ(alloc_space->mark_bitmap_.release(), alloc_space->live_bitmap_.get());
        alloc_space->mark_bitmap_.reset(new_bitmap);
        DCHECK(alloc_space->temp_bitmap_.get() == NULL);
      }
    }
  }
}

void MarkSweep::FinishPhase() {
  // Can't enqueue referneces if we hold the mutator lock.
  Object* cleared_references = GetClearedReferences();
  Heap* heap = GetHeap();
  heap->EnqueueClearedReferences(&cleared_references);

  heap->PostGcVerification(this);

  timings_.NewSplit("GrowForUtilization");
  heap->GrowForUtilization(GetGcType(), GetDurationNs());

  timings_.NewSplit("RequestHeapTrim");
  heap->RequestHeapTrim();

  // Update the cumulative statistics
  total_time_ns_ += GetDurationNs();
  total_paused_time_ns_ += std::accumulate(GetPauseTimes().begin(), GetPauseTimes().end(), 0,
                                           std::plus<uint64_t>());
  total_freed_objects_ += GetFreedObjects();
  total_freed_bytes_ += GetFreedBytes();

  // Ensure that the mark stack is empty.
  CHECK(mark_stack_->IsEmpty());

  if (kCountScannedTypes) {
    VLOG(gc) << "MarkSweep scanned classes=" << class_count_ << " arrays=" << array_count_
             << " other=" << other_count_;
  }

  if (kCountTasks) {
    VLOG(gc) << "Total number of work chunks allocated: " << work_chunks_created_;
  }

  if (kMeasureOverhead) {
    VLOG(gc) << "Overhead time " << PrettyDuration(overhead_time_);
  }

  if (kProfileLargeObjects) {
    VLOG(gc) << "Large objects tested " << large_object_test_ << " marked " << large_object_mark_;
  }

  if (kCountClassesMarked) {
    VLOG(gc) << "Classes marked " << classes_marked_;
  }

  if (kCountJavaLangRefs) {
    VLOG(gc) << "References scanned " << reference_count_;
  }

  // Update the cumulative loggers.
  cumulative_timings_.Start();
  cumulative_timings_.AddNewLogger(timings_);
  cumulative_timings_.End();

  // Clear all of the spaces' mark bitmaps.
  const std::vector<space::ContinuousSpace*>& spaces = GetHeap()->GetContinuousSpaces();
  // TODO: C++0x
  typedef std::vector<space::ContinuousSpace*>::const_iterator It;
  for (It it = spaces.begin(), end = spaces.end(); it != end; ++it) {
    space::ContinuousSpace* space = *it;
    if (space->GetGcRetentionPolicy() != space::kGcRetentionPolicyNeverCollect) {
      space->GetMarkBitmap()->Clear();
    }
  }
  mark_stack_->Reset();

  // Reset the marked large objects.
  space::LargeObjectSpace* large_objects = GetHeap()->GetLargeObjectsSpace();
  large_objects->GetMarkObjects()->Clear();
}

}  // namespace collector
}  // namespace gc
}  // namespace art