1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
|
/*
* Copyright (C) 2013 The Android Open Source Project
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
#include "semi_space.h"
#include <functional>
#include <numeric>
#include <climits>
#include <vector>
#include "base/logging.h"
#include "base/macros.h"
#include "base/mutex-inl.h"
#include "base/timing_logger.h"
#include "gc/accounting/heap_bitmap.h"
#include "gc/accounting/mod_union_table.h"
#include "gc/accounting/remembered_set.h"
#include "gc/accounting/space_bitmap-inl.h"
#include "gc/heap.h"
#include "gc/space/bump_pointer_space.h"
#include "gc/space/bump_pointer_space-inl.h"
#include "gc/space/image_space.h"
#include "gc/space/large_object_space.h"
#include "gc/space/space-inl.h"
#include "indirect_reference_table.h"
#include "intern_table.h"
#include "jni_internal.h"
#include "mark_sweep-inl.h"
#include "monitor.h"
#include "mirror/art_field.h"
#include "mirror/art_field-inl.h"
#include "mirror/class-inl.h"
#include "mirror/class_loader.h"
#include "mirror/dex_cache.h"
#include "mirror/reference-inl.h"
#include "mirror/object-inl.h"
#include "mirror/object_array.h"
#include "mirror/object_array-inl.h"
#include "runtime.h"
#include "semi_space-inl.h"
#include "thread-inl.h"
#include "thread_list.h"
#include "verifier/method_verifier.h"
using ::art::mirror::Class;
using ::art::mirror::Object;
namespace art {
namespace gc {
namespace collector {
static constexpr bool kProtectFromSpace = true;
static constexpr bool kClearFromSpace = true;
static constexpr bool kStoreStackTraces = false;
void SemiSpace::BindBitmaps() {
timings_.StartSplit("BindBitmaps");
WriterMutexLock mu(self_, *Locks::heap_bitmap_lock_);
// Mark all of the spaces we never collect as immune.
for (const auto& space : GetHeap()->GetContinuousSpaces()) {
if (space->GetLiveBitmap() != nullptr) {
if (space == to_space_) {
CHECK(to_space_->IsContinuousMemMapAllocSpace());
to_space_->AsContinuousMemMapAllocSpace()->BindLiveToMarkBitmap();
} else if (space->GetGcRetentionPolicy() == space::kGcRetentionPolicyNeverCollect
|| space->GetGcRetentionPolicy() == space::kGcRetentionPolicyFullCollect
// Add the main free list space and the non-moving
// space to the immune space if a bump pointer space
// only collection.
|| (generational_ && !whole_heap_collection_ &&
(space == GetHeap()->GetNonMovingSpace() ||
space == GetHeap()->GetPrimaryFreeListSpace()))) {
CHECK(immune_region_.AddContinuousSpace(space)) << "Failed to add space " << *space;
}
}
}
if (generational_ && !whole_heap_collection_) {
// We won't collect the large object space if a bump pointer space only collection.
is_large_object_space_immune_ = true;
}
timings_.EndSplit();
}
SemiSpace::SemiSpace(Heap* heap, bool generational, const std::string& name_prefix)
: GarbageCollector(heap,
name_prefix + (name_prefix.empty() ? "" : " ") + "marksweep + semispace"),
mark_stack_(nullptr),
is_large_object_space_immune_(false),
to_space_(nullptr),
to_space_live_bitmap_(nullptr),
from_space_(nullptr),
self_(nullptr),
generational_(generational),
last_gc_to_space_end_(nullptr),
bytes_promoted_(0),
whole_heap_collection_(true),
whole_heap_collection_interval_counter_(0),
saved_bytes_(0) {
}
void SemiSpace::InitializePhase() {
timings_.Reset();
TimingLogger::ScopedSplit split("InitializePhase", &timings_);
mark_stack_ = heap_->mark_stack_.get();
DCHECK(mark_stack_ != nullptr);
immune_region_.Reset();
is_large_object_space_immune_ = false;
saved_bytes_ = 0;
self_ = Thread::Current();
// Do any pre GC verification.
timings_.NewSplit("PreGcVerification");
heap_->PreGcVerification(this);
// Set the initial bitmap.
to_space_live_bitmap_ = to_space_->GetLiveBitmap();
}
void SemiSpace::ProcessReferences(Thread* self) {
TimingLogger::ScopedSplit split("ProcessReferences", &timings_);
WriterMutexLock mu(self, *Locks::heap_bitmap_lock_);
GetHeap()->ProcessReferences(timings_, clear_soft_references_, &MarkedForwardingAddressCallback,
&MarkObjectCallback, &ProcessMarkStackCallback, this);
}
void SemiSpace::MarkingPhase() {
if (kStoreStackTraces) {
Locks::mutator_lock_->AssertExclusiveHeld(self_);
// Store the stack traces into the runtime fault string in case we get a heap corruption
// related crash later.
ThreadState old_state = self_->SetStateUnsafe(kRunnable);
std::ostringstream oss;
Runtime* runtime = Runtime::Current();
runtime->GetThreadList()->DumpForSigQuit(oss);
runtime->GetThreadList()->DumpNativeStacks(oss);
runtime->SetFaultMessage(oss.str());
CHECK_EQ(self_->SetStateUnsafe(old_state), kRunnable);
}
if (generational_) {
if (gc_cause_ == kGcCauseExplicit || gc_cause_ == kGcCauseForNativeAlloc ||
clear_soft_references_) {
// If an explicit, native allocation-triggered, or last attempt
// collection, collect the whole heap (and reset the interval
// counter to be consistent.)
whole_heap_collection_ = true;
whole_heap_collection_interval_counter_ = 0;
}
if (whole_heap_collection_) {
VLOG(heap) << "Whole heap collection";
} else {
VLOG(heap) << "Bump pointer space only collection";
}
}
Locks::mutator_lock_->AssertExclusiveHeld(self_);
TimingLogger::ScopedSplit split("MarkingPhase", &timings_);
// Need to do this with mutators paused so that somebody doesn't accidentally allocate into the
// wrong space.
heap_->SwapSemiSpaces();
if (generational_) {
// If last_gc_to_space_end_ is out of the bounds of the from-space
// (the to-space from last GC), then point it to the beginning of
// the from-space. For example, the very first GC or the
// pre-zygote compaction.
if (!from_space_->HasAddress(reinterpret_cast<mirror::Object*>(last_gc_to_space_end_))) {
last_gc_to_space_end_ = from_space_->Begin();
}
// Reset this before the marking starts below.
bytes_promoted_ = 0;
}
// Assume the cleared space is already empty.
BindBitmaps();
// Process dirty cards and add dirty cards to mod-union tables.
heap_->ProcessCards(timings_, kUseRememberedSet && generational_);
// Clear the whole card table since we can not get any additional dirty cards during the
// paused GC. This saves memory but only works for pause the world collectors.
timings_.NewSplit("ClearCardTable");
heap_->GetCardTable()->ClearCardTable();
// Need to do this before the checkpoint since we don't want any threads to add references to
// the live stack during the recursive mark.
timings_.NewSplit("SwapStacks");
if (kUseThreadLocalAllocationStack) {
heap_->RevokeAllThreadLocalAllocationStacks(self_);
}
heap_->SwapStacks(self_);
WriterMutexLock mu(self_, *Locks::heap_bitmap_lock_);
MarkRoots();
// Mark roots of immune spaces.
UpdateAndMarkModUnion();
// Recursively mark remaining objects.
MarkReachableObjects();
}
void SemiSpace::UpdateAndMarkModUnion() {
for (auto& space : heap_->GetContinuousSpaces()) {
// If the space is immune then we need to mark the references to other spaces.
if (immune_region_.ContainsSpace(space)) {
accounting::ModUnionTable* table = heap_->FindModUnionTableFromSpace(space);
if (table != nullptr) {
// TODO: Improve naming.
TimingLogger::ScopedSplit split(
space->IsZygoteSpace() ? "UpdateAndMarkZygoteModUnionTable" :
"UpdateAndMarkImageModUnionTable",
&timings_);
table->UpdateAndMarkReferences(MarkObjectCallback, this);
} else if (heap_->FindRememberedSetFromSpace(space) != nullptr) {
DCHECK(kUseRememberedSet);
// If a bump pointer space only collection, the non-moving
// space is added to the immune space. The non-moving space
// doesn't have a mod union table, but has a remembered
// set. Its dirty cards will be scanned later in
// MarkReachableObjects().
DCHECK(generational_ && !whole_heap_collection_ &&
(space == heap_->GetNonMovingSpace() || space == heap_->GetPrimaryFreeListSpace()))
<< "Space " << space->GetName() << " "
<< "generational_=" << generational_ << " "
<< "whole_heap_collection_=" << whole_heap_collection_ << " ";
} else {
DCHECK(!kUseRememberedSet);
// If a bump pointer space only collection, the non-moving
// space is added to the immune space. But the non-moving
// space doesn't have a mod union table. Instead, its live
// bitmap will be scanned later in MarkReachableObjects().
DCHECK(generational_ && !whole_heap_collection_ &&
(space == heap_->GetNonMovingSpace() || space == heap_->GetPrimaryFreeListSpace()))
<< "Space " << space->GetName() << " "
<< "generational_=" << generational_ << " "
<< "whole_heap_collection_=" << whole_heap_collection_ << " ";
}
}
}
}
class SemiSpaceScanObjectVisitor {
public:
explicit SemiSpaceScanObjectVisitor(SemiSpace* ss) : semi_space_(ss) {}
void operator()(Object* obj) const NO_THREAD_SAFETY_ANALYSIS {
// TODO: fix NO_THREAD_SAFETY_ANALYSIS. ScanObject() requires an
// exclusive lock on the mutator lock, but
// SpaceBitmap::VisitMarkedRange() only requires the shared lock.
DCHECK(obj != nullptr);
semi_space_->ScanObject(obj);
}
private:
SemiSpace* const semi_space_;
};
// Used to verify that there's no references to the from-space.
class SemiSpaceVerifyNoFromSpaceReferencesVisitor {
public:
explicit SemiSpaceVerifyNoFromSpaceReferencesVisitor(space::ContinuousMemMapAllocSpace* from_space) :
from_space_(from_space) {}
void operator()(Object* obj, Object* ref, const MemberOffset& offset, bool /* is_static */)
const ALWAYS_INLINE {
if (from_space_->HasAddress(ref)) {
Runtime::Current()->GetHeap()->DumpObject(LOG(INFO), obj);
}
DCHECK(!from_space_->HasAddress(ref));
}
private:
space::ContinuousMemMapAllocSpace* from_space_;
};
void SemiSpace::VerifyNoFromSpaceReferences(Object* obj) {
DCHECK(obj != NULL);
DCHECK(!from_space_->HasAddress(obj)) << "Scanning object " << obj << " in from space";
SemiSpaceVerifyNoFromSpaceReferencesVisitor visitor(from_space_);
MarkSweep::VisitObjectReferences(obj, visitor, kMovingClasses);
}
class SemiSpaceVerifyNoFromSpaceReferencesObjectVisitor {
public:
explicit SemiSpaceVerifyNoFromSpaceReferencesObjectVisitor(SemiSpace* ss) : semi_space_(ss) {}
void operator()(Object* obj) const
SHARED_LOCKS_REQUIRED(Locks::heap_bitmap_lock_, Locks::mutator_lock_) {
DCHECK(obj != nullptr);
semi_space_->VerifyNoFromSpaceReferences(obj);
}
private:
SemiSpace* const semi_space_;
};
void SemiSpace::MarkReachableObjects() {
timings_.StartSplit("MarkStackAsLive");
accounting::ObjectStack* live_stack = heap_->GetLiveStack();
heap_->MarkAllocStackAsLive(live_stack);
live_stack->Reset();
timings_.EndSplit();
for (auto& space : heap_->GetContinuousSpaces()) {
// If the space is immune and has no mod union table (the
// non-moving space when the bump pointer space only collection is
// enabled,) then we need to scan its live bitmap or dirty cards as roots
// (including the objects on the live stack which have just marked
// in the live bitmap above in MarkAllocStackAsLive().)
if (immune_region_.ContainsSpace(space) &&
heap_->FindModUnionTableFromSpace(space) == nullptr) {
DCHECK(generational_ && !whole_heap_collection_ &&
(space == GetHeap()->GetNonMovingSpace() || space == GetHeap()->GetPrimaryFreeListSpace()));
accounting::RememberedSet* rem_set = heap_->FindRememberedSetFromSpace(space);
if (kUseRememberedSet) {
DCHECK(rem_set != nullptr);
rem_set->UpdateAndMarkReferences(MarkObjectCallback, from_space_, this);
if (kIsDebugBuild) {
// Verify that there are no from-space references that
// remain in the space, that is, the remembered set (and the
// card table) didn't miss any from-space references in the
// space.
accounting::SpaceBitmap* live_bitmap = space->GetLiveBitmap();
SemiSpaceVerifyNoFromSpaceReferencesObjectVisitor visitor(this);
live_bitmap->VisitMarkedRange(reinterpret_cast<uintptr_t>(space->Begin()),
reinterpret_cast<uintptr_t>(space->End()),
visitor);
}
} else {
DCHECK(rem_set == nullptr);
accounting::SpaceBitmap* live_bitmap = space->GetLiveBitmap();
SemiSpaceScanObjectVisitor visitor(this);
live_bitmap->VisitMarkedRange(reinterpret_cast<uintptr_t>(space->Begin()),
reinterpret_cast<uintptr_t>(space->End()),
visitor);
}
}
}
if (is_large_object_space_immune_) {
DCHECK(generational_ && !whole_heap_collection_);
// Delay copying the live set to the marked set until here from
// BindBitmaps() as the large objects on the allocation stack may
// be newly added to the live set above in MarkAllocStackAsLive().
GetHeap()->GetLargeObjectsSpace()->CopyLiveToMarked();
// When the large object space is immune, we need to scan the
// large object space as roots as they contain references to their
// classes (primitive array classes) that could move though they
// don't contain any other references.
space::LargeObjectSpace* large_object_space = GetHeap()->GetLargeObjectsSpace();
accounting::ObjectSet* large_live_objects = large_object_space->GetLiveObjects();
SemiSpaceScanObjectVisitor visitor(this);
for (const Object* obj : large_live_objects->GetObjects()) {
visitor(const_cast<Object*>(obj));
}
}
// Recursively process the mark stack.
ProcessMarkStack();
}
void SemiSpace::ReclaimPhase() {
TimingLogger::ScopedSplit split("ReclaimPhase", &timings_);
ProcessReferences(self_);
{
ReaderMutexLock mu(self_, *Locks::heap_bitmap_lock_);
SweepSystemWeaks();
}
// Record freed memory.
uint64_t from_bytes = from_space_->GetBytesAllocated();
uint64_t to_bytes = to_space_->GetBytesAllocated();
uint64_t from_objects = from_space_->GetObjectsAllocated();
uint64_t to_objects = to_space_->GetObjectsAllocated();
CHECK_LE(to_objects, from_objects);
int64_t freed_bytes = from_bytes - to_bytes;
int64_t freed_objects = from_objects - to_objects;
freed_bytes_.FetchAndAdd(freed_bytes);
freed_objects_.FetchAndAdd(freed_objects);
// Note: Freed bytes can be negative if we copy form a compacted space to a free-list backed
// space.
heap_->RecordFree(freed_objects, freed_bytes);
timings_.StartSplit("PreSweepingGcVerification");
heap_->PreSweepingGcVerification(this);
timings_.EndSplit();
{
WriterMutexLock mu(self_, *Locks::heap_bitmap_lock_);
// Reclaim unmarked objects.
Sweep(false);
// Swap the live and mark bitmaps for each space which we modified space. This is an
// optimization that enables us to not clear live bits inside of the sweep. Only swaps unbound
// bitmaps.
timings_.StartSplit("SwapBitmaps");
SwapBitmaps();
timings_.EndSplit();
// Unbind the live and mark bitmaps.
TimingLogger::ScopedSplit split("UnBindBitmaps", &timings_);
GetHeap()->UnBindBitmaps();
}
if (kClearFromSpace) {
// Release the memory used by the from space.
from_space_->Clear();
}
from_space_->Reset();
// Protect the from space.
VLOG(heap) << "Protecting space " << *from_space_;
if (kProtectFromSpace) {
from_space_->GetMemMap()->Protect(PROT_NONE);
} else {
from_space_->GetMemMap()->Protect(PROT_READ);
}
if (saved_bytes_ > 0) {
VLOG(heap) << "Avoided dirtying " << PrettySize(saved_bytes_);
}
if (generational_) {
// Record the end (top) of the to space so we can distinguish
// between objects that were allocated since the last GC and the
// older objects.
last_gc_to_space_end_ = to_space_->End();
}
}
void SemiSpace::ResizeMarkStack(size_t new_size) {
std::vector<Object*> temp(mark_stack_->Begin(), mark_stack_->End());
CHECK_LE(mark_stack_->Size(), new_size);
mark_stack_->Resize(new_size);
for (const auto& obj : temp) {
mark_stack_->PushBack(obj);
}
}
inline void SemiSpace::MarkStackPush(Object* obj) {
if (UNLIKELY(mark_stack_->Size() >= mark_stack_->Capacity())) {
ResizeMarkStack(mark_stack_->Capacity() * 2);
}
// The object must be pushed on to the mark stack.
mark_stack_->PushBack(obj);
}
// Rare case, probably not worth inlining since it will increase instruction cache miss rate.
bool SemiSpace::MarkLargeObject(const Object* obj) {
// TODO: support >1 discontinuous space.
space::LargeObjectSpace* large_object_space = GetHeap()->GetLargeObjectsSpace();
DCHECK(large_object_space->Contains(obj));
accounting::ObjectSet* large_objects = large_object_space->GetMarkObjects();
if (UNLIKELY(!large_objects->Test(obj))) {
large_objects->Set(obj);
return true;
}
return false;
}
static inline size_t CopyAvoidingDirtyingPages(void* dest, const void* src, size_t size) {
if (LIKELY(size <= static_cast<size_t>(kPageSize))) {
// We will dirty the current page and somewhere in the middle of the next page. This means
// that the next object copied will also dirty that page.
// TODO: Worth considering the last object copied? We may end up dirtying one page which is
// not necessary per GC.
memcpy(dest, src, size);
return 0;
}
size_t saved_bytes = 0;
byte* byte_dest = reinterpret_cast<byte*>(dest);
if (kIsDebugBuild) {
for (size_t i = 0; i < size; ++i) {
CHECK_EQ(byte_dest[i], 0U);
}
}
// Process the start of the page. The page must already be dirty, don't bother with checking.
const byte* byte_src = reinterpret_cast<const byte*>(src);
const byte* limit = byte_src + size;
size_t page_remain = AlignUp(byte_dest, kPageSize) - byte_dest;
// Copy the bytes until the start of the next page.
memcpy(dest, src, page_remain);
byte_src += page_remain;
byte_dest += page_remain;
CHECK_ALIGNED(reinterpret_cast<uintptr_t>(byte_dest), kPageSize);
CHECK_ALIGNED(reinterpret_cast<uintptr_t>(byte_dest), sizeof(uintptr_t));
CHECK_ALIGNED(reinterpret_cast<uintptr_t>(byte_src), sizeof(uintptr_t));
while (byte_src + kPageSize < limit) {
bool all_zero = true;
uintptr_t* word_dest = reinterpret_cast<uintptr_t*>(byte_dest);
const uintptr_t* word_src = reinterpret_cast<const uintptr_t*>(byte_src);
for (size_t i = 0; i < kPageSize / sizeof(*word_src); ++i) {
// Assumes the destination of the copy is all zeros.
if (word_src[i] != 0) {
all_zero = false;
word_dest[i] = word_src[i];
}
}
if (all_zero) {
// Avoided copying into the page since it was all zeros.
saved_bytes += kPageSize;
}
byte_src += kPageSize;
byte_dest += kPageSize;
}
// Handle the part of the page at the end.
memcpy(byte_dest, byte_src, limit - byte_src);
return saved_bytes;
}
mirror::Object* SemiSpace::MarkNonForwardedObject(mirror::Object* obj) {
size_t object_size = obj->SizeOf();
size_t bytes_allocated;
mirror::Object* forward_address = nullptr;
if (generational_ && reinterpret_cast<byte*>(obj) < last_gc_to_space_end_) {
// If it's allocated before the last GC (older), move
// (pseudo-promote) it to the main free list space (as sort
// of an old generation.)
size_t bytes_promoted;
space::MallocSpace* promo_dest_space = GetHeap()->GetPrimaryFreeListSpace();
forward_address = promo_dest_space->Alloc(self_, object_size, &bytes_promoted, nullptr);
if (forward_address == nullptr) {
// If out of space, fall back to the to-space.
forward_address = to_space_->Alloc(self_, object_size, &bytes_allocated, nullptr);
} else {
GetHeap()->num_bytes_allocated_.FetchAndAdd(bytes_promoted);
bytes_promoted_ += bytes_promoted;
// Dirty the card at the destionation as it may contain
// references (including the class pointer) to the bump pointer
// space.
GetHeap()->WriteBarrierEveryFieldOf(forward_address);
// Handle the bitmaps marking.
accounting::SpaceBitmap* live_bitmap = promo_dest_space->GetLiveBitmap();
DCHECK(live_bitmap != nullptr);
accounting::SpaceBitmap* mark_bitmap = promo_dest_space->GetMarkBitmap();
DCHECK(mark_bitmap != nullptr);
DCHECK(!live_bitmap->Test(forward_address));
if (!whole_heap_collection_) {
// If collecting the bump pointer spaces only, live_bitmap == mark_bitmap.
DCHECK_EQ(live_bitmap, mark_bitmap);
// If a bump pointer space only collection, delay the live
// bitmap marking of the promoted object until it's popped off
// the mark stack (ProcessMarkStack()). The rationale: we may
// be in the middle of scanning the objects in the promo
// destination space for
// non-moving-space-to-bump-pointer-space references by
// iterating over the marked bits of the live bitmap
// (MarkReachableObjects()). If we don't delay it (and instead
// mark the promoted object here), the above promo destination
// space scan could encounter the just-promoted object and
// forward the references in the promoted object's fields even
// through it is pushed onto the mark stack. If this happens,
// the promoted object would be in an inconsistent state, that
// is, it's on the mark stack (gray) but its fields are
// already forwarded (black), which would cause a
// DCHECK(!to_space_->HasAddress(obj)) failure below.
} else {
// Mark forward_address on the live bit map.
live_bitmap->Set(forward_address);
// Mark forward_address on the mark bit map.
DCHECK(!mark_bitmap->Test(forward_address));
mark_bitmap->Set(forward_address);
}
}
DCHECK(forward_address != nullptr);
} else {
// If it's allocated after the last GC (younger), copy it to the to-space.
forward_address = to_space_->Alloc(self_, object_size, &bytes_allocated, nullptr);
}
// Copy over the object and add it to the mark stack since we still need to update its
// references.
saved_bytes_ +=
CopyAvoidingDirtyingPages(reinterpret_cast<void*>(forward_address), obj, object_size);
if (kUseBrooksPointer) {
obj->AssertSelfBrooksPointer();
DCHECK_EQ(forward_address->GetBrooksPointer(), obj);
forward_address->SetBrooksPointer(forward_address);
forward_address->AssertSelfBrooksPointer();
}
if (to_space_live_bitmap_ != nullptr) {
to_space_live_bitmap_->Set(forward_address);
}
DCHECK(to_space_->HasAddress(forward_address) ||
(generational_ && GetHeap()->GetPrimaryFreeListSpace()->HasAddress(forward_address)));
return forward_address;
}
// Used to mark and copy objects. Any newly-marked objects who are in the from space get moved to
// the to-space and have their forward address updated. Objects which have been newly marked are
// pushed on the mark stack.
Object* SemiSpace::MarkObject(Object* obj) {
if (kUseBrooksPointer) {
// Verify all the objects have the correct forward pointer installed.
if (obj != nullptr) {
obj->AssertSelfBrooksPointer();
}
}
Object* forward_address = obj;
if (obj != nullptr && !immune_region_.ContainsObject(obj)) {
if (from_space_->HasAddress(obj)) {
forward_address = GetForwardingAddressInFromSpace(obj);
// If the object has already been moved, return the new forward address.
if (forward_address == nullptr) {
forward_address = MarkNonForwardedObject(obj);
DCHECK(forward_address != nullptr);
// Make sure to only update the forwarding address AFTER you copy the object so that the
// monitor word doesn't get stomped over.
obj->SetLockWord(LockWord::FromForwardingAddress(
reinterpret_cast<size_t>(forward_address)));
// Push the object onto the mark stack for later processing.
MarkStackPush(forward_address);
}
// TODO: Do we need this if in the else statement?
} else {
accounting::SpaceBitmap* object_bitmap = heap_->GetMarkBitmap()->GetContinuousSpaceBitmap(obj);
if (LIKELY(object_bitmap != nullptr)) {
if (generational_) {
// If a bump pointer space only collection, we should not
// reach here as we don't/won't mark the objects in the
// non-moving space (except for the promoted objects.) Note
// the non-moving space is added to the immune space.
DCHECK(whole_heap_collection_);
}
// This object was not previously marked.
if (!object_bitmap->Test(obj)) {
object_bitmap->Set(obj);
MarkStackPush(obj);
}
} else {
CHECK(!to_space_->HasAddress(obj)) << "Marking object in to_space_";
if (MarkLargeObject(obj)) {
MarkStackPush(obj);
}
}
}
}
return forward_address;
}
void SemiSpace::ProcessMarkStackCallback(void* arg) {
DCHECK(arg != nullptr);
reinterpret_cast<SemiSpace*>(arg)->ProcessMarkStack();
}
mirror::Object* SemiSpace::MarkObjectCallback(mirror::Object* root, void* arg) {
DCHECK(root != nullptr);
DCHECK(arg != nullptr);
return reinterpret_cast<SemiSpace*>(arg)->MarkObject(root);
}
void SemiSpace::MarkRootCallback(Object** root, void* arg, uint32_t /*thread_id*/,
RootType /*root_type*/) {
DCHECK(root != nullptr);
DCHECK(arg != nullptr);
*root = reinterpret_cast<SemiSpace*>(arg)->MarkObject(*root);
}
// Marks all objects in the root set.
void SemiSpace::MarkRoots() {
timings_.StartSplit("MarkRoots");
// TODO: Visit up image roots as well?
Runtime::Current()->VisitRoots(MarkRootCallback, this);
timings_.EndSplit();
}
mirror::Object* SemiSpace::MarkedForwardingAddressCallback(mirror::Object* object, void* arg) {
return reinterpret_cast<SemiSpace*>(arg)->GetMarkedForwardAddress(object);
}
void SemiSpace::SweepSystemWeaks() {
timings_.StartSplit("SweepSystemWeaks");
Runtime::Current()->SweepSystemWeaks(MarkedForwardingAddressCallback, this);
timings_.EndSplit();
}
bool SemiSpace::ShouldSweepSpace(space::ContinuousSpace* space) const {
return space != from_space_ && space != to_space_ && !immune_region_.ContainsSpace(space);
}
void SemiSpace::Sweep(bool swap_bitmaps) {
DCHECK(mark_stack_->IsEmpty());
TimingLogger::ScopedSplit("Sweep", &timings_);
for (const auto& space : GetHeap()->GetContinuousSpaces()) {
if (space->IsContinuousMemMapAllocSpace()) {
space::ContinuousMemMapAllocSpace* alloc_space = space->AsContinuousMemMapAllocSpace();
if (!ShouldSweepSpace(alloc_space)) {
continue;
}
TimingLogger::ScopedSplit split(
alloc_space->IsZygoteSpace() ? "SweepZygoteSpace" : "SweepAllocSpace", &timings_);
size_t freed_objects = 0;
size_t freed_bytes = 0;
alloc_space->Sweep(swap_bitmaps, &freed_objects, &freed_bytes);
heap_->RecordFree(freed_objects, freed_bytes);
freed_objects_.FetchAndAdd(freed_objects);
freed_bytes_.FetchAndAdd(freed_bytes);
}
}
if (!is_large_object_space_immune_) {
SweepLargeObjects(swap_bitmaps);
}
}
void SemiSpace::SweepLargeObjects(bool swap_bitmaps) {
DCHECK(!is_large_object_space_immune_);
TimingLogger::ScopedSplit("SweepLargeObjects", &timings_);
size_t freed_objects = 0;
size_t freed_bytes = 0;
GetHeap()->GetLargeObjectsSpace()->Sweep(swap_bitmaps, &freed_objects, &freed_bytes);
freed_large_objects_.FetchAndAdd(freed_objects);
freed_large_object_bytes_.FetchAndAdd(freed_bytes);
GetHeap()->RecordFree(freed_objects, freed_bytes);
}
// Process the "referent" field in a java.lang.ref.Reference. If the referent has not yet been
// marked, put it on the appropriate list in the heap for later processing.
void SemiSpace::DelayReferenceReferent(mirror::Class* klass, Object* obj) {
heap_->DelayReferenceReferent(klass, obj->AsReference(), MarkedForwardingAddressCallback, this);
}
class SemiSpaceMarkObjectVisitor {
public:
explicit SemiSpaceMarkObjectVisitor(SemiSpace* semi_space) : semi_space_(semi_space) {
}
void operator()(Object* obj, Object* ref, const MemberOffset& offset, bool /* is_static */)
const ALWAYS_INLINE NO_THREAD_SAFETY_ANALYSIS /* EXCLUSIVE_LOCKS_REQUIRED(Locks::heap_bitmap_lock_, Locks::mutator_lock_) */ {
mirror::Object* new_address = semi_space_->MarkObject(ref);
if (new_address != ref) {
DCHECK(new_address != nullptr);
// Don't need to mark the card since we updating the object address and not changing the
// actual objects its pointing to. Using SetFieldObjectWithoutWriteBarrier is better in this
// case since it does not dirty cards and use additional memory.
// Since we do not change the actual object, we can safely use non-transactional mode. Also
// disable check as we could run inside a transaction.
obj->SetFieldObjectWithoutWriteBarrier<false, false, kVerifyNone>(offset, new_address, false);
}
}
private:
SemiSpace* const semi_space_;
};
// Visit all of the references of an object and update.
void SemiSpace::ScanObject(Object* obj) {
DCHECK(obj != NULL);
DCHECK(!from_space_->HasAddress(obj)) << "Scanning object " << obj << " in from space";
SemiSpaceMarkObjectVisitor visitor(this);
MarkSweep::VisitObjectReferences(obj, visitor, kMovingClasses);
mirror::Class* klass = obj->GetClass<kVerifyNone>();
if (UNLIKELY(klass->IsReferenceClass<kVerifyNone>())) {
DelayReferenceReferent(klass, obj);
}
}
// Scan anything that's on the mark stack.
void SemiSpace::ProcessMarkStack() {
space::MallocSpace* promo_dest_space = NULL;
accounting::SpaceBitmap* live_bitmap = NULL;
if (generational_ && !whole_heap_collection_) {
// If a bump pointer space only collection (and the promotion is
// enabled,) we delay the live-bitmap marking of promoted objects
// from MarkObject() until this function.
promo_dest_space = GetHeap()->GetPrimaryFreeListSpace();
live_bitmap = promo_dest_space->GetLiveBitmap();
DCHECK(live_bitmap != nullptr);
accounting::SpaceBitmap* mark_bitmap = promo_dest_space->GetMarkBitmap();
DCHECK(mark_bitmap != nullptr);
DCHECK_EQ(live_bitmap, mark_bitmap);
}
timings_.StartSplit("ProcessMarkStack");
while (!mark_stack_->IsEmpty()) {
Object* obj = mark_stack_->PopBack();
if (generational_ && !whole_heap_collection_ && promo_dest_space->HasAddress(obj)) {
// obj has just been promoted. Mark the live bitmap for it,
// which is delayed from MarkObject().
DCHECK(!live_bitmap->Test(obj));
live_bitmap->Set(obj);
}
ScanObject(obj);
}
timings_.EndSplit();
}
inline Object* SemiSpace::GetMarkedForwardAddress(mirror::Object* obj) const
SHARED_LOCKS_REQUIRED(Locks::heap_bitmap_lock_) {
// All immune objects are assumed marked.
if (immune_region_.ContainsObject(obj)) {
return obj;
}
if (from_space_->HasAddress(obj)) {
mirror::Object* forwarding_address = GetForwardingAddressInFromSpace(const_cast<Object*>(obj));
return forwarding_address; // Returns either the forwarding address or nullptr.
} else if (to_space_->HasAddress(obj)) {
// Should be unlikely.
// Already forwarded, must be marked.
return obj;
}
return heap_->GetMarkBitmap()->Test(obj) ? obj : nullptr;
}
void SemiSpace::SetToSpace(space::ContinuousMemMapAllocSpace* to_space) {
DCHECK(to_space != nullptr);
to_space_ = to_space;
}
void SemiSpace::SetFromSpace(space::ContinuousMemMapAllocSpace* from_space) {
DCHECK(from_space != nullptr);
from_space_ = from_space;
}
void SemiSpace::FinishPhase() {
TimingLogger::ScopedSplit split("FinishPhase", &timings_);
Heap* heap = GetHeap();
timings_.NewSplit("PostGcVerification");
heap->PostGcVerification(this);
// Null the "to" and "from" spaces since compacting from one to the other isn't valid until
// further action is done by the heap.
to_space_ = nullptr;
from_space_ = nullptr;
// Update the cumulative statistics
total_freed_objects_ += GetFreedObjects() + GetFreedLargeObjects();
total_freed_bytes_ += GetFreedBytes() + GetFreedLargeObjectBytes();
// Ensure that the mark stack is empty.
CHECK(mark_stack_->IsEmpty());
// Update the cumulative loggers.
cumulative_timings_.Start();
cumulative_timings_.AddLogger(timings_);
cumulative_timings_.End();
// Clear all of the spaces' mark bitmaps.
for (const auto& space : GetHeap()->GetContinuousSpaces()) {
accounting::SpaceBitmap* bitmap = space->GetMarkBitmap();
if (bitmap != nullptr &&
space->GetGcRetentionPolicy() != space::kGcRetentionPolicyNeverCollect) {
bitmap->Clear();
}
}
mark_stack_->Reset();
// Reset the marked large objects.
space::LargeObjectSpace* large_objects = GetHeap()->GetLargeObjectsSpace();
large_objects->GetMarkObjects()->Clear();
if (generational_) {
// Decide whether to do a whole heap collection or a bump pointer
// only space collection at the next collection by updating
// whole_heap_collection. Enable whole_heap_collection once every
// kDefaultWholeHeapCollectionInterval collections.
if (!whole_heap_collection_) {
--whole_heap_collection_interval_counter_;
DCHECK_GE(whole_heap_collection_interval_counter_, 0);
if (whole_heap_collection_interval_counter_ == 0) {
whole_heap_collection_ = true;
}
} else {
DCHECK_EQ(whole_heap_collection_interval_counter_, 0);
whole_heap_collection_interval_counter_ = kDefaultWholeHeapCollectionInterval;
whole_heap_collection_ = false;
}
}
}
} // namespace collector
} // namespace gc
} // namespace art
|