summaryrefslogtreecommitdiffstats
path: root/runtime/gc/heap-inl.h
blob: 9d2f6d1238f090c8975b5cda9085fd15a7a517b0 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
/*
 * Copyright (C) 2013 The Android Open Source Project
 *
 * Licensed under the Apache License, Version 2.0 (the "License");
 * you may not use this file except in compliance with the License.
 * You may obtain a copy of the License at
 *
 *      http://www.apache.org/licenses/LICENSE-2.0
 *
 * Unless required by applicable law or agreed to in writing, software
 * distributed under the License is distributed on an "AS IS" BASIS,
 * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
 * See the License for the specific language governing permissions and
 * limitations under the License.
 */

#ifndef ART_RUNTIME_GC_HEAP_INL_H_
#define ART_RUNTIME_GC_HEAP_INL_H_

#include "heap.h"

#include "debugger.h"
#include "gc/accounting/card_table-inl.h"
#include "gc/collector/semi_space.h"
#include "gc/space/bump_pointer_space-inl.h"
#include "gc/space/dlmalloc_space-inl.h"
#include "gc/space/large_object_space.h"
#include "gc/space/rosalloc_space-inl.h"
#include "runtime.h"
#include "handle_scope-inl.h"
#include "thread.h"
#include "thread-inl.h"
#include "verify_object-inl.h"

namespace art {
namespace gc {

template <bool kInstrumented, bool kCheckLargeObject, typename PreFenceVisitor>
inline mirror::Object* Heap::AllocObjectWithAllocator(Thread* self, mirror::Class* klass,
                                                      size_t byte_count, AllocatorType allocator,
                                                      const PreFenceVisitor& pre_fence_visitor) {
  if (kIsDebugBuild) {
    CheckPreconditionsForAllocObject(klass, byte_count);
    // Since allocation can cause a GC which will need to SuspendAll, make sure all allocations are
    // done in the runnable state where suspension is expected.
    CHECK_EQ(self->GetState(), kRunnable);
    self->AssertThreadSuspensionIsAllowable();
  }
  // Need to check that we arent the large object allocator since the large object allocation code
  // path this function. If we didn't check we would have an infinite loop.
  mirror::Object* obj;
  if (kCheckLargeObject && UNLIKELY(ShouldAllocLargeObject(klass, byte_count))) {
    obj = AllocLargeObject<kInstrumented, PreFenceVisitor>(self, &klass, byte_count,
                                                           pre_fence_visitor);
    if (obj != nullptr) {
      return obj;
    } else {
      // There should be an OOM exception, since we are retrying, clear it.
      self->ClearException();
    }
    // If the large object allocation failed, try to use the normal spaces (main space,
    // non moving space). This can happen if there is significant virtual address space
    // fragmentation.
  }
  AllocationTimer alloc_timer(this, &obj);
  size_t bytes_allocated;
  size_t usable_size;
  size_t new_num_bytes_allocated = 0;
  if (allocator == kAllocatorTypeTLAB) {
    byte_count = RoundUp(byte_count, space::BumpPointerSpace::kAlignment);
  }
  // If we have a thread local allocation we don't need to update bytes allocated.
  if (allocator == kAllocatorTypeTLAB && byte_count <= self->TlabSize()) {
    obj = self->AllocTlab(byte_count);
    DCHECK(obj != nullptr) << "AllocTlab can't fail";
    obj->SetClass(klass);
    if (kUseBakerOrBrooksReadBarrier) {
      if (kUseBrooksReadBarrier) {
        obj->SetReadBarrierPointer(obj);
      }
      obj->AssertReadBarrierPointer();
    }
    bytes_allocated = byte_count;
    usable_size = bytes_allocated;
    pre_fence_visitor(obj, usable_size);
    QuasiAtomic::ThreadFenceForConstructor();
  } else {
    obj = TryToAllocate<kInstrumented, false>(self, allocator, byte_count, &bytes_allocated,
                                              &usable_size);
    if (UNLIKELY(obj == nullptr)) {
      bool is_current_allocator = allocator == GetCurrentAllocator();
      obj = AllocateInternalWithGc(self, allocator, byte_count, &bytes_allocated, &usable_size,
                                   &klass);
      if (obj == nullptr) {
        bool after_is_current_allocator = allocator == GetCurrentAllocator();
        // If there is a pending exception, fail the allocation right away since the next one
        // could cause OOM and abort the runtime.
        if (!self->IsExceptionPending() && is_current_allocator && !after_is_current_allocator) {
          // If the allocator changed, we need to restart the allocation.
          return AllocObject<kInstrumented>(self, klass, byte_count, pre_fence_visitor);
        }
        return nullptr;
      }
    }
    DCHECK_GT(bytes_allocated, 0u);
    DCHECK_GT(usable_size, 0u);
    obj->SetClass(klass);
    if (kUseBakerOrBrooksReadBarrier) {
      if (kUseBrooksReadBarrier) {
        obj->SetReadBarrierPointer(obj);
      }
      obj->AssertReadBarrierPointer();
    }
    if (collector::SemiSpace::kUseRememberedSet && UNLIKELY(allocator == kAllocatorTypeNonMoving)) {
      // (Note this if statement will be constant folded away for the
      // fast-path quick entry points.) Because SetClass() has no write
      // barrier, if a non-moving space allocation, we need a write
      // barrier as the class pointer may point to the bump pointer
      // space (where the class pointer is an "old-to-young" reference,
      // though rare) under the GSS collector with the remembered set
      // enabled. We don't need this for kAllocatorTypeRosAlloc/DlMalloc
      // cases because we don't directly allocate into the main alloc
      // space (besides promotions) under the SS/GSS collector.
      WriteBarrierField(obj, mirror::Object::ClassOffset(), klass);
    }
    pre_fence_visitor(obj, usable_size);
    new_num_bytes_allocated =
        static_cast<size_t>(num_bytes_allocated_.FetchAndAddSequentiallyConsistent(bytes_allocated))
        + bytes_allocated;
  }
  if (kIsDebugBuild && Runtime::Current()->IsStarted()) {
    CHECK_LE(obj->SizeOf(), usable_size);
  }
  // TODO: Deprecate.
  if (kInstrumented) {
    if (Runtime::Current()->HasStatsEnabled()) {
      RuntimeStats* thread_stats = self->GetStats();
      ++thread_stats->allocated_objects;
      thread_stats->allocated_bytes += bytes_allocated;
      RuntimeStats* global_stats = Runtime::Current()->GetStats();
      ++global_stats->allocated_objects;
      global_stats->allocated_bytes += bytes_allocated;
    }
  } else {
    DCHECK(!Runtime::Current()->HasStatsEnabled());
  }
  if (AllocatorHasAllocationStack(allocator)) {
    PushOnAllocationStack(self, &obj);
  }
  if (kInstrumented) {
    if (Dbg::IsAllocTrackingEnabled()) {
      Dbg::RecordAllocation(self, klass, bytes_allocated);
    }
  } else {
    DCHECK(!Dbg::IsAllocTrackingEnabled());
  }
  // IsConcurrentGc() isn't known at compile time so we can optimize by not checking it for
  // the BumpPointer or TLAB allocators. This is nice since it allows the entire if statement to be
  // optimized out. And for the other allocators, AllocatorMayHaveConcurrentGC is a constant since
  // the allocator_type should be constant propagated.
  if (AllocatorMayHaveConcurrentGC(allocator) && IsGcConcurrent()) {
    CheckConcurrentGC(self, new_num_bytes_allocated, &obj);
  }
  VerifyObject(obj);
  self->VerifyStack();
  return obj;
}

// The size of a thread-local allocation stack in the number of references.
static constexpr size_t kThreadLocalAllocationStackSize = 128;

inline void Heap::PushOnAllocationStack(Thread* self, mirror::Object** obj) {
  if (kUseThreadLocalAllocationStack) {
    if (UNLIKELY(!self->PushOnThreadLocalAllocationStack(*obj))) {
      PushOnThreadLocalAllocationStackWithInternalGC(self, obj);
    }
  } else if (UNLIKELY(!allocation_stack_->AtomicPushBack(*obj))) {
    PushOnAllocationStackWithInternalGC(self, obj);
  }
}

template <bool kInstrumented, typename PreFenceVisitor>
inline mirror::Object* Heap::AllocLargeObject(Thread* self, mirror::Class** klass,
                                              size_t byte_count,
                                              const PreFenceVisitor& pre_fence_visitor) {
  // Save and restore the class in case it moves.
  StackHandleScope<1> hs(self);
  auto klass_wrapper = hs.NewHandleWrapper(klass);
  return AllocObjectWithAllocator<kInstrumented, false, PreFenceVisitor>(self, *klass, byte_count,
                                                                         kAllocatorTypeLOS,
                                                                         pre_fence_visitor);
}

template <const bool kInstrumented, const bool kGrow>
inline mirror::Object* Heap::TryToAllocate(Thread* self, AllocatorType allocator_type,
                                           size_t alloc_size, size_t* bytes_allocated,
                                           size_t* usable_size) {
  if (allocator_type != kAllocatorTypeTLAB &&
      UNLIKELY(IsOutOfMemoryOnAllocation<kGrow>(allocator_type, alloc_size))) {
    return nullptr;
  }
  mirror::Object* ret;
  switch (allocator_type) {
    case kAllocatorTypeBumpPointer: {
      DCHECK(bump_pointer_space_ != nullptr);
      alloc_size = RoundUp(alloc_size, space::BumpPointerSpace::kAlignment);
      ret = bump_pointer_space_->AllocNonvirtual(alloc_size);
      if (LIKELY(ret != nullptr)) {
        *bytes_allocated = alloc_size;
        *usable_size = alloc_size;
      }
      break;
    }
    case kAllocatorTypeRosAlloc: {
      if (kInstrumented && UNLIKELY(running_on_valgrind_)) {
        // If running on valgrind, we should be using the instrumented path.
        ret = rosalloc_space_->Alloc(self, alloc_size, bytes_allocated, usable_size);
      } else {
        DCHECK(!running_on_valgrind_);
        ret = rosalloc_space_->AllocNonvirtual(self, alloc_size, bytes_allocated, usable_size);
      }
      break;
    }
    case kAllocatorTypeDlMalloc: {
      if (kInstrumented && UNLIKELY(running_on_valgrind_)) {
        // If running on valgrind, we should be using the instrumented path.
        ret = dlmalloc_space_->Alloc(self, alloc_size, bytes_allocated, usable_size);
      } else {
        DCHECK(!running_on_valgrind_);
        ret = dlmalloc_space_->AllocNonvirtual(self, alloc_size, bytes_allocated, usable_size);
      }
      break;
    }
    case kAllocatorTypeNonMoving: {
      ret = non_moving_space_->Alloc(self, alloc_size, bytes_allocated, usable_size);
      break;
    }
    case kAllocatorTypeLOS: {
      ret = large_object_space_->Alloc(self, alloc_size, bytes_allocated, usable_size);
      // Note that the bump pointer spaces aren't necessarily next to
      // the other continuous spaces like the non-moving alloc space or
      // the zygote space.
      DCHECK(ret == nullptr || large_object_space_->Contains(ret));
      break;
    }
    case kAllocatorTypeTLAB: {
      DCHECK_ALIGNED(alloc_size, space::BumpPointerSpace::kAlignment);
      if (UNLIKELY(self->TlabSize() < alloc_size)) {
        const size_t new_tlab_size = alloc_size + kDefaultTLABSize;
        if (UNLIKELY(IsOutOfMemoryOnAllocation<kGrow>(allocator_type, new_tlab_size))) {
          return nullptr;
        }
        // Try allocating a new thread local buffer, if the allocaiton fails the space must be
        // full so return nullptr.
        if (!bump_pointer_space_->AllocNewTlab(self, new_tlab_size)) {
          return nullptr;
        }
        *bytes_allocated = new_tlab_size;
      } else {
        *bytes_allocated = 0;
      }
      // The allocation can't fail.
      ret = self->AllocTlab(alloc_size);
      DCHECK(ret != nullptr);
      *usable_size = alloc_size;
      break;
    }
    default: {
      LOG(FATAL) << "Invalid allocator type";
      ret = nullptr;
    }
  }
  return ret;
}

inline Heap::AllocationTimer::AllocationTimer(Heap* heap, mirror::Object** allocated_obj_ptr)
    : heap_(heap), allocated_obj_ptr_(allocated_obj_ptr) {
  if (kMeasureAllocationTime) {
    allocation_start_time_ = NanoTime() / kTimeAdjust;
  }
}

inline Heap::AllocationTimer::~AllocationTimer() {
  if (kMeasureAllocationTime) {
    mirror::Object* allocated_obj = *allocated_obj_ptr_;
    // Only if the allocation succeeded, record the time.
    if (allocated_obj != nullptr) {
      uint64_t allocation_end_time = NanoTime() / kTimeAdjust;
      heap_->total_allocation_time_.FetchAndAddSequentiallyConsistent(allocation_end_time - allocation_start_time_);
    }
  }
}

inline bool Heap::ShouldAllocLargeObject(mirror::Class* c, size_t byte_count) const {
  // We need to have a zygote space or else our newly allocated large object can end up in the
  // Zygote resulting in it being prematurely freed.
  // We can only do this for primitive objects since large objects will not be within the card table
  // range. This also means that we rely on SetClass not dirtying the object's card.
  return byte_count >= large_object_threshold_ && c->IsPrimitiveArray();
}

template <bool kGrow>
inline bool Heap::IsOutOfMemoryOnAllocation(AllocatorType allocator_type, size_t alloc_size) {
  size_t new_footprint = num_bytes_allocated_.LoadSequentiallyConsistent() + alloc_size;
  if (UNLIKELY(new_footprint > max_allowed_footprint_)) {
    if (UNLIKELY(new_footprint > growth_limit_)) {
      return true;
    }
    if (!AllocatorMayHaveConcurrentGC(allocator_type) || !IsGcConcurrent()) {
      if (!kGrow) {
        return true;
      }
      // TODO: Grow for allocation is racy, fix it.
      VLOG(heap) << "Growing heap from " << PrettySize(max_allowed_footprint_) << " to "
          << PrettySize(new_footprint) << " for a " << PrettySize(alloc_size) << " allocation";
      max_allowed_footprint_ = new_footprint;
    }
  }
  return false;
}

inline void Heap::CheckConcurrentGC(Thread* self, size_t new_num_bytes_allocated,
                                    mirror::Object** obj) {
  if (UNLIKELY(new_num_bytes_allocated >= concurrent_start_bytes_)) {
    RequestConcurrentGCAndSaveObject(self, obj);
  }
}

}  // namespace gc
}  // namespace art

#endif  // ART_RUNTIME_GC_HEAP_INL_H_