summaryrefslogtreecommitdiffstats
path: root/runtime/gc/heap.cc
blob: d428267240072612b9dca17c58bb3842ee0673e5 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835
1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889
1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1940
1941
1942
1943
1944
1945
1946
1947
1948
1949
1950
1951
1952
1953
1954
1955
1956
1957
1958
1959
1960
1961
1962
1963
1964
1965
1966
1967
1968
1969
1970
1971
1972
1973
1974
1975
1976
1977
1978
1979
1980
1981
1982
1983
1984
1985
1986
1987
1988
1989
1990
1991
1992
1993
1994
1995
1996
1997
1998
1999
2000
2001
2002
2003
2004
2005
2006
2007
2008
2009
2010
2011
2012
2013
2014
2015
2016
2017
2018
2019
2020
2021
2022
2023
2024
2025
2026
2027
2028
2029
2030
2031
2032
2033
2034
2035
2036
2037
2038
2039
2040
2041
2042
2043
2044
2045
2046
2047
2048
2049
2050
2051
2052
2053
2054
2055
2056
2057
2058
2059
2060
2061
2062
2063
2064
2065
2066
2067
2068
2069
2070
2071
2072
2073
2074
2075
2076
2077
2078
2079
2080
2081
2082
2083
2084
2085
2086
2087
2088
2089
2090
2091
2092
2093
2094
2095
2096
2097
2098
2099
2100
2101
2102
2103
2104
2105
2106
2107
2108
2109
2110
2111
2112
2113
2114
2115
2116
2117
2118
2119
2120
2121
2122
2123
2124
2125
2126
2127
2128
2129
2130
2131
2132
2133
2134
2135
2136
2137
2138
2139
2140
2141
2142
2143
2144
2145
2146
2147
2148
2149
2150
2151
2152
2153
2154
2155
2156
2157
2158
2159
2160
2161
2162
2163
2164
2165
2166
2167
2168
2169
2170
2171
2172
2173
2174
2175
2176
2177
2178
2179
2180
2181
2182
2183
2184
2185
2186
2187
2188
2189
2190
2191
2192
2193
2194
2195
2196
2197
2198
2199
2200
2201
2202
2203
2204
2205
2206
2207
2208
2209
2210
2211
2212
2213
2214
2215
2216
2217
2218
2219
2220
2221
2222
2223
2224
2225
2226
2227
2228
2229
2230
2231
2232
2233
2234
2235
2236
2237
2238
2239
2240
2241
2242
2243
2244
2245
2246
2247
2248
2249
2250
2251
2252
2253
2254
2255
2256
2257
2258
2259
2260
2261
2262
2263
2264
2265
2266
2267
2268
2269
2270
2271
2272
2273
2274
2275
2276
2277
2278
2279
2280
2281
2282
2283
2284
2285
2286
2287
2288
2289
2290
2291
2292
2293
2294
2295
2296
2297
2298
2299
2300
2301
2302
2303
2304
2305
2306
2307
2308
2309
2310
2311
2312
2313
2314
2315
2316
2317
2318
2319
2320
2321
2322
2323
2324
2325
2326
2327
2328
2329
2330
2331
2332
2333
2334
2335
2336
2337
2338
2339
2340
2341
2342
2343
2344
2345
2346
2347
2348
2349
2350
2351
2352
2353
2354
2355
2356
2357
2358
2359
2360
2361
2362
2363
2364
2365
2366
2367
2368
2369
2370
2371
2372
2373
2374
2375
2376
2377
2378
2379
2380
2381
2382
2383
2384
2385
2386
2387
2388
2389
2390
2391
2392
2393
2394
2395
2396
2397
2398
2399
2400
2401
2402
2403
2404
2405
2406
2407
2408
2409
2410
2411
2412
2413
2414
2415
2416
2417
2418
2419
2420
2421
2422
2423
2424
2425
2426
2427
2428
2429
2430
2431
2432
2433
2434
2435
2436
2437
2438
2439
2440
2441
2442
2443
2444
2445
2446
2447
2448
2449
2450
2451
2452
2453
2454
2455
2456
2457
2458
2459
2460
2461
2462
2463
2464
2465
2466
2467
2468
2469
2470
2471
2472
2473
2474
2475
2476
2477
2478
2479
2480
2481
2482
2483
2484
2485
2486
2487
2488
2489
2490
2491
2492
2493
2494
2495
2496
2497
2498
2499
2500
2501
2502
2503
2504
2505
2506
2507
2508
2509
2510
2511
2512
2513
2514
2515
2516
2517
2518
2519
2520
2521
2522
2523
2524
2525
2526
2527
2528
2529
2530
2531
2532
2533
2534
2535
2536
2537
2538
2539
2540
2541
2542
2543
2544
2545
2546
2547
2548
2549
2550
2551
2552
2553
2554
2555
2556
2557
2558
2559
2560
2561
2562
2563
2564
2565
2566
2567
2568
2569
2570
2571
2572
2573
2574
2575
2576
2577
2578
2579
2580
2581
2582
2583
2584
2585
2586
2587
2588
2589
2590
2591
2592
2593
2594
2595
2596
2597
2598
2599
2600
2601
2602
2603
2604
2605
2606
2607
2608
2609
2610
2611
2612
2613
2614
2615
2616
2617
2618
2619
2620
2621
2622
2623
2624
2625
2626
2627
2628
2629
2630
2631
2632
2633
2634
2635
2636
2637
2638
2639
2640
2641
2642
2643
2644
2645
2646
2647
2648
2649
2650
2651
2652
2653
2654
2655
2656
2657
2658
2659
2660
2661
2662
2663
2664
2665
2666
2667
2668
2669
2670
2671
2672
2673
2674
2675
2676
2677
2678
2679
2680
2681
2682
2683
2684
2685
2686
2687
2688
2689
2690
2691
2692
2693
2694
2695
2696
2697
2698
2699
2700
2701
2702
2703
2704
2705
2706
2707
2708
2709
2710
2711
2712
2713
2714
2715
2716
2717
2718
2719
2720
2721
2722
2723
2724
2725
2726
2727
2728
2729
2730
2731
2732
2733
2734
2735
2736
2737
2738
2739
2740
2741
2742
2743
2744
2745
2746
2747
2748
2749
2750
2751
2752
2753
2754
2755
2756
2757
2758
2759
2760
2761
2762
2763
2764
2765
2766
2767
2768
2769
2770
2771
2772
2773
2774
2775
2776
2777
2778
2779
2780
2781
2782
2783
2784
2785
2786
2787
2788
2789
2790
2791
2792
2793
2794
2795
2796
2797
2798
2799
2800
2801
2802
2803
2804
2805
2806
2807
2808
2809
2810
2811
2812
2813
2814
2815
2816
2817
2818
2819
2820
2821
2822
2823
2824
2825
2826
2827
2828
2829
2830
2831
2832
2833
2834
2835
2836
2837
2838
2839
2840
2841
2842
2843
2844
2845
2846
2847
2848
2849
2850
2851
2852
2853
2854
2855
2856
2857
2858
2859
2860
2861
2862
2863
2864
2865
2866
2867
2868
2869
2870
2871
2872
2873
2874
2875
2876
2877
2878
2879
2880
2881
2882
2883
2884
2885
2886
2887
2888
2889
2890
2891
2892
2893
2894
2895
2896
2897
2898
2899
2900
2901
2902
2903
2904
2905
2906
2907
2908
2909
2910
2911
2912
2913
2914
2915
2916
2917
2918
2919
2920
2921
2922
2923
2924
2925
2926
2927
2928
2929
2930
2931
2932
2933
2934
2935
2936
2937
2938
2939
2940
2941
2942
2943
2944
2945
2946
2947
2948
2949
2950
2951
2952
2953
2954
2955
2956
2957
2958
2959
2960
2961
2962
2963
2964
2965
2966
2967
2968
2969
2970
2971
2972
2973
2974
2975
2976
2977
2978
2979
2980
2981
2982
2983
2984
2985
2986
2987
2988
2989
2990
2991
2992
2993
2994
2995
2996
2997
2998
2999
3000
3001
3002
3003
3004
3005
3006
3007
3008
3009
3010
3011
3012
3013
3014
3015
3016
3017
3018
3019
3020
3021
3022
3023
3024
3025
3026
3027
3028
3029
3030
3031
3032
3033
3034
3035
3036
3037
3038
3039
3040
3041
3042
3043
3044
3045
3046
3047
3048
3049
3050
3051
3052
3053
3054
3055
3056
3057
3058
3059
3060
3061
3062
3063
3064
3065
3066
3067
3068
3069
3070
3071
3072
3073
3074
3075
3076
3077
3078
3079
3080
3081
3082
3083
3084
3085
3086
3087
3088
3089
3090
3091
3092
3093
3094
3095
3096
3097
3098
3099
3100
3101
3102
3103
3104
3105
3106
3107
3108
3109
3110
3111
3112
3113
3114
3115
3116
3117
3118
3119
3120
3121
3122
3123
3124
3125
3126
3127
3128
3129
3130
3131
3132
3133
3134
3135
3136
3137
3138
3139
3140
3141
3142
3143
3144
3145
3146
3147
3148
3149
3150
3151
3152
3153
3154
3155
3156
3157
3158
3159
3160
3161
3162
3163
3164
3165
3166
3167
3168
3169
3170
3171
3172
3173
3174
3175
3176
3177
3178
3179
3180
3181
3182
3183
3184
3185
3186
3187
3188
3189
3190
3191
3192
3193
3194
3195
3196
3197
3198
3199
3200
3201
3202
3203
3204
3205
3206
3207
3208
3209
3210
3211
3212
3213
3214
3215
3216
3217
3218
3219
3220
3221
3222
3223
3224
3225
3226
3227
3228
3229
3230
3231
3232
3233
3234
3235
3236
3237
3238
3239
3240
3241
3242
3243
3244
3245
3246
3247
3248
3249
3250
3251
3252
3253
3254
3255
3256
3257
3258
3259
3260
3261
3262
3263
3264
3265
3266
3267
3268
3269
3270
3271
3272
3273
3274
3275
3276
3277
3278
3279
3280
3281
3282
3283
3284
3285
3286
3287
3288
3289
3290
3291
3292
3293
3294
3295
3296
3297
3298
3299
3300
3301
3302
3303
3304
3305
3306
3307
3308
3309
3310
3311
3312
3313
3314
3315
3316
3317
3318
3319
3320
3321
3322
3323
3324
3325
3326
3327
3328
3329
3330
3331
3332
3333
3334
3335
3336
3337
3338
3339
3340
3341
3342
3343
3344
3345
3346
3347
3348
3349
3350
3351
3352
3353
3354
3355
3356
3357
3358
3359
3360
3361
3362
3363
3364
3365
3366
3367
3368
3369
3370
3371
3372
3373
3374
3375
3376
3377
3378
3379
3380
3381
3382
3383
3384
3385
3386
3387
3388
3389
3390
3391
3392
3393
3394
3395
3396
3397
3398
3399
3400
3401
3402
3403
3404
3405
3406
3407
3408
3409
3410
3411
3412
3413
3414
3415
3416
3417
3418
3419
3420
3421
3422
3423
3424
3425
3426
3427
3428
3429
3430
3431
3432
3433
3434
3435
3436
3437
3438
3439
3440
3441
3442
3443
3444
3445
3446
3447
3448
3449
3450
3451
3452
3453
3454
3455
3456
3457
3458
3459
3460
3461
3462
3463
3464
3465
3466
3467
3468
3469
3470
3471
3472
3473
3474
3475
3476
3477
3478
3479
3480
3481
3482
3483
3484
3485
3486
3487
3488
3489
3490
3491
3492
3493
3494
3495
3496
3497
3498
3499
3500
3501
3502
3503
3504
3505
3506
3507
3508
3509
3510
3511
3512
3513
3514
3515
3516
3517
3518
3519
3520
3521
3522
3523
3524
3525
3526
3527
3528
3529
3530
3531
3532
3533
3534
3535
3536
3537
3538
3539
3540
3541
3542
3543
3544
3545
3546
3547
3548
3549
3550
3551
3552
3553
3554
3555
3556
3557
3558
3559
3560
3561
3562
3563
3564
3565
3566
3567
3568
3569
3570
3571
3572
3573
3574
3575
3576
3577
3578
3579
3580
3581
3582
3583
3584
3585
3586
3587
3588
3589
3590
3591
3592
3593
3594
3595
3596
3597
3598
3599
3600
3601
3602
3603
3604
3605
3606
3607
3608
3609
3610
3611
3612
3613
3614
3615
3616
3617
3618
3619
3620
3621
3622
3623
3624
3625
3626
3627
3628
3629
3630
3631
3632
3633
3634
3635
3636
3637
3638
3639
3640
3641
3642
3643
3644
3645
3646
3647
3648
3649
3650
3651
3652
3653
3654
3655
3656
3657
3658
3659
3660
3661
3662
3663
3664
3665
3666
3667
3668
3669
3670
3671
3672
3673
3674
3675
3676
3677
3678
3679
3680
3681
3682
3683
3684
3685
3686
3687
3688
3689
3690
3691
3692
3693
3694
3695
3696
3697
3698
3699
3700
3701
3702
3703
3704
3705
3706
3707
3708
3709
3710
3711
3712
3713
3714
3715
3716
3717
3718
3719
3720
3721
3722
3723
3724
3725
3726
3727
3728
3729
3730
3731
3732
3733
3734
3735
3736
3737
3738
3739
3740
3741
3742
3743
3744
3745
3746
3747
3748
3749
3750
3751
3752
3753
3754
3755
3756
3757
3758
3759
3760
3761
3762
3763
3764
/*
 * Copyright (C) 2011 The Android Open Source Project
 *
 * Licensed under the Apache License, Version 2.0 (the "License");
 * you may not use this file except in compliance with the License.
 * You may obtain a copy of the License at
 *
 *      http://www.apache.org/licenses/LICENSE-2.0
 *
 * Unless required by applicable law or agreed to in writing, software
 * distributed under the License is distributed on an "AS IS" BASIS,
 * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
 * See the License for the specific language governing permissions and
 * limitations under the License.
 */

#include "heap.h"

#define ATRACE_TAG ATRACE_TAG_DALVIK
#include <cutils/trace.h>

#include <limits>
#include <memory>
#include <unwind.h>  // For GC verification.
#include <vector>

#include "art_field-inl.h"
#include "base/allocator.h"
#include "base/dumpable.h"
#include "base/histogram-inl.h"
#include "base/stl_util.h"
#include "base/time_utils.h"
#include "common_throws.h"
#include "cutils/sched_policy.h"
#include "debugger.h"
#include "dex_file-inl.h"
#include "gc/accounting/atomic_stack.h"
#include "gc/accounting/card_table-inl.h"
#include "gc/accounting/heap_bitmap-inl.h"
#include "gc/accounting/mod_union_table.h"
#include "gc/accounting/mod_union_table-inl.h"
#include "gc/accounting/remembered_set.h"
#include "gc/accounting/space_bitmap-inl.h"
#include "gc/collector/concurrent_copying.h"
#include "gc/collector/mark_compact.h"
#include "gc/collector/mark_sweep-inl.h"
#include "gc/collector/partial_mark_sweep.h"
#include "gc/collector/semi_space.h"
#include "gc/collector/sticky_mark_sweep.h"
#include "gc/reference_processor.h"
#include "gc/space/bump_pointer_space.h"
#include "gc/space/dlmalloc_space-inl.h"
#include "gc/space/image_space.h"
#include "gc/space/large_object_space.h"
#include "gc/space/region_space.h"
#include "gc/space/rosalloc_space-inl.h"
#include "gc/space/space-inl.h"
#include "gc/space/zygote_space.h"
#include "gc/task_processor.h"
#include "entrypoints/quick/quick_alloc_entrypoints.h"
#include "heap-inl.h"
#include "image.h"
#include "intern_table.h"
#include "mirror/class-inl.h"
#include "mirror/object.h"
#include "mirror/object-inl.h"
#include "mirror/object_array-inl.h"
#include "mirror/reference-inl.h"
#include "os.h"
#include "reflection.h"
#include "runtime.h"
#include "ScopedLocalRef.h"
#include "scoped_thread_state_change.h"
#include "handle_scope-inl.h"
#include "thread_list.h"
#include "well_known_classes.h"

namespace art {

namespace gc {

static constexpr size_t kCollectorTransitionStressIterations = 0;
static constexpr size_t kCollectorTransitionStressWait = 10 * 1000;  // Microseconds
// Minimum amount of remaining bytes before a concurrent GC is triggered.
static constexpr size_t kMinConcurrentRemainingBytes = 128 * KB;
static constexpr size_t kMaxConcurrentRemainingBytes = 512 * KB;
// Sticky GC throughput adjustment, divided by 4. Increasing this causes sticky GC to occur more
// relative to partial/full GC. This may be desirable since sticky GCs interfere less with mutator
// threads (lower pauses, use less memory bandwidth).
static constexpr double kStickyGcThroughputAdjustment = 1.0;
// Whether or not we compact the zygote in PreZygoteFork.
static constexpr bool kCompactZygote = kMovingCollector;
// How many reserve entries are at the end of the allocation stack, these are only needed if the
// allocation stack overflows.
static constexpr size_t kAllocationStackReserveSize = 1024;
// Default mark stack size in bytes.
static const size_t kDefaultMarkStackSize = 64 * KB;
// Define space name.
static const char* kDlMallocSpaceName[2] = {"main dlmalloc space", "main dlmalloc space 1"};
static const char* kRosAllocSpaceName[2] = {"main rosalloc space", "main rosalloc space 1"};
static const char* kMemMapSpaceName[2] = {"main space", "main space 1"};
static const char* kNonMovingSpaceName = "non moving space";
static const char* kZygoteSpaceName = "zygote space";
static constexpr size_t kGSSBumpPointerSpaceCapacity = 32 * MB;
static constexpr bool kGCALotMode = false;
// GC alot mode uses a small allocation stack to stress test a lot of GC.
static constexpr size_t kGcAlotAllocationStackSize = 4 * KB /
    sizeof(mirror::HeapReference<mirror::Object>);
// Verify objet has a small allocation stack size since searching the allocation stack is slow.
static constexpr size_t kVerifyObjectAllocationStackSize = 16 * KB /
    sizeof(mirror::HeapReference<mirror::Object>);
static constexpr size_t kDefaultAllocationStackSize = 8 * MB /
    sizeof(mirror::HeapReference<mirror::Object>);
// System.runFinalization can deadlock with native allocations, to deal with this, we have a
// timeout on how long we wait for finalizers to run. b/21544853
static constexpr uint64_t kNativeAllocationFinalizeTimeout = MsToNs(250u);

Heap::Heap(size_t initial_size, size_t growth_limit, size_t min_free, size_t max_free,
           double target_utilization, double foreground_heap_growth_multiplier,
           size_t capacity, size_t non_moving_space_capacity, const std::string& image_file_name,
           const InstructionSet image_instruction_set, CollectorType foreground_collector_type,
           CollectorType background_collector_type,
           space::LargeObjectSpaceType large_object_space_type, size_t large_object_threshold,
           size_t parallel_gc_threads, size_t conc_gc_threads, bool low_memory_mode,
           size_t long_pause_log_threshold, size_t long_gc_log_threshold,
           bool ignore_max_footprint, bool use_tlab,
           bool verify_pre_gc_heap, bool verify_pre_sweeping_heap, bool verify_post_gc_heap,
           bool verify_pre_gc_rosalloc, bool verify_pre_sweeping_rosalloc,
           bool verify_post_gc_rosalloc, bool gc_stress_mode,
           bool use_homogeneous_space_compaction_for_oom,
           uint64_t min_interval_homogeneous_space_compaction_by_oom)
    : non_moving_space_(nullptr),
      rosalloc_space_(nullptr),
      dlmalloc_space_(nullptr),
      main_space_(nullptr),
      collector_type_(kCollectorTypeNone),
      foreground_collector_type_(foreground_collector_type),
      background_collector_type_(background_collector_type),
      desired_collector_type_(foreground_collector_type_),
      pending_task_lock_(nullptr),
      parallel_gc_threads_(parallel_gc_threads),
      conc_gc_threads_(conc_gc_threads),
      low_memory_mode_(low_memory_mode),
      long_pause_log_threshold_(long_pause_log_threshold),
      long_gc_log_threshold_(long_gc_log_threshold),
      ignore_max_footprint_(ignore_max_footprint),
      zygote_creation_lock_("zygote creation lock", kZygoteCreationLock),
      zygote_space_(nullptr),
      large_object_threshold_(large_object_threshold),
      collector_type_running_(kCollectorTypeNone),
      last_gc_type_(collector::kGcTypeNone),
      next_gc_type_(collector::kGcTypePartial),
      capacity_(capacity),
      growth_limit_(growth_limit),
      max_allowed_footprint_(initial_size),
      native_footprint_gc_watermark_(initial_size),
      native_need_to_run_finalization_(false),
      // Initially assume we perceive jank in case the process state is never updated.
      process_state_(kProcessStateJankPerceptible),
      concurrent_start_bytes_(std::numeric_limits<size_t>::max()),
      total_bytes_freed_ever_(0),
      total_objects_freed_ever_(0),
      num_bytes_allocated_(0),
      native_bytes_allocated_(0),
      num_bytes_freed_revoke_(0),
      verify_missing_card_marks_(false),
      verify_system_weaks_(false),
      verify_pre_gc_heap_(verify_pre_gc_heap),
      verify_pre_sweeping_heap_(verify_pre_sweeping_heap),
      verify_post_gc_heap_(verify_post_gc_heap),
      verify_mod_union_table_(false),
      verify_pre_gc_rosalloc_(verify_pre_gc_rosalloc),
      verify_pre_sweeping_rosalloc_(verify_pre_sweeping_rosalloc),
      verify_post_gc_rosalloc_(verify_post_gc_rosalloc),
      gc_stress_mode_(gc_stress_mode),
      /* For GC a lot mode, we limit the allocations stacks to be kGcAlotInterval allocations. This
       * causes a lot of GC since we do a GC for alloc whenever the stack is full. When heap
       * verification is enabled, we limit the size of allocation stacks to speed up their
       * searching.
       */
      max_allocation_stack_size_(kGCALotMode ? kGcAlotAllocationStackSize
          : (kVerifyObjectSupport > kVerifyObjectModeFast) ? kVerifyObjectAllocationStackSize :
          kDefaultAllocationStackSize),
      current_allocator_(kAllocatorTypeDlMalloc),
      current_non_moving_allocator_(kAllocatorTypeNonMoving),
      bump_pointer_space_(nullptr),
      temp_space_(nullptr),
      region_space_(nullptr),
      min_free_(min_free),
      max_free_(max_free),
      target_utilization_(target_utilization),
      foreground_heap_growth_multiplier_(foreground_heap_growth_multiplier),
      total_wait_time_(0),
      total_allocation_time_(0),
      verify_object_mode_(kVerifyObjectModeDisabled),
      disable_moving_gc_count_(0),
      running_on_valgrind_(Runtime::Current()->RunningOnValgrind()),
      use_tlab_(use_tlab),
      main_space_backup_(nullptr),
      min_interval_homogeneous_space_compaction_by_oom_(
          min_interval_homogeneous_space_compaction_by_oom),
      last_time_homogeneous_space_compaction_by_oom_(NanoTime()),
      pending_collector_transition_(nullptr),
      pending_heap_trim_(nullptr),
      use_homogeneous_space_compaction_for_oom_(use_homogeneous_space_compaction_for_oom),
      running_collection_is_blocking_(false),
      blocking_gc_count_(0U),
      blocking_gc_time_(0U),
      last_update_time_gc_count_rate_histograms_(  // Round down by the window duration.
          (NanoTime() / kGcCountRateHistogramWindowDuration) * kGcCountRateHistogramWindowDuration),
      gc_count_last_window_(0U),
      blocking_gc_count_last_window_(0U),
      gc_count_rate_histogram_("gc count rate histogram", 1U, kGcCountRateMaxBucketCount),
      blocking_gc_count_rate_histogram_("blocking gc count rate histogram", 1U,
                                        kGcCountRateMaxBucketCount),
      backtrace_lock_(nullptr),
      seen_backtrace_count_(0u),
      unique_backtrace_count_(0u) {
  if (VLOG_IS_ON(heap) || VLOG_IS_ON(startup)) {
    LOG(INFO) << "Heap() entering";
  }
  Runtime* const runtime = Runtime::Current();
  // If we aren't the zygote, switch to the default non zygote allocator. This may update the
  // entrypoints.
  const bool is_zygote = runtime->IsZygote();
  if (!is_zygote) {
    // Background compaction is currently not supported for command line runs.
    if (background_collector_type_ != foreground_collector_type_) {
      VLOG(heap) << "Disabling background compaction for non zygote";
      background_collector_type_ = foreground_collector_type_;
    }
  }
  ChangeCollector(desired_collector_type_);
  live_bitmap_.reset(new accounting::HeapBitmap(this));
  mark_bitmap_.reset(new accounting::HeapBitmap(this));
  // Requested begin for the alloc space, to follow the mapped image and oat files
  uint8_t* requested_alloc_space_begin = nullptr;
  if (foreground_collector_type_ == kCollectorTypeCC) {
    // Need to use a low address so that we can allocate a contiguous
    // 2 * Xmx space when there's no image (dex2oat for target).
    CHECK_GE(300 * MB, non_moving_space_capacity);
    requested_alloc_space_begin = reinterpret_cast<uint8_t*>(300 * MB) - non_moving_space_capacity;
  }
  if (!image_file_name.empty()) {
    ATRACE_BEGIN("ImageSpace::Create");
    std::string error_msg;
    auto* image_space = space::ImageSpace::Create(image_file_name.c_str(), image_instruction_set,
                                                  &error_msg);
    ATRACE_END();
    if (image_space != nullptr) {
      AddSpace(image_space);
      // Oat files referenced by image files immediately follow them in memory, ensure alloc space
      // isn't going to get in the middle
      uint8_t* oat_file_end_addr = image_space->GetImageHeader().GetOatFileEnd();
      CHECK_GT(oat_file_end_addr, image_space->End());
      requested_alloc_space_begin = AlignUp(oat_file_end_addr, kPageSize);
    } else {
      LOG(ERROR) << "Could not create image space with image file '" << image_file_name << "'. "
                   << "Attempting to fall back to imageless running. Error was: " << error_msg;
    }
  }
  /*
  requested_alloc_space_begin ->     +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-
                                     +-  nonmoving space (non_moving_space_capacity)+-
                                     +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-
                                     +-????????????????????????????????????????????+-
                                     +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-
                                     +-main alloc space / bump space 1 (capacity_) +-
                                     +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-
                                     +-????????????????????????????????????????????+-
                                     +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-
                                     +-main alloc space2 / bump space 2 (capacity_)+-
                                     +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-
  */
  // We don't have hspace compaction enabled with GSS or CC.
  if (foreground_collector_type_ == kCollectorTypeGSS ||
      foreground_collector_type_ == kCollectorTypeCC) {
    use_homogeneous_space_compaction_for_oom_ = false;
  }
  bool support_homogeneous_space_compaction =
      background_collector_type_ == gc::kCollectorTypeHomogeneousSpaceCompact ||
      use_homogeneous_space_compaction_for_oom_;
  // We may use the same space the main space for the non moving space if we don't need to compact
  // from the main space.
  // This is not the case if we support homogeneous compaction or have a moving background
  // collector type.
  bool separate_non_moving_space = is_zygote ||
      support_homogeneous_space_compaction || IsMovingGc(foreground_collector_type_) ||
      IsMovingGc(background_collector_type_);
  if (foreground_collector_type == kCollectorTypeGSS) {
    separate_non_moving_space = false;
  }
  std::unique_ptr<MemMap> main_mem_map_1;
  std::unique_ptr<MemMap> main_mem_map_2;
  uint8_t* request_begin = requested_alloc_space_begin;
  if (request_begin != nullptr && separate_non_moving_space) {
    request_begin += non_moving_space_capacity;
  }
  std::string error_str;
  std::unique_ptr<MemMap> non_moving_space_mem_map;
  ATRACE_BEGIN("Create heap maps");
  if (separate_non_moving_space) {
    // If we are the zygote, the non moving space becomes the zygote space when we run
    // PreZygoteFork the first time. In this case, call the map "zygote space" since we can't
    // rename the mem map later.
    const char* space_name = is_zygote ? kZygoteSpaceName: kNonMovingSpaceName;
    // Reserve the non moving mem map before the other two since it needs to be at a specific
    // address.
    non_moving_space_mem_map.reset(
        MemMap::MapAnonymous(space_name, requested_alloc_space_begin,
                             non_moving_space_capacity, PROT_READ | PROT_WRITE, true, false,
                             &error_str));
    CHECK(non_moving_space_mem_map != nullptr) << error_str;
    // Try to reserve virtual memory at a lower address if we have a separate non moving space.
    request_begin = reinterpret_cast<uint8_t*>(300 * MB);
  }
  // Attempt to create 2 mem maps at or after the requested begin.
  if (foreground_collector_type_ != kCollectorTypeCC) {
    if (separate_non_moving_space) {
      main_mem_map_1.reset(MapAnonymousPreferredAddress(kMemMapSpaceName[0], request_begin,
                                                        capacity_, &error_str));
    } else {
      // If no separate non-moving space, the main space must come
      // right after the image space to avoid a gap.
      main_mem_map_1.reset(MemMap::MapAnonymous(kMemMapSpaceName[0], request_begin, capacity_,
                                                PROT_READ | PROT_WRITE, true, false,
                                                &error_str));
    }
    CHECK(main_mem_map_1.get() != nullptr) << error_str;
  }
  if (support_homogeneous_space_compaction ||
      background_collector_type_ == kCollectorTypeSS ||
      foreground_collector_type_ == kCollectorTypeSS) {
    main_mem_map_2.reset(MapAnonymousPreferredAddress(kMemMapSpaceName[1], main_mem_map_1->End(),
                                                      capacity_, &error_str));
    CHECK(main_mem_map_2.get() != nullptr) << error_str;
  }
  ATRACE_END();
  ATRACE_BEGIN("Create spaces");
  // Create the non moving space first so that bitmaps don't take up the address range.
  if (separate_non_moving_space) {
    // Non moving space is always dlmalloc since we currently don't have support for multiple
    // active rosalloc spaces.
    const size_t size = non_moving_space_mem_map->Size();
    non_moving_space_ = space::DlMallocSpace::CreateFromMemMap(
        non_moving_space_mem_map.release(), "zygote / non moving space", kDefaultStartingSize,
        initial_size, size, size, false);
    non_moving_space_->SetFootprintLimit(non_moving_space_->Capacity());
    CHECK(non_moving_space_ != nullptr) << "Failed creating non moving space "
        << requested_alloc_space_begin;
    AddSpace(non_moving_space_);
  }
  // Create other spaces based on whether or not we have a moving GC.
  if (foreground_collector_type_ == kCollectorTypeCC) {
    region_space_ = space::RegionSpace::Create("Region space", capacity_ * 2, request_begin);
    AddSpace(region_space_);
  } else if (IsMovingGc(foreground_collector_type_) &&
      foreground_collector_type_ != kCollectorTypeGSS) {
    // Create bump pointer spaces.
    // We only to create the bump pointer if the foreground collector is a compacting GC.
    // TODO: Place bump-pointer spaces somewhere to minimize size of card table.
    bump_pointer_space_ = space::BumpPointerSpace::CreateFromMemMap("Bump pointer space 1",
                                                                    main_mem_map_1.release());
    CHECK(bump_pointer_space_ != nullptr) << "Failed to create bump pointer space";
    AddSpace(bump_pointer_space_);
    temp_space_ = space::BumpPointerSpace::CreateFromMemMap("Bump pointer space 2",
                                                            main_mem_map_2.release());
    CHECK(temp_space_ != nullptr) << "Failed to create bump pointer space";
    AddSpace(temp_space_);
    CHECK(separate_non_moving_space);
  } else {
    CreateMainMallocSpace(main_mem_map_1.release(), initial_size, growth_limit_, capacity_);
    CHECK(main_space_ != nullptr);
    AddSpace(main_space_);
    if (!separate_non_moving_space) {
      non_moving_space_ = main_space_;
      CHECK(!non_moving_space_->CanMoveObjects());
    }
    if (foreground_collector_type_ == kCollectorTypeGSS) {
      CHECK_EQ(foreground_collector_type_, background_collector_type_);
      // Create bump pointer spaces instead of a backup space.
      main_mem_map_2.release();
      bump_pointer_space_ = space::BumpPointerSpace::Create("Bump pointer space 1",
                                                            kGSSBumpPointerSpaceCapacity, nullptr);
      CHECK(bump_pointer_space_ != nullptr);
      AddSpace(bump_pointer_space_);
      temp_space_ = space::BumpPointerSpace::Create("Bump pointer space 2",
                                                    kGSSBumpPointerSpaceCapacity, nullptr);
      CHECK(temp_space_ != nullptr);
      AddSpace(temp_space_);
    } else if (main_mem_map_2.get() != nullptr) {
      const char* name = kUseRosAlloc ? kRosAllocSpaceName[1] : kDlMallocSpaceName[1];
      main_space_backup_.reset(CreateMallocSpaceFromMemMap(main_mem_map_2.release(), initial_size,
                                                           growth_limit_, capacity_, name, true));
      CHECK(main_space_backup_.get() != nullptr);
      // Add the space so its accounted for in the heap_begin and heap_end.
      AddSpace(main_space_backup_.get());
    }
  }
  CHECK(non_moving_space_ != nullptr);
  CHECK(!non_moving_space_->CanMoveObjects());
  // Allocate the large object space.
  if (large_object_space_type == space::LargeObjectSpaceType::kFreeList) {
    large_object_space_ = space::FreeListSpace::Create("free list large object space", nullptr,
                                                       capacity_);
    CHECK(large_object_space_ != nullptr) << "Failed to create large object space";
  } else if (large_object_space_type == space::LargeObjectSpaceType::kMap) {
    large_object_space_ = space::LargeObjectMapSpace::Create("mem map large object space");
    CHECK(large_object_space_ != nullptr) << "Failed to create large object space";
  } else {
    // Disable the large object space by making the cutoff excessively large.
    large_object_threshold_ = std::numeric_limits<size_t>::max();
    large_object_space_ = nullptr;
  }
  if (large_object_space_ != nullptr) {
    AddSpace(large_object_space_);
  }
  // Compute heap capacity. Continuous spaces are sorted in order of Begin().
  CHECK(!continuous_spaces_.empty());
  // Relies on the spaces being sorted.
  uint8_t* heap_begin = continuous_spaces_.front()->Begin();
  uint8_t* heap_end = continuous_spaces_.back()->Limit();
  size_t heap_capacity = heap_end - heap_begin;
  // Remove the main backup space since it slows down the GC to have unused extra spaces.
  // TODO: Avoid needing to do this.
  if (main_space_backup_.get() != nullptr) {
    RemoveSpace(main_space_backup_.get());
  }
  ATRACE_END();
  // Allocate the card table.
  ATRACE_BEGIN("Create card table");
  card_table_.reset(accounting::CardTable::Create(heap_begin, heap_capacity));
  CHECK(card_table_.get() != nullptr) << "Failed to create card table";
  ATRACE_END();
  if (foreground_collector_type_ == kCollectorTypeCC && kUseTableLookupReadBarrier) {
    rb_table_.reset(new accounting::ReadBarrierTable());
    DCHECK(rb_table_->IsAllCleared());
  }
  if (GetImageSpace() != nullptr) {
    // Don't add the image mod union table if we are running without an image, this can crash if
    // we use the CardCache implementation.
    accounting::ModUnionTable* mod_union_table = new accounting::ModUnionTableToZygoteAllocspace(
        "Image mod-union table", this, GetImageSpace());
    CHECK(mod_union_table != nullptr) << "Failed to create image mod-union table";
    AddModUnionTable(mod_union_table);
  }
  if (collector::SemiSpace::kUseRememberedSet && non_moving_space_ != main_space_) {
    accounting::RememberedSet* non_moving_space_rem_set =
        new accounting::RememberedSet("Non-moving space remembered set", this, non_moving_space_);
    CHECK(non_moving_space_rem_set != nullptr) << "Failed to create non-moving space remembered set";
    AddRememberedSet(non_moving_space_rem_set);
  }
  // TODO: Count objects in the image space here?
  num_bytes_allocated_.StoreRelaxed(0);
  mark_stack_.reset(accounting::ObjectStack::Create("mark stack", kDefaultMarkStackSize,
                                                    kDefaultMarkStackSize));
  const size_t alloc_stack_capacity = max_allocation_stack_size_ + kAllocationStackReserveSize;
  allocation_stack_.reset(accounting::ObjectStack::Create(
      "allocation stack", max_allocation_stack_size_, alloc_stack_capacity));
  live_stack_.reset(accounting::ObjectStack::Create(
      "live stack", max_allocation_stack_size_, alloc_stack_capacity));
  // It's still too early to take a lock because there are no threads yet, but we can create locks
  // now. We don't create it earlier to make it clear that you can't use locks during heap
  // initialization.
  gc_complete_lock_ = new Mutex("GC complete lock");
  gc_complete_cond_.reset(new ConditionVariable("GC complete condition variable",
                                                *gc_complete_lock_));
  task_processor_.reset(new TaskProcessor());
  pending_task_lock_ = new Mutex("Pending task lock");
  if (ignore_max_footprint_) {
    SetIdealFootprint(std::numeric_limits<size_t>::max());
    concurrent_start_bytes_ = std::numeric_limits<size_t>::max();
  }
  CHECK_NE(max_allowed_footprint_, 0U);
  // Create our garbage collectors.
  for (size_t i = 0; i < 2; ++i) {
    const bool concurrent = i != 0;
    if ((MayUseCollector(kCollectorTypeCMS) && concurrent) ||
        (MayUseCollector(kCollectorTypeMS) && !concurrent)) {
      garbage_collectors_.push_back(new collector::MarkSweep(this, concurrent));
      garbage_collectors_.push_back(new collector::PartialMarkSweep(this, concurrent));
      garbage_collectors_.push_back(new collector::StickyMarkSweep(this, concurrent));
    }
  }
  if (kMovingCollector) {
    if (MayUseCollector(kCollectorTypeSS) || MayUseCollector(kCollectorTypeGSS) ||
        MayUseCollector(kCollectorTypeHomogeneousSpaceCompact) ||
        use_homogeneous_space_compaction_for_oom_) {
      // TODO: Clean this up.
      const bool generational = foreground_collector_type_ == kCollectorTypeGSS;
      semi_space_collector_ = new collector::SemiSpace(this, generational,
                                                       generational ? "generational" : "");
      garbage_collectors_.push_back(semi_space_collector_);
    }
    if (MayUseCollector(kCollectorTypeCC)) {
      concurrent_copying_collector_ = new collector::ConcurrentCopying(this);
      garbage_collectors_.push_back(concurrent_copying_collector_);
    }
    if (MayUseCollector(kCollectorTypeMC)) {
      mark_compact_collector_ = new collector::MarkCompact(this);
      garbage_collectors_.push_back(mark_compact_collector_);
    }
  }
  if (GetImageSpace() != nullptr && non_moving_space_ != nullptr &&
      (is_zygote || separate_non_moving_space || foreground_collector_type_ == kCollectorTypeGSS)) {
    // Check that there's no gap between the image space and the non moving space so that the
    // immune region won't break (eg. due to a large object allocated in the gap). This is only
    // required when we're the zygote or using GSS.
    bool no_gap = MemMap::CheckNoGaps(GetImageSpace()->GetMemMap(),
                                      non_moving_space_->GetMemMap());
    if (!no_gap) {
      PrintFileToLog("/proc/self/maps", LogSeverity::ERROR);
      MemMap::DumpMaps(LOG(ERROR), true);
      LOG(FATAL) << "There's a gap between the image space and the non-moving space";
    }
  }
  instrumentation::Instrumentation* const instrumentation = runtime->GetInstrumentation();
  if (gc_stress_mode_) {
    backtrace_lock_ = new Mutex("GC complete lock");
  }
  if (running_on_valgrind_ || gc_stress_mode_) {
    instrumentation->InstrumentQuickAllocEntryPoints();
  }
  if (VLOG_IS_ON(heap) || VLOG_IS_ON(startup)) {
    LOG(INFO) << "Heap() exiting";
  }
}

MemMap* Heap::MapAnonymousPreferredAddress(const char* name, uint8_t* request_begin,
                                           size_t capacity, std::string* out_error_str) {
  while (true) {
    MemMap* map = MemMap::MapAnonymous(name, request_begin, capacity,
                                       PROT_READ | PROT_WRITE, true, false, out_error_str);
    if (map != nullptr || request_begin == nullptr) {
      return map;
    }
    // Retry a  second time with no specified request begin.
    request_begin = nullptr;
  }
}

bool Heap::MayUseCollector(CollectorType type) const {
  return foreground_collector_type_ == type || background_collector_type_ == type;
}

space::MallocSpace* Heap::CreateMallocSpaceFromMemMap(MemMap* mem_map, size_t initial_size,
                                                      size_t growth_limit, size_t capacity,
                                                      const char* name, bool can_move_objects) {
  space::MallocSpace* malloc_space = nullptr;
  if (kUseRosAlloc) {
    // Create rosalloc space.
    malloc_space = space::RosAllocSpace::CreateFromMemMap(mem_map, name, kDefaultStartingSize,
                                                          initial_size, growth_limit, capacity,
                                                          low_memory_mode_, can_move_objects);
  } else {
    malloc_space = space::DlMallocSpace::CreateFromMemMap(mem_map, name, kDefaultStartingSize,
                                                          initial_size, growth_limit, capacity,
                                                          can_move_objects);
  }
  if (collector::SemiSpace::kUseRememberedSet) {
    accounting::RememberedSet* rem_set  =
        new accounting::RememberedSet(std::string(name) + " remembered set", this, malloc_space);
    CHECK(rem_set != nullptr) << "Failed to create main space remembered set";
    AddRememberedSet(rem_set);
  }
  CHECK(malloc_space != nullptr) << "Failed to create " << name;
  malloc_space->SetFootprintLimit(malloc_space->Capacity());
  return malloc_space;
}

void Heap::CreateMainMallocSpace(MemMap* mem_map, size_t initial_size, size_t growth_limit,
                                 size_t capacity) {
  // Is background compaction is enabled?
  bool can_move_objects = IsMovingGc(background_collector_type_) !=
      IsMovingGc(foreground_collector_type_) || use_homogeneous_space_compaction_for_oom_;
  // If we are the zygote and don't yet have a zygote space, it means that the zygote fork will
  // happen in the future. If this happens and we have kCompactZygote enabled we wish to compact
  // from the main space to the zygote space. If background compaction is enabled, always pass in
  // that we can move objets.
  if (kCompactZygote && Runtime::Current()->IsZygote() && !can_move_objects) {
    // After the zygote we want this to be false if we don't have background compaction enabled so
    // that getting primitive array elements is faster.
    // We never have homogeneous compaction with GSS and don't need a space with movable objects.
    can_move_objects = !HasZygoteSpace() && foreground_collector_type_ != kCollectorTypeGSS;
  }
  if (collector::SemiSpace::kUseRememberedSet && main_space_ != nullptr) {
    RemoveRememberedSet(main_space_);
  }
  const char* name = kUseRosAlloc ? kRosAllocSpaceName[0] : kDlMallocSpaceName[0];
  main_space_ = CreateMallocSpaceFromMemMap(mem_map, initial_size, growth_limit, capacity, name,
                                            can_move_objects);
  SetSpaceAsDefault(main_space_);
  VLOG(heap) << "Created main space " << main_space_;
}

void Heap::ChangeAllocator(AllocatorType allocator) {
  if (current_allocator_ != allocator) {
    // These two allocators are only used internally and don't have any entrypoints.
    CHECK_NE(allocator, kAllocatorTypeLOS);
    CHECK_NE(allocator, kAllocatorTypeNonMoving);
    current_allocator_ = allocator;
    MutexLock mu(nullptr, *Locks::runtime_shutdown_lock_);
    SetQuickAllocEntryPointsAllocator(current_allocator_);
    Runtime::Current()->GetInstrumentation()->ResetQuickAllocEntryPoints();
  }
}

void Heap::DisableMovingGc() {
  if (IsMovingGc(foreground_collector_type_)) {
    foreground_collector_type_ = kCollectorTypeCMS;
  }
  if (IsMovingGc(background_collector_type_)) {
    background_collector_type_ = foreground_collector_type_;
  }
  TransitionCollector(foreground_collector_type_);
  ThreadList* tl = Runtime::Current()->GetThreadList();
  Thread* self = Thread::Current();
  ScopedThreadStateChange tsc(self, kSuspended);
  tl->SuspendAll(__FUNCTION__);
  // Something may have caused the transition to fail.
  if (!IsMovingGc(collector_type_) && non_moving_space_ != main_space_) {
    CHECK(main_space_ != nullptr);
    // The allocation stack may have non movable objects in it. We need to flush it since the GC
    // can't only handle marking allocation stack objects of one non moving space and one main
    // space.
    {
      WriterMutexLock mu(self, *Locks::heap_bitmap_lock_);
      FlushAllocStack();
    }
    main_space_->DisableMovingObjects();
    non_moving_space_ = main_space_;
    CHECK(!non_moving_space_->CanMoveObjects());
  }
  tl->ResumeAll();
}

std::string Heap::SafeGetClassDescriptor(mirror::Class* klass) {
  if (!IsValidContinuousSpaceObjectAddress(klass)) {
    return StringPrintf("<non heap address klass %p>", klass);
  }
  mirror::Class* component_type = klass->GetComponentType<kVerifyNone>();
  if (IsValidContinuousSpaceObjectAddress(component_type) && klass->IsArrayClass<kVerifyNone>()) {
    std::string result("[");
    result += SafeGetClassDescriptor(component_type);
    return result;
  } else if (UNLIKELY(klass->IsPrimitive<kVerifyNone>())) {
    return Primitive::Descriptor(klass->GetPrimitiveType<kVerifyNone>());
  } else if (UNLIKELY(klass->IsProxyClass<kVerifyNone>())) {
    return Runtime::Current()->GetClassLinker()->GetDescriptorForProxy(klass);
  } else {
    mirror::DexCache* dex_cache = klass->GetDexCache<kVerifyNone>();
    if (!IsValidContinuousSpaceObjectAddress(dex_cache)) {
      return StringPrintf("<non heap address dex_cache %p>", dex_cache);
    }
    const DexFile* dex_file = dex_cache->GetDexFile();
    uint16_t class_def_idx = klass->GetDexClassDefIndex();
    if (class_def_idx == DexFile::kDexNoIndex16) {
      return "<class def not found>";
    }
    const DexFile::ClassDef& class_def = dex_file->GetClassDef(class_def_idx);
    const DexFile::TypeId& type_id = dex_file->GetTypeId(class_def.class_idx_);
    return dex_file->GetTypeDescriptor(type_id);
  }
}

std::string Heap::SafePrettyTypeOf(mirror::Object* obj) {
  if (obj == nullptr) {
    return "null";
  }
  mirror::Class* klass = obj->GetClass<kVerifyNone>();
  if (klass == nullptr) {
    return "(class=null)";
  }
  std::string result(SafeGetClassDescriptor(klass));
  if (obj->IsClass()) {
    result += "<" + SafeGetClassDescriptor(obj->AsClass<kVerifyNone>()) + ">";
  }
  return result;
}

void Heap::DumpObject(std::ostream& stream, mirror::Object* obj) {
  if (obj == nullptr) {
    stream << "(obj=null)";
    return;
  }
  if (IsAligned<kObjectAlignment>(obj)) {
    space::Space* space = nullptr;
    // Don't use find space since it only finds spaces which actually contain objects instead of
    // spaces which may contain objects (e.g. cleared bump pointer spaces).
    for (const auto& cur_space : continuous_spaces_) {
      if (cur_space->HasAddress(obj)) {
        space = cur_space;
        break;
      }
    }
    // Unprotect all the spaces.
    for (const auto& con_space : continuous_spaces_) {
      mprotect(con_space->Begin(), con_space->Capacity(), PROT_READ | PROT_WRITE);
    }
    stream << "Object " << obj;
    if (space != nullptr) {
      stream << " in space " << *space;
    }
    mirror::Class* klass = obj->GetClass<kVerifyNone>();
    stream << "\nclass=" << klass;
    if (klass != nullptr) {
      stream << " type= " << SafePrettyTypeOf(obj);
    }
    // Re-protect the address we faulted on.
    mprotect(AlignDown(obj, kPageSize), kPageSize, PROT_NONE);
  }
}

bool Heap::IsCompilingBoot() const {
  if (!Runtime::Current()->IsAotCompiler()) {
    return false;
  }
  for (const auto& space : continuous_spaces_) {
    if (space->IsImageSpace() || space->IsZygoteSpace()) {
      return false;
    }
  }
  return true;
}

bool Heap::HasImageSpace() const {
  for (const auto& space : continuous_spaces_) {
    if (space->IsImageSpace()) {
      return true;
    }
  }
  return false;
}

void Heap::IncrementDisableMovingGC(Thread* self) {
  // Need to do this holding the lock to prevent races where the GC is about to run / running when
  // we attempt to disable it.
  ScopedThreadStateChange tsc(self, kWaitingForGcToComplete);
  MutexLock mu(self, *gc_complete_lock_);
  ++disable_moving_gc_count_;
  if (IsMovingGc(collector_type_running_)) {
    WaitForGcToCompleteLocked(kGcCauseDisableMovingGc, self);
  }
}

void Heap::DecrementDisableMovingGC(Thread* self) {
  MutexLock mu(self, *gc_complete_lock_);
  CHECK_GT(disable_moving_gc_count_, 0U);
  --disable_moving_gc_count_;
}

void Heap::UpdateProcessState(ProcessState process_state) {
  if (process_state_ != process_state) {
    process_state_ = process_state;
    for (size_t i = 1; i <= kCollectorTransitionStressIterations; ++i) {
      // Start at index 1 to avoid "is always false" warning.
      // Have iteration 1 always transition the collector.
      TransitionCollector((((i & 1) == 1) == (process_state_ == kProcessStateJankPerceptible))
                          ? foreground_collector_type_ : background_collector_type_);
      usleep(kCollectorTransitionStressWait);
    }
    if (process_state_ == kProcessStateJankPerceptible) {
      // Transition back to foreground right away to prevent jank.
      RequestCollectorTransition(foreground_collector_type_, 0);
    } else {
      // Don't delay for debug builds since we may want to stress test the GC.
      // If background_collector_type_ is kCollectorTypeHomogeneousSpaceCompact then we have
      // special handling which does a homogenous space compaction once but then doesn't transition
      // the collector.
      RequestCollectorTransition(background_collector_type_,
                                 kIsDebugBuild ? 0 : kCollectorTransitionWait);
    }
  }
}

void Heap::CreateThreadPool() {
  const size_t num_threads = std::max(parallel_gc_threads_, conc_gc_threads_);
  if (num_threads != 0) {
    thread_pool_.reset(new ThreadPool("Heap thread pool", num_threads));
  }
}

// Visit objects when threads aren't suspended. If concurrent moving
// GC, disable moving GC and suspend threads and then visit objects.
void Heap::VisitObjects(ObjectCallback callback, void* arg) {
  Thread* self = Thread::Current();
  Locks::mutator_lock_->AssertSharedHeld(self);
  DCHECK(!Locks::mutator_lock_->IsExclusiveHeld(self)) << "Call VisitObjectsPaused() instead";
  if (IsGcConcurrentAndMoving()) {
    // Concurrent moving GC. Just suspending threads isn't sufficient
    // because a collection isn't one big pause and we could suspend
    // threads in the middle (between phases) of a concurrent moving
    // collection where it's not easily known which objects are alive
    // (both the region space and the non-moving space) or which
    // copies of objects to visit, and the to-space invariant could be
    // easily broken. Visit objects while GC isn't running by using
    // IncrementDisableMovingGC() and threads are suspended.
    IncrementDisableMovingGC(self);
    self->TransitionFromRunnableToSuspended(kWaitingForVisitObjects);
    ThreadList* tl = Runtime::Current()->GetThreadList();
    tl->SuspendAll(__FUNCTION__);
    VisitObjectsInternalRegionSpace(callback, arg);
    VisitObjectsInternal(callback, arg);
    tl->ResumeAll();
    self->TransitionFromSuspendedToRunnable();
    DecrementDisableMovingGC(self);
  } else {
    // GCs can move objects, so don't allow this.
    ScopedAssertNoThreadSuspension ants(self, "Visiting objects");
    DCHECK(region_space_ == nullptr);
    VisitObjectsInternal(callback, arg);
  }
}

// Visit objects when threads are already suspended.
void Heap::VisitObjectsPaused(ObjectCallback callback, void* arg) {
  Thread* self = Thread::Current();
  Locks::mutator_lock_->AssertExclusiveHeld(self);
  VisitObjectsInternalRegionSpace(callback, arg);
  VisitObjectsInternal(callback, arg);
}

// Visit objects in the region spaces.
void Heap::VisitObjectsInternalRegionSpace(ObjectCallback callback, void* arg) {
  Thread* self = Thread::Current();
  Locks::mutator_lock_->AssertExclusiveHeld(self);
  if (region_space_ != nullptr) {
    DCHECK(IsGcConcurrentAndMoving());
    if (!zygote_creation_lock_.IsExclusiveHeld(self)) {
      // Exclude the pre-zygote fork time where the semi-space collector
      // calls VerifyHeapReferences() as part of the zygote compaction
      // which then would call here without the moving GC disabled,
      // which is fine.
      DCHECK(IsMovingGCDisabled(self));
    }
    region_space_->Walk(callback, arg);
  }
}

// Visit objects in the other spaces.
void Heap::VisitObjectsInternal(ObjectCallback callback, void* arg) {
  if (bump_pointer_space_ != nullptr) {
    // Visit objects in bump pointer space.
    bump_pointer_space_->Walk(callback, arg);
  }
  // TODO: Switch to standard begin and end to use ranged a based loop.
  for (auto* it = allocation_stack_->Begin(), *end = allocation_stack_->End(); it < end; ++it) {
    mirror::Object* const obj = it->AsMirrorPtr();
    if (obj != nullptr && obj->GetClass() != nullptr) {
      // Avoid the race condition caused by the object not yet being written into the allocation
      // stack or the class not yet being written in the object. Or, if
      // kUseThreadLocalAllocationStack, there can be nulls on the allocation stack.
      callback(obj, arg);
    }
  }
  {
    ReaderMutexLock mu(Thread::Current(), *Locks::heap_bitmap_lock_);
    GetLiveBitmap()->Walk(callback, arg);
  }
}

void Heap::MarkAllocStackAsLive(accounting::ObjectStack* stack) {
  space::ContinuousSpace* space1 = main_space_ != nullptr ? main_space_ : non_moving_space_;
  space::ContinuousSpace* space2 = non_moving_space_;
  // TODO: Generalize this to n bitmaps?
  CHECK(space1 != nullptr);
  CHECK(space2 != nullptr);
  MarkAllocStack(space1->GetLiveBitmap(), space2->GetLiveBitmap(),
                 (large_object_space_ != nullptr ? large_object_space_->GetLiveBitmap() : nullptr),
                 stack);
}

void Heap::DeleteThreadPool() {
  thread_pool_.reset(nullptr);
}

void Heap::AddSpace(space::Space* space) {
  CHECK(space != nullptr);
  WriterMutexLock mu(Thread::Current(), *Locks::heap_bitmap_lock_);
  if (space->IsContinuousSpace()) {
    DCHECK(!space->IsDiscontinuousSpace());
    space::ContinuousSpace* continuous_space = space->AsContinuousSpace();
    // Continuous spaces don't necessarily have bitmaps.
    accounting::ContinuousSpaceBitmap* live_bitmap = continuous_space->GetLiveBitmap();
    accounting::ContinuousSpaceBitmap* mark_bitmap = continuous_space->GetMarkBitmap();
    if (live_bitmap != nullptr) {
      CHECK(mark_bitmap != nullptr);
      live_bitmap_->AddContinuousSpaceBitmap(live_bitmap);
      mark_bitmap_->AddContinuousSpaceBitmap(mark_bitmap);
    }
    continuous_spaces_.push_back(continuous_space);
    // Ensure that spaces remain sorted in increasing order of start address.
    std::sort(continuous_spaces_.begin(), continuous_spaces_.end(),
              [](const space::ContinuousSpace* a, const space::ContinuousSpace* b) {
      return a->Begin() < b->Begin();
    });
  } else {
    CHECK(space->IsDiscontinuousSpace());
    space::DiscontinuousSpace* discontinuous_space = space->AsDiscontinuousSpace();
    live_bitmap_->AddLargeObjectBitmap(discontinuous_space->GetLiveBitmap());
    mark_bitmap_->AddLargeObjectBitmap(discontinuous_space->GetMarkBitmap());
    discontinuous_spaces_.push_back(discontinuous_space);
  }
  if (space->IsAllocSpace()) {
    alloc_spaces_.push_back(space->AsAllocSpace());
  }
}

void Heap::SetSpaceAsDefault(space::ContinuousSpace* continuous_space) {
  WriterMutexLock mu(Thread::Current(), *Locks::heap_bitmap_lock_);
  if (continuous_space->IsDlMallocSpace()) {
    dlmalloc_space_ = continuous_space->AsDlMallocSpace();
  } else if (continuous_space->IsRosAllocSpace()) {
    rosalloc_space_ = continuous_space->AsRosAllocSpace();
  }
}

void Heap::RemoveSpace(space::Space* space) {
  DCHECK(space != nullptr);
  WriterMutexLock mu(Thread::Current(), *Locks::heap_bitmap_lock_);
  if (space->IsContinuousSpace()) {
    DCHECK(!space->IsDiscontinuousSpace());
    space::ContinuousSpace* continuous_space = space->AsContinuousSpace();
    // Continuous spaces don't necessarily have bitmaps.
    accounting::ContinuousSpaceBitmap* live_bitmap = continuous_space->GetLiveBitmap();
    accounting::ContinuousSpaceBitmap* mark_bitmap = continuous_space->GetMarkBitmap();
    if (live_bitmap != nullptr) {
      DCHECK(mark_bitmap != nullptr);
      live_bitmap_->RemoveContinuousSpaceBitmap(live_bitmap);
      mark_bitmap_->RemoveContinuousSpaceBitmap(mark_bitmap);
    }
    auto it = std::find(continuous_spaces_.begin(), continuous_spaces_.end(), continuous_space);
    DCHECK(it != continuous_spaces_.end());
    continuous_spaces_.erase(it);
  } else {
    DCHECK(space->IsDiscontinuousSpace());
    space::DiscontinuousSpace* discontinuous_space = space->AsDiscontinuousSpace();
    live_bitmap_->RemoveLargeObjectBitmap(discontinuous_space->GetLiveBitmap());
    mark_bitmap_->RemoveLargeObjectBitmap(discontinuous_space->GetMarkBitmap());
    auto it = std::find(discontinuous_spaces_.begin(), discontinuous_spaces_.end(),
                        discontinuous_space);
    DCHECK(it != discontinuous_spaces_.end());
    discontinuous_spaces_.erase(it);
  }
  if (space->IsAllocSpace()) {
    auto it = std::find(alloc_spaces_.begin(), alloc_spaces_.end(), space->AsAllocSpace());
    DCHECK(it != alloc_spaces_.end());
    alloc_spaces_.erase(it);
  }
}

void Heap::DumpGcPerformanceInfo(std::ostream& os) {
  // Dump cumulative timings.
  os << "Dumping cumulative Gc timings\n";
  uint64_t total_duration = 0;
  // Dump cumulative loggers for each GC type.
  uint64_t total_paused_time = 0;
  for (auto& collector : garbage_collectors_) {
    total_duration += collector->GetCumulativeTimings().GetTotalNs();
    total_paused_time += collector->GetTotalPausedTimeNs();
    collector->DumpPerformanceInfo(os);
  }
  uint64_t allocation_time =
      static_cast<uint64_t>(total_allocation_time_.LoadRelaxed()) * kTimeAdjust;
  if (total_duration != 0) {
    const double total_seconds = static_cast<double>(total_duration / 1000) / 1000000.0;
    os << "Total time spent in GC: " << PrettyDuration(total_duration) << "\n";
    os << "Mean GC size throughput: "
       << PrettySize(GetBytesFreedEver() / total_seconds) << "/s\n";
    os << "Mean GC object throughput: "
       << (GetObjectsFreedEver() / total_seconds) << " objects/s\n";
  }
  uint64_t total_objects_allocated = GetObjectsAllocatedEver();
  os << "Total number of allocations " << total_objects_allocated << "\n";
  os << "Total bytes allocated " << PrettySize(GetBytesAllocatedEver()) << "\n";
  os << "Total bytes freed " << PrettySize(GetBytesFreedEver()) << "\n";
  os << "Free memory " << PrettySize(GetFreeMemory()) << "\n";
  os << "Free memory until GC " << PrettySize(GetFreeMemoryUntilGC()) << "\n";
  os << "Free memory until OOME " << PrettySize(GetFreeMemoryUntilOOME()) << "\n";
  os << "Total memory " << PrettySize(GetTotalMemory()) << "\n";
  os << "Max memory " << PrettySize(GetMaxMemory()) << "\n";
  if (kMeasureAllocationTime) {
    os << "Total time spent allocating: " << PrettyDuration(allocation_time) << "\n";
    os << "Mean allocation time: " << PrettyDuration(allocation_time / total_objects_allocated)
       << "\n";
  }
  if (HasZygoteSpace()) {
    os << "Zygote space size " << PrettySize(zygote_space_->Size()) << "\n";
  }
  os << "Total mutator paused time: " << PrettyDuration(total_paused_time) << "\n";
  os << "Total time waiting for GC to complete: " << PrettyDuration(total_wait_time_) << "\n";
  os << "Total GC count: " << GetGcCount() << "\n";
  os << "Total GC time: " << PrettyDuration(GetGcTime()) << "\n";
  os << "Total blocking GC count: " << GetBlockingGcCount() << "\n";
  os << "Total blocking GC time: " << PrettyDuration(GetBlockingGcTime()) << "\n";

  {
    MutexLock mu(Thread::Current(), *gc_complete_lock_);
    if (gc_count_rate_histogram_.SampleSize() > 0U) {
      os << "Histogram of GC count per " << NsToMs(kGcCountRateHistogramWindowDuration) << " ms: ";
      gc_count_rate_histogram_.DumpBins(os);
      os << "\n";
    }
    if (blocking_gc_count_rate_histogram_.SampleSize() > 0U) {
      os << "Histogram of blocking GC count per "
         << NsToMs(kGcCountRateHistogramWindowDuration) << " ms: ";
      blocking_gc_count_rate_histogram_.DumpBins(os);
      os << "\n";
    }
  }

  BaseMutex::DumpAll(os);
}

void Heap::ResetGcPerformanceInfo() {
  for (auto& collector : garbage_collectors_) {
    collector->ResetMeasurements();
  }
  total_allocation_time_.StoreRelaxed(0);
  total_bytes_freed_ever_ = 0;
  total_objects_freed_ever_ = 0;
  total_wait_time_ = 0;
  blocking_gc_count_ = 0;
  blocking_gc_time_ = 0;
  gc_count_last_window_ = 0;
  blocking_gc_count_last_window_ = 0;
  last_update_time_gc_count_rate_histograms_ =  // Round down by the window duration.
      (NanoTime() / kGcCountRateHistogramWindowDuration) * kGcCountRateHistogramWindowDuration;
  {
    MutexLock mu(Thread::Current(), *gc_complete_lock_);
    gc_count_rate_histogram_.Reset();
    blocking_gc_count_rate_histogram_.Reset();
  }
}

uint64_t Heap::GetGcCount() const {
  uint64_t gc_count = 0U;
  for (auto& collector : garbage_collectors_) {
    gc_count += collector->GetCumulativeTimings().GetIterations();
  }
  return gc_count;
}

uint64_t Heap::GetGcTime() const {
  uint64_t gc_time = 0U;
  for (auto& collector : garbage_collectors_) {
    gc_time += collector->GetCumulativeTimings().GetTotalNs();
  }
  return gc_time;
}

uint64_t Heap::GetBlockingGcCount() const {
  return blocking_gc_count_;
}

uint64_t Heap::GetBlockingGcTime() const {
  return blocking_gc_time_;
}

void Heap::DumpGcCountRateHistogram(std::ostream& os) const {
  MutexLock mu(Thread::Current(), *gc_complete_lock_);
  if (gc_count_rate_histogram_.SampleSize() > 0U) {
    gc_count_rate_histogram_.DumpBins(os);
  }
}

void Heap::DumpBlockingGcCountRateHistogram(std::ostream& os) const {
  MutexLock mu(Thread::Current(), *gc_complete_lock_);
  if (blocking_gc_count_rate_histogram_.SampleSize() > 0U) {
    blocking_gc_count_rate_histogram_.DumpBins(os);
  }
}

Heap::~Heap() {
  VLOG(heap) << "Starting ~Heap()";
  STLDeleteElements(&garbage_collectors_);
  // If we don't reset then the mark stack complains in its destructor.
  allocation_stack_->Reset();
  live_stack_->Reset();
  STLDeleteValues(&mod_union_tables_);
  STLDeleteValues(&remembered_sets_);
  STLDeleteElements(&continuous_spaces_);
  STLDeleteElements(&discontinuous_spaces_);
  delete gc_complete_lock_;
  delete pending_task_lock_;
  delete backtrace_lock_;
  if (unique_backtrace_count_.LoadRelaxed() != 0 || seen_backtrace_count_.LoadRelaxed() != 0) {
    LOG(INFO) << "gc stress unique=" << unique_backtrace_count_.LoadRelaxed()
        << " total=" << seen_backtrace_count_.LoadRelaxed() +
            unique_backtrace_count_.LoadRelaxed();
  }
  VLOG(heap) << "Finished ~Heap()";
}

space::ContinuousSpace* Heap::FindContinuousSpaceFromObject(const mirror::Object* obj,
                                                            bool fail_ok) const {
  for (const auto& space : continuous_spaces_) {
    if (space->Contains(obj)) {
      return space;
    }
  }
  if (!fail_ok) {
    LOG(FATAL) << "object " << reinterpret_cast<const void*>(obj) << " not inside any spaces!";
  }
  return nullptr;
}

space::DiscontinuousSpace* Heap::FindDiscontinuousSpaceFromObject(const mirror::Object* obj,
                                                                  bool fail_ok) const {
  for (const auto& space : discontinuous_spaces_) {
    if (space->Contains(obj)) {
      return space;
    }
  }
  if (!fail_ok) {
    LOG(FATAL) << "object " << reinterpret_cast<const void*>(obj) << " not inside any spaces!";
  }
  return nullptr;
}

space::Space* Heap::FindSpaceFromObject(const mirror::Object* obj, bool fail_ok) const {
  space::Space* result = FindContinuousSpaceFromObject(obj, true);
  if (result != nullptr) {
    return result;
  }
  return FindDiscontinuousSpaceFromObject(obj, fail_ok);
}

space::ImageSpace* Heap::GetImageSpace() const {
  for (const auto& space : continuous_spaces_) {
    if (space->IsImageSpace()) {
      return space->AsImageSpace();
    }
  }
  return nullptr;
}

void Heap::ThrowOutOfMemoryError(Thread* self, size_t byte_count, AllocatorType allocator_type) {
  std::ostringstream oss;
  size_t total_bytes_free = GetFreeMemory();
  oss << "Failed to allocate a " << byte_count << " byte allocation with " << total_bytes_free
      << " free bytes and " << PrettySize(GetFreeMemoryUntilOOME()) << " until OOM";
  // If the allocation failed due to fragmentation, print out the largest continuous allocation.
  if (total_bytes_free >= byte_count) {
    space::AllocSpace* space = nullptr;
    if (allocator_type == kAllocatorTypeNonMoving) {
      space = non_moving_space_;
    } else if (allocator_type == kAllocatorTypeRosAlloc ||
               allocator_type == kAllocatorTypeDlMalloc) {
      space = main_space_;
    } else if (allocator_type == kAllocatorTypeBumpPointer ||
               allocator_type == kAllocatorTypeTLAB) {
      space = bump_pointer_space_;
    } else if (allocator_type == kAllocatorTypeRegion ||
               allocator_type == kAllocatorTypeRegionTLAB) {
      space = region_space_;
    }
    if (space != nullptr) {
      space->LogFragmentationAllocFailure(oss, byte_count);
    }
  }
  self->ThrowOutOfMemoryError(oss.str().c_str());
}

void Heap::DoPendingCollectorTransition() {
  CollectorType desired_collector_type = desired_collector_type_;
  // Launch homogeneous space compaction if it is desired.
  if (desired_collector_type == kCollectorTypeHomogeneousSpaceCompact) {
    if (!CareAboutPauseTimes()) {
      PerformHomogeneousSpaceCompact();
    } else {
      VLOG(gc) << "Homogeneous compaction ignored due to jank perceptible process state";
    }
  } else {
    TransitionCollector(desired_collector_type);
  }
}

void Heap::Trim(Thread* self) {
  if (!CareAboutPauseTimes()) {
    ATRACE_BEGIN("Deflating monitors");
    // Deflate the monitors, this can cause a pause but shouldn't matter since we don't care
    // about pauses.
    Runtime* runtime = Runtime::Current();
    runtime->GetThreadList()->SuspendAll(__FUNCTION__);
    uint64_t start_time = NanoTime();
    size_t count = runtime->GetMonitorList()->DeflateMonitors();
    VLOG(heap) << "Deflating " << count << " monitors took "
        << PrettyDuration(NanoTime() - start_time);
    runtime->GetThreadList()->ResumeAll();
    ATRACE_END();
  }
  TrimIndirectReferenceTables(self);
  TrimSpaces(self);
}

class TrimIndirectReferenceTableClosure : public Closure {
 public:
  explicit TrimIndirectReferenceTableClosure(Barrier* barrier) : barrier_(barrier) {
  }
  virtual void Run(Thread* thread) OVERRIDE NO_THREAD_SAFETY_ANALYSIS {
    ATRACE_BEGIN("Trimming reference table");
    thread->GetJniEnv()->locals.Trim();
    ATRACE_END();
    // If thread is a running mutator, then act on behalf of the trim thread.
    // See the code in ThreadList::RunCheckpoint.
    if (thread->GetState() == kRunnable) {
      barrier_->Pass(Thread::Current());
    }
  }

 private:
  Barrier* const barrier_;
};

void Heap::TrimIndirectReferenceTables(Thread* self) {
  ScopedObjectAccess soa(self);
  ATRACE_BEGIN(__FUNCTION__);
  JavaVMExt* vm = soa.Vm();
  // Trim globals indirect reference table.
  vm->TrimGlobals();
  // Trim locals indirect reference tables.
  Barrier barrier(0);
  TrimIndirectReferenceTableClosure closure(&barrier);
  ScopedThreadStateChange tsc(self, kWaitingForCheckPointsToRun);
  size_t barrier_count = Runtime::Current()->GetThreadList()->RunCheckpoint(&closure);
  if (barrier_count != 0) {
    barrier.Increment(self, barrier_count);
  }
  ATRACE_END();
}

void Heap::TrimSpaces(Thread* self) {
  {
    // Need to do this before acquiring the locks since we don't want to get suspended while
    // holding any locks.
    ScopedThreadStateChange tsc(self, kWaitingForGcToComplete);
    // Pretend we are doing a GC to prevent background compaction from deleting the space we are
    // trimming.
    MutexLock mu(self, *gc_complete_lock_);
    // Ensure there is only one GC at a time.
    WaitForGcToCompleteLocked(kGcCauseTrim, self);
    collector_type_running_ = kCollectorTypeHeapTrim;
  }
  ATRACE_BEGIN(__FUNCTION__);
  const uint64_t start_ns = NanoTime();
  // Trim the managed spaces.
  uint64_t total_alloc_space_allocated = 0;
  uint64_t total_alloc_space_size = 0;
  uint64_t managed_reclaimed = 0;
  for (const auto& space : continuous_spaces_) {
    if (space->IsMallocSpace()) {
      gc::space::MallocSpace* malloc_space = space->AsMallocSpace();
      if (malloc_space->IsRosAllocSpace() || !CareAboutPauseTimes()) {
        // Don't trim dlmalloc spaces if we care about pauses since this can hold the space lock
        // for a long period of time.
        managed_reclaimed += malloc_space->Trim();
      }
      total_alloc_space_size += malloc_space->Size();
    }
  }
  total_alloc_space_allocated = GetBytesAllocated();
  if (large_object_space_ != nullptr) {
    total_alloc_space_allocated -= large_object_space_->GetBytesAllocated();
  }
  if (bump_pointer_space_ != nullptr) {
    total_alloc_space_allocated -= bump_pointer_space_->Size();
  }
  if (region_space_ != nullptr) {
    total_alloc_space_allocated -= region_space_->GetBytesAllocated();
  }
  const float managed_utilization = static_cast<float>(total_alloc_space_allocated) /
      static_cast<float>(total_alloc_space_size);
  uint64_t gc_heap_end_ns = NanoTime();
  // We never move things in the native heap, so we can finish the GC at this point.
  FinishGC(self, collector::kGcTypeNone);
  size_t native_reclaimed = 0;

#ifdef HAVE_ANDROID_OS
  // Only trim the native heap if we don't care about pauses.
  if (!CareAboutPauseTimes()) {
#if defined(USE_DLMALLOC)
    // Trim the native heap.
    dlmalloc_trim(0);
    dlmalloc_inspect_all(DlmallocMadviseCallback, &native_reclaimed);
#elif defined(USE_JEMALLOC)
    // Jemalloc does it's own internal trimming.
#else
    UNIMPLEMENTED(WARNING) << "Add trimming support";
#endif
  }
#endif  // HAVE_ANDROID_OS
  uint64_t end_ns = NanoTime();
  VLOG(heap) << "Heap trim of managed (duration=" << PrettyDuration(gc_heap_end_ns - start_ns)
      << ", advised=" << PrettySize(managed_reclaimed) << ") and native (duration="
      << PrettyDuration(end_ns - gc_heap_end_ns) << ", advised=" << PrettySize(native_reclaimed)
      << ") heaps. Managed heap utilization of " << static_cast<int>(100 * managed_utilization)
      << "%.";
  ATRACE_END();
}

bool Heap::IsValidObjectAddress(const mirror::Object* obj) const {
  // Note: we deliberately don't take the lock here, and mustn't test anything that would require
  // taking the lock.
  if (obj == nullptr) {
    return true;
  }
  return IsAligned<kObjectAlignment>(obj) && FindSpaceFromObject(obj, true) != nullptr;
}

bool Heap::IsNonDiscontinuousSpaceHeapAddress(const mirror::Object* obj) const {
  return FindContinuousSpaceFromObject(obj, true) != nullptr;
}

bool Heap::IsValidContinuousSpaceObjectAddress(const mirror::Object* obj) const {
  if (obj == nullptr || !IsAligned<kObjectAlignment>(obj)) {
    return false;
  }
  for (const auto& space : continuous_spaces_) {
    if (space->HasAddress(obj)) {
      return true;
    }
  }
  return false;
}

bool Heap::IsLiveObjectLocked(mirror::Object* obj, bool search_allocation_stack,
                              bool search_live_stack, bool sorted) {
  if (UNLIKELY(!IsAligned<kObjectAlignment>(obj))) {
    return false;
  }
  if (bump_pointer_space_ != nullptr && bump_pointer_space_->HasAddress(obj)) {
    mirror::Class* klass = obj->GetClass<kVerifyNone>();
    if (obj == klass) {
      // This case happens for java.lang.Class.
      return true;
    }
    return VerifyClassClass(klass) && IsLiveObjectLocked(klass);
  } else if (temp_space_ != nullptr && temp_space_->HasAddress(obj)) {
    // If we are in the allocated region of the temp space, then we are probably live (e.g. during
    // a GC). When a GC isn't running End() - Begin() is 0 which means no objects are contained.
    return temp_space_->Contains(obj);
  }
  if (region_space_ != nullptr && region_space_->HasAddress(obj)) {
    return true;
  }
  space::ContinuousSpace* c_space = FindContinuousSpaceFromObject(obj, true);
  space::DiscontinuousSpace* d_space = nullptr;
  if (c_space != nullptr) {
    if (c_space->GetLiveBitmap()->Test(obj)) {
      return true;
    }
  } else {
    d_space = FindDiscontinuousSpaceFromObject(obj, true);
    if (d_space != nullptr) {
      if (d_space->GetLiveBitmap()->Test(obj)) {
        return true;
      }
    }
  }
  // This is covering the allocation/live stack swapping that is done without mutators suspended.
  for (size_t i = 0; i < (sorted ? 1 : 5); ++i) {
    if (i > 0) {
      NanoSleep(MsToNs(10));
    }
    if (search_allocation_stack) {
      if (sorted) {
        if (allocation_stack_->ContainsSorted(obj)) {
          return true;
        }
      } else if (allocation_stack_->Contains(obj)) {
        return true;
      }
    }

    if (search_live_stack) {
      if (sorted) {
        if (live_stack_->ContainsSorted(obj)) {
          return true;
        }
      } else if (live_stack_->Contains(obj)) {
        return true;
      }
    }
  }
  // We need to check the bitmaps again since there is a race where we mark something as live and
  // then clear the stack containing it.
  if (c_space != nullptr) {
    if (c_space->GetLiveBitmap()->Test(obj)) {
      return true;
    }
  } else {
    d_space = FindDiscontinuousSpaceFromObject(obj, true);
    if (d_space != nullptr && d_space->GetLiveBitmap()->Test(obj)) {
      return true;
    }
  }
  return false;
}

std::string Heap::DumpSpaces() const {
  std::ostringstream oss;
  DumpSpaces(oss);
  return oss.str();
}

void Heap::DumpSpaces(std::ostream& stream) const {
  for (const auto& space : continuous_spaces_) {
    accounting::ContinuousSpaceBitmap* live_bitmap = space->GetLiveBitmap();
    accounting::ContinuousSpaceBitmap* mark_bitmap = space->GetMarkBitmap();
    stream << space << " " << *space << "\n";
    if (live_bitmap != nullptr) {
      stream << live_bitmap << " " << *live_bitmap << "\n";
    }
    if (mark_bitmap != nullptr) {
      stream << mark_bitmap << " " << *mark_bitmap << "\n";
    }
  }
  for (const auto& space : discontinuous_spaces_) {
    stream << space << " " << *space << "\n";
  }
}

void Heap::VerifyObjectBody(mirror::Object* obj) {
  if (verify_object_mode_ == kVerifyObjectModeDisabled) {
    return;
  }

  // Ignore early dawn of the universe verifications.
  if (UNLIKELY(static_cast<size_t>(num_bytes_allocated_.LoadRelaxed()) < 10 * KB)) {
    return;
  }
  CHECK(IsAligned<kObjectAlignment>(obj)) << "Object isn't aligned: " << obj;
  mirror::Class* c = obj->GetFieldObject<mirror::Class, kVerifyNone>(mirror::Object::ClassOffset());
  CHECK(c != nullptr) << "Null class in object " << obj;
  CHECK(IsAligned<kObjectAlignment>(c)) << "Class " << c << " not aligned in object " << obj;
  CHECK(VerifyClassClass(c));

  if (verify_object_mode_ > kVerifyObjectModeFast) {
    // Note: the bitmap tests below are racy since we don't hold the heap bitmap lock.
    CHECK(IsLiveObjectLocked(obj)) << "Object is dead " << obj << "\n" << DumpSpaces();
  }
}

void Heap::VerificationCallback(mirror::Object* obj, void* arg) {
  reinterpret_cast<Heap*>(arg)->VerifyObjectBody(obj);
}

void Heap::VerifyHeap() {
  ReaderMutexLock mu(Thread::Current(), *Locks::heap_bitmap_lock_);
  GetLiveBitmap()->Walk(Heap::VerificationCallback, this);
}

void Heap::RecordFree(uint64_t freed_objects, int64_t freed_bytes) {
  // Use signed comparison since freed bytes can be negative when background compaction foreground
  // transitions occurs. This is caused by the moving objects from a bump pointer space to a
  // free list backed space typically increasing memory footprint due to padding and binning.
  DCHECK_LE(freed_bytes, static_cast<int64_t>(num_bytes_allocated_.LoadRelaxed()));
  // Note: This relies on 2s complement for handling negative freed_bytes.
  num_bytes_allocated_.FetchAndSubSequentiallyConsistent(static_cast<ssize_t>(freed_bytes));
  if (Runtime::Current()->HasStatsEnabled()) {
    RuntimeStats* thread_stats = Thread::Current()->GetStats();
    thread_stats->freed_objects += freed_objects;
    thread_stats->freed_bytes += freed_bytes;
    // TODO: Do this concurrently.
    RuntimeStats* global_stats = Runtime::Current()->GetStats();
    global_stats->freed_objects += freed_objects;
    global_stats->freed_bytes += freed_bytes;
  }
}

void Heap::RecordFreeRevoke() {
  // Subtract num_bytes_freed_revoke_ from num_bytes_allocated_ to cancel out the
  // the ahead-of-time, bulk counting of bytes allocated in rosalloc thread-local buffers.
  // If there's a concurrent revoke, ok to not necessarily reset num_bytes_freed_revoke_
  // all the way to zero exactly as the remainder will be subtracted at the next GC.
  size_t bytes_freed = num_bytes_freed_revoke_.LoadSequentiallyConsistent();
  CHECK_GE(num_bytes_freed_revoke_.FetchAndSubSequentiallyConsistent(bytes_freed),
           bytes_freed) << "num_bytes_freed_revoke_ underflow";
  CHECK_GE(num_bytes_allocated_.FetchAndSubSequentiallyConsistent(bytes_freed),
           bytes_freed) << "num_bytes_allocated_ underflow";
  GetCurrentGcIteration()->SetFreedRevoke(bytes_freed);
}

space::RosAllocSpace* Heap::GetRosAllocSpace(gc::allocator::RosAlloc* rosalloc) const {
  for (const auto& space : continuous_spaces_) {
    if (space->AsContinuousSpace()->IsRosAllocSpace()) {
      if (space->AsContinuousSpace()->AsRosAllocSpace()->GetRosAlloc() == rosalloc) {
        return space->AsContinuousSpace()->AsRosAllocSpace();
      }
    }
  }
  return nullptr;
}

mirror::Object* Heap::AllocateInternalWithGc(Thread* self, AllocatorType allocator,
                                             size_t alloc_size, size_t* bytes_allocated,
                                             size_t* usable_size,
                                             size_t* bytes_tl_bulk_allocated,
                                             mirror::Class** klass) {
  bool was_default_allocator = allocator == GetCurrentAllocator();
  // Make sure there is no pending exception since we may need to throw an OOME.
  self->AssertNoPendingException();
  DCHECK(klass != nullptr);
  StackHandleScope<1> hs(self);
  HandleWrapper<mirror::Class> h(hs.NewHandleWrapper(klass));
  klass = nullptr;  // Invalidate for safety.
  // The allocation failed. If the GC is running, block until it completes, and then retry the
  // allocation.
  collector::GcType last_gc = WaitForGcToComplete(kGcCauseForAlloc, self);
  if (last_gc != collector::kGcTypeNone) {
    // If we were the default allocator but the allocator changed while we were suspended,
    // abort the allocation.
    if (was_default_allocator && allocator != GetCurrentAllocator()) {
      return nullptr;
    }
    // A GC was in progress and we blocked, retry allocation now that memory has been freed.
    mirror::Object* ptr = TryToAllocate<true, false>(self, allocator, alloc_size, bytes_allocated,
                                                     usable_size, bytes_tl_bulk_allocated);
    if (ptr != nullptr) {
      return ptr;
    }
  }

  collector::GcType tried_type = next_gc_type_;
  const bool gc_ran =
      CollectGarbageInternal(tried_type, kGcCauseForAlloc, false) != collector::kGcTypeNone;
  if (was_default_allocator && allocator != GetCurrentAllocator()) {
    return nullptr;
  }
  if (gc_ran) {
    mirror::Object* ptr = TryToAllocate<true, false>(self, allocator, alloc_size, bytes_allocated,
                                                     usable_size, bytes_tl_bulk_allocated);
    if (ptr != nullptr) {
      return ptr;
    }
  }

  // Loop through our different Gc types and try to Gc until we get enough free memory.
  for (collector::GcType gc_type : gc_plan_) {
    if (gc_type == tried_type) {
      continue;
    }
    // Attempt to run the collector, if we succeed, re-try the allocation.
    const bool plan_gc_ran =
        CollectGarbageInternal(gc_type, kGcCauseForAlloc, false) != collector::kGcTypeNone;
    if (was_default_allocator && allocator != GetCurrentAllocator()) {
      return nullptr;
    }
    if (plan_gc_ran) {
      // Did we free sufficient memory for the allocation to succeed?
      mirror::Object* ptr = TryToAllocate<true, false>(self, allocator, alloc_size, bytes_allocated,
                                                       usable_size, bytes_tl_bulk_allocated);
      if (ptr != nullptr) {
        return ptr;
      }
    }
  }
  // Allocations have failed after GCs;  this is an exceptional state.
  // Try harder, growing the heap if necessary.
  mirror::Object* ptr = TryToAllocate<true, true>(self, allocator, alloc_size, bytes_allocated,
                                                  usable_size, bytes_tl_bulk_allocated);
  if (ptr != nullptr) {
    return ptr;
  }
  // Most allocations should have succeeded by now, so the heap is really full, really fragmented,
  // or the requested size is really big. Do another GC, collecting SoftReferences this time. The
  // VM spec requires that all SoftReferences have been collected and cleared before throwing
  // OOME.
  VLOG(gc) << "Forcing collection of SoftReferences for " << PrettySize(alloc_size)
           << " allocation";
  // TODO: Run finalization, but this may cause more allocations to occur.
  // We don't need a WaitForGcToComplete here either.
  DCHECK(!gc_plan_.empty());
  CollectGarbageInternal(gc_plan_.back(), kGcCauseForAlloc, true);
  if (was_default_allocator && allocator != GetCurrentAllocator()) {
    return nullptr;
  }
  ptr = TryToAllocate<true, true>(self, allocator, alloc_size, bytes_allocated, usable_size,
                                  bytes_tl_bulk_allocated);
  if (ptr == nullptr) {
    const uint64_t current_time = NanoTime();
    switch (allocator) {
      case kAllocatorTypeRosAlloc:
        // Fall-through.
      case kAllocatorTypeDlMalloc: {
        if (use_homogeneous_space_compaction_for_oom_ &&
            current_time - last_time_homogeneous_space_compaction_by_oom_ >
            min_interval_homogeneous_space_compaction_by_oom_) {
          last_time_homogeneous_space_compaction_by_oom_ = current_time;
          HomogeneousSpaceCompactResult result = PerformHomogeneousSpaceCompact();
          switch (result) {
            case HomogeneousSpaceCompactResult::kSuccess:
              // If the allocation succeeded, we delayed an oom.
              ptr = TryToAllocate<true, true>(self, allocator, alloc_size, bytes_allocated,
                                              usable_size, bytes_tl_bulk_allocated);
              if (ptr != nullptr) {
                count_delayed_oom_++;
              }
              break;
            case HomogeneousSpaceCompactResult::kErrorReject:
              // Reject due to disabled moving GC.
              break;
            case HomogeneousSpaceCompactResult::kErrorVMShuttingDown:
              // Throw OOM by default.
              break;
            default: {
              UNIMPLEMENTED(FATAL) << "homogeneous space compaction result: "
                  << static_cast<size_t>(result);
              UNREACHABLE();
            }
          }
          // Always print that we ran homogeneous space compation since this can cause jank.
          VLOG(heap) << "Ran heap homogeneous space compaction, "
                    << " requested defragmentation "
                    << count_requested_homogeneous_space_compaction_.LoadSequentiallyConsistent()
                    << " performed defragmentation "
                    << count_performed_homogeneous_space_compaction_.LoadSequentiallyConsistent()
                    << " ignored homogeneous space compaction "
                    << count_ignored_homogeneous_space_compaction_.LoadSequentiallyConsistent()
                    << " delayed count = "
                    << count_delayed_oom_.LoadSequentiallyConsistent();
        }
        break;
      }
      case kAllocatorTypeNonMoving: {
        // Try to transition the heap if the allocation failure was due to the space being full.
        if (!IsOutOfMemoryOnAllocation<false>(allocator, alloc_size)) {
          // If we aren't out of memory then the OOM was probably from the non moving space being
          // full. Attempt to disable compaction and turn the main space into a non moving space.
          DisableMovingGc();
          // If we are still a moving GC then something must have caused the transition to fail.
          if (IsMovingGc(collector_type_)) {
            MutexLock mu(self, *gc_complete_lock_);
            // If we couldn't disable moving GC, just throw OOME and return null.
            LOG(WARNING) << "Couldn't disable moving GC with disable GC count "
                         << disable_moving_gc_count_;
          } else {
            LOG(WARNING) << "Disabled moving GC due to the non moving space being full";
            ptr = TryToAllocate<true, true>(self, allocator, alloc_size, bytes_allocated,
                                            usable_size, bytes_tl_bulk_allocated);
          }
        }
        break;
      }
      default: {
        // Do nothing for others allocators.
      }
    }
  }
  // If the allocation hasn't succeeded by this point, throw an OOM error.
  if (ptr == nullptr) {
    ThrowOutOfMemoryError(self, alloc_size, allocator);
  }
  return ptr;
}

void Heap::SetTargetHeapUtilization(float target) {
  DCHECK_GT(target, 0.0f);  // asserted in Java code
  DCHECK_LT(target, 1.0f);
  target_utilization_ = target;
}

size_t Heap::GetObjectsAllocated() const {
  Thread* self = Thread::Current();
  ScopedThreadStateChange tsc(self, kWaitingForGetObjectsAllocated);
  auto* tl = Runtime::Current()->GetThreadList();
  // Need SuspendAll here to prevent lock violation if RosAlloc does it during InspectAll.
  tl->SuspendAll(__FUNCTION__);
  size_t total = 0;
  {
    ReaderMutexLock mu(self, *Locks::heap_bitmap_lock_);
    for (space::AllocSpace* space : alloc_spaces_) {
      total += space->GetObjectsAllocated();
    }
  }
  tl->ResumeAll();
  return total;
}

uint64_t Heap::GetObjectsAllocatedEver() const {
  uint64_t total = GetObjectsFreedEver();
  // If we are detached, we can't use GetObjectsAllocated since we can't change thread states.
  if (Thread::Current() != nullptr) {
    total += GetObjectsAllocated();
  }
  return total;
}

uint64_t Heap::GetBytesAllocatedEver() const {
  return GetBytesFreedEver() + GetBytesAllocated();
}

class InstanceCounter {
 public:
  InstanceCounter(const std::vector<mirror::Class*>& classes, bool use_is_assignable_from, uint64_t* counts)
      SHARED_LOCKS_REQUIRED(Locks::mutator_lock_)
      : classes_(classes), use_is_assignable_from_(use_is_assignable_from), counts_(counts) {
  }
  static void Callback(mirror::Object* obj, void* arg)
      SHARED_LOCKS_REQUIRED(Locks::mutator_lock_, Locks::heap_bitmap_lock_) {
    InstanceCounter* instance_counter = reinterpret_cast<InstanceCounter*>(arg);
    mirror::Class* instance_class = obj->GetClass();
    CHECK(instance_class != nullptr);
    for (size_t i = 0; i < instance_counter->classes_.size(); ++i) {
      if (instance_counter->use_is_assignable_from_) {
        if (instance_counter->classes_[i]->IsAssignableFrom(instance_class)) {
          ++instance_counter->counts_[i];
        }
      } else if (instance_class == instance_counter->classes_[i]) {
        ++instance_counter->counts_[i];
      }
    }
  }

 private:
  const std::vector<mirror::Class*>& classes_;
  bool use_is_assignable_from_;
  uint64_t* const counts_;
  DISALLOW_COPY_AND_ASSIGN(InstanceCounter);
};

void Heap::CountInstances(const std::vector<mirror::Class*>& classes, bool use_is_assignable_from,
                          uint64_t* counts) {
  InstanceCounter counter(classes, use_is_assignable_from, counts);
  VisitObjects(InstanceCounter::Callback, &counter);
}

class InstanceCollector {
 public:
  InstanceCollector(mirror::Class* c, int32_t max_count, std::vector<mirror::Object*>& instances)
      SHARED_LOCKS_REQUIRED(Locks::mutator_lock_)
      : class_(c), max_count_(max_count), instances_(instances) {
  }
  static void Callback(mirror::Object* obj, void* arg)
      SHARED_LOCKS_REQUIRED(Locks::mutator_lock_, Locks::heap_bitmap_lock_) {
    DCHECK(arg != nullptr);
    InstanceCollector* instance_collector = reinterpret_cast<InstanceCollector*>(arg);
    if (obj->GetClass() == instance_collector->class_) {
      if (instance_collector->max_count_ == 0 ||
          instance_collector->instances_.size() < instance_collector->max_count_) {
        instance_collector->instances_.push_back(obj);
      }
    }
  }

 private:
  const mirror::Class* const class_;
  const uint32_t max_count_;
  std::vector<mirror::Object*>& instances_;
  DISALLOW_COPY_AND_ASSIGN(InstanceCollector);
};

void Heap::GetInstances(mirror::Class* c, int32_t max_count,
                        std::vector<mirror::Object*>& instances) {
  InstanceCollector collector(c, max_count, instances);
  VisitObjects(&InstanceCollector::Callback, &collector);
}

class ReferringObjectsFinder {
 public:
  ReferringObjectsFinder(mirror::Object* object, int32_t max_count,
                         std::vector<mirror::Object*>& referring_objects)
      SHARED_LOCKS_REQUIRED(Locks::mutator_lock_)
      : object_(object), max_count_(max_count), referring_objects_(referring_objects) {
  }

  static void Callback(mirror::Object* obj, void* arg)
      SHARED_LOCKS_REQUIRED(Locks::mutator_lock_, Locks::heap_bitmap_lock_) {
    reinterpret_cast<ReferringObjectsFinder*>(arg)->operator()(obj);
  }

  // For bitmap Visit.
  // TODO: Fix lock analysis to not use NO_THREAD_SAFETY_ANALYSIS, requires support for
  // annotalysis on visitors.
  void operator()(mirror::Object* o) const NO_THREAD_SAFETY_ANALYSIS {
    o->VisitReferences<true>(*this, VoidFunctor());
  }

  // For Object::VisitReferences.
  void operator()(mirror::Object* obj, MemberOffset offset, bool /* is_static */) const
      SHARED_LOCKS_REQUIRED(Locks::mutator_lock_) {
    mirror::Object* ref = obj->GetFieldObject<mirror::Object>(offset);
    if (ref == object_ && (max_count_ == 0 || referring_objects_.size() < max_count_)) {
      referring_objects_.push_back(obj);
    }
  }

 private:
  const mirror::Object* const object_;
  const uint32_t max_count_;
  std::vector<mirror::Object*>& referring_objects_;
  DISALLOW_COPY_AND_ASSIGN(ReferringObjectsFinder);
};

void Heap::GetReferringObjects(mirror::Object* o, int32_t max_count,
                               std::vector<mirror::Object*>& referring_objects) {
  ReferringObjectsFinder finder(o, max_count, referring_objects);
  VisitObjects(&ReferringObjectsFinder::Callback, &finder);
}

void Heap::CollectGarbage(bool clear_soft_references) {
  // Even if we waited for a GC we still need to do another GC since weaks allocated during the
  // last GC will not have necessarily been cleared.
  CollectGarbageInternal(gc_plan_.back(), kGcCauseExplicit, clear_soft_references);
}

HomogeneousSpaceCompactResult Heap::PerformHomogeneousSpaceCompact() {
  Thread* self = Thread::Current();
  // Inc requested homogeneous space compaction.
  count_requested_homogeneous_space_compaction_++;
  // Store performed homogeneous space compaction at a new request arrival.
  ThreadList* tl = Runtime::Current()->GetThreadList();
  ScopedThreadStateChange tsc(self, kWaitingPerformingGc);
  Locks::mutator_lock_->AssertNotHeld(self);
  {
    ScopedThreadStateChange tsc2(self, kWaitingForGcToComplete);
    MutexLock mu(self, *gc_complete_lock_);
    // Ensure there is only one GC at a time.
    WaitForGcToCompleteLocked(kGcCauseHomogeneousSpaceCompact, self);
    // Homogeneous space compaction is a copying transition, can't run it if the moving GC disable count
    // is non zero.
    // If the collector type changed to something which doesn't benefit from homogeneous space compaction,
    // exit.
    if (disable_moving_gc_count_ != 0 || IsMovingGc(collector_type_) ||
        !main_space_->CanMoveObjects()) {
      return HomogeneousSpaceCompactResult::kErrorReject;
    }
    collector_type_running_ = kCollectorTypeHomogeneousSpaceCompact;
  }
  if (Runtime::Current()->IsShuttingDown(self)) {
    // Don't allow heap transitions to happen if the runtime is shutting down since these can
    // cause objects to get finalized.
    FinishGC(self, collector::kGcTypeNone);
    return HomogeneousSpaceCompactResult::kErrorVMShuttingDown;
  }
  // Suspend all threads.
  tl->SuspendAll(__FUNCTION__);
  uint64_t start_time = NanoTime();
  // Launch compaction.
  space::MallocSpace* to_space = main_space_backup_.release();
  space::MallocSpace* from_space = main_space_;
  to_space->GetMemMap()->Protect(PROT_READ | PROT_WRITE);
  const uint64_t space_size_before_compaction = from_space->Size();
  AddSpace(to_space);
  // Make sure that we will have enough room to copy.
  CHECK_GE(to_space->GetFootprintLimit(), from_space->GetFootprintLimit());
  collector::GarbageCollector* collector = Compact(to_space, from_space,
                                                   kGcCauseHomogeneousSpaceCompact);
  const uint64_t space_size_after_compaction = to_space->Size();
  main_space_ = to_space;
  main_space_backup_.reset(from_space);
  RemoveSpace(from_space);
  SetSpaceAsDefault(main_space_);  // Set as default to reset the proper dlmalloc space.
  // Update performed homogeneous space compaction count.
  count_performed_homogeneous_space_compaction_++;
  // Print statics log and resume all threads.
  uint64_t duration = NanoTime() - start_time;
  VLOG(heap) << "Heap homogeneous space compaction took " << PrettyDuration(duration) << " size: "
             << PrettySize(space_size_before_compaction) << " -> "
             << PrettySize(space_size_after_compaction) << " compact-ratio: "
             << std::fixed << static_cast<double>(space_size_after_compaction) /
             static_cast<double>(space_size_before_compaction);
  tl->ResumeAll();
  // Finish GC.
  reference_processor_.EnqueueClearedReferences(self);
  GrowForUtilization(semi_space_collector_);
  LogGC(kGcCauseHomogeneousSpaceCompact, collector);
  FinishGC(self, collector::kGcTypeFull);
  return HomogeneousSpaceCompactResult::kSuccess;
}

void Heap::TransitionCollector(CollectorType collector_type) {
  if (collector_type == collector_type_) {
    return;
  }
  VLOG(heap) << "TransitionCollector: " << static_cast<int>(collector_type_)
             << " -> " << static_cast<int>(collector_type);
  uint64_t start_time = NanoTime();
  uint32_t before_allocated = num_bytes_allocated_.LoadSequentiallyConsistent();
  Runtime* const runtime = Runtime::Current();
  ThreadList* const tl = runtime->GetThreadList();
  Thread* const self = Thread::Current();
  ScopedThreadStateChange tsc(self, kWaitingPerformingGc);
  Locks::mutator_lock_->AssertNotHeld(self);
  // Busy wait until we can GC (StartGC can fail if we have a non-zero
  // compacting_gc_disable_count_, this should rarely occurs).
  for (;;) {
    {
      ScopedThreadStateChange tsc2(self, kWaitingForGcToComplete);
      MutexLock mu(self, *gc_complete_lock_);
      // Ensure there is only one GC at a time.
      WaitForGcToCompleteLocked(kGcCauseCollectorTransition, self);
      // Currently we only need a heap transition if we switch from a moving collector to a
      // non-moving one, or visa versa.
      const bool copying_transition = IsMovingGc(collector_type_) != IsMovingGc(collector_type);
      // If someone else beat us to it and changed the collector before we could, exit.
      // This is safe to do before the suspend all since we set the collector_type_running_ before
      // we exit the loop. If another thread attempts to do the heap transition before we exit,
      // then it would get blocked on WaitForGcToCompleteLocked.
      if (collector_type == collector_type_) {
        return;
      }
      // GC can be disabled if someone has a used GetPrimitiveArrayCritical but not yet released.
      if (!copying_transition || disable_moving_gc_count_ == 0) {
        // TODO: Not hard code in semi-space collector?
        collector_type_running_ = copying_transition ? kCollectorTypeSS : collector_type;
        break;
      }
    }
    usleep(1000);
  }
  if (runtime->IsShuttingDown(self)) {
    // Don't allow heap transitions to happen if the runtime is shutting down since these can
    // cause objects to get finalized.
    FinishGC(self, collector::kGcTypeNone);
    return;
  }
  collector::GarbageCollector* collector = nullptr;
  tl->SuspendAll(__FUNCTION__);
  switch (collector_type) {
    case kCollectorTypeSS: {
      if (!IsMovingGc(collector_type_)) {
        // Create the bump pointer space from the backup space.
        CHECK(main_space_backup_ != nullptr);
        std::unique_ptr<MemMap> mem_map(main_space_backup_->ReleaseMemMap());
        // We are transitioning from non moving GC -> moving GC, since we copied from the bump
        // pointer space last transition it will be protected.
        CHECK(mem_map != nullptr);
        mem_map->Protect(PROT_READ | PROT_WRITE);
        bump_pointer_space_ = space::BumpPointerSpace::CreateFromMemMap("Bump pointer space",
                                                                        mem_map.release());
        AddSpace(bump_pointer_space_);
        collector = Compact(bump_pointer_space_, main_space_, kGcCauseCollectorTransition);
        // Use the now empty main space mem map for the bump pointer temp space.
        mem_map.reset(main_space_->ReleaseMemMap());
        // Unset the pointers just in case.
        if (dlmalloc_space_ == main_space_) {
          dlmalloc_space_ = nullptr;
        } else if (rosalloc_space_ == main_space_) {
          rosalloc_space_ = nullptr;
        }
        // Remove the main space so that we don't try to trim it, this doens't work for debug
        // builds since RosAlloc attempts to read the magic number from a protected page.
        RemoveSpace(main_space_);
        RemoveRememberedSet(main_space_);
        delete main_space_;  // Delete the space since it has been removed.
        main_space_ = nullptr;
        RemoveRememberedSet(main_space_backup_.get());
        main_space_backup_.reset(nullptr);  // Deletes the space.
        temp_space_ = space::BumpPointerSpace::CreateFromMemMap("Bump pointer space 2",
                                                                mem_map.release());
        AddSpace(temp_space_);
      }
      break;
    }
    case kCollectorTypeMS:
      // Fall through.
    case kCollectorTypeCMS: {
      if (IsMovingGc(collector_type_)) {
        CHECK(temp_space_ != nullptr);
        std::unique_ptr<MemMap> mem_map(temp_space_->ReleaseMemMap());
        RemoveSpace(temp_space_);
        temp_space_ = nullptr;
        mem_map->Protect(PROT_READ | PROT_WRITE);
        CreateMainMallocSpace(mem_map.get(), kDefaultInitialSize,
                              std::min(mem_map->Size(), growth_limit_), mem_map->Size());
        mem_map.release();
        // Compact to the main space from the bump pointer space, don't need to swap semispaces.
        AddSpace(main_space_);
        collector = Compact(main_space_, bump_pointer_space_, kGcCauseCollectorTransition);
        mem_map.reset(bump_pointer_space_->ReleaseMemMap());
        RemoveSpace(bump_pointer_space_);
        bump_pointer_space_ = nullptr;
        const char* name = kUseRosAlloc ? kRosAllocSpaceName[1] : kDlMallocSpaceName[1];
        // Temporarily unprotect the backup mem map so rosalloc can write the debug magic number.
        if (kIsDebugBuild && kUseRosAlloc) {
          mem_map->Protect(PROT_READ | PROT_WRITE);
        }
        main_space_backup_.reset(CreateMallocSpaceFromMemMap(
            mem_map.get(), kDefaultInitialSize, std::min(mem_map->Size(), growth_limit_),
            mem_map->Size(), name, true));
        if (kIsDebugBuild && kUseRosAlloc) {
          mem_map->Protect(PROT_NONE);
        }
        mem_map.release();
      }
      break;
    }
    default: {
      LOG(FATAL) << "Attempted to transition to invalid collector type "
                 << static_cast<size_t>(collector_type);
      break;
    }
  }
  ChangeCollector(collector_type);
  tl->ResumeAll();
  // Can't call into java code with all threads suspended.
  reference_processor_.EnqueueClearedReferences(self);
  uint64_t duration = NanoTime() - start_time;
  GrowForUtilization(semi_space_collector_);
  DCHECK(collector != nullptr);
  LogGC(kGcCauseCollectorTransition, collector);
  FinishGC(self, collector::kGcTypeFull);
  int32_t after_allocated = num_bytes_allocated_.LoadSequentiallyConsistent();
  int32_t delta_allocated = before_allocated - after_allocated;
  std::string saved_str;
  if (delta_allocated >= 0) {
    saved_str = " saved at least " + PrettySize(delta_allocated);
  } else {
    saved_str = " expanded " + PrettySize(-delta_allocated);
  }
  VLOG(heap) << "Heap transition to " << process_state_ << " took "
      << PrettyDuration(duration) << saved_str;
}

void Heap::ChangeCollector(CollectorType collector_type) {
  // TODO: Only do this with all mutators suspended to avoid races.
  if (collector_type != collector_type_) {
    if (collector_type == kCollectorTypeMC) {
      // Don't allow mark compact unless support is compiled in.
      CHECK(kMarkCompactSupport);
    }
    collector_type_ = collector_type;
    gc_plan_.clear();
    switch (collector_type_) {
      case kCollectorTypeCC: {
        gc_plan_.push_back(collector::kGcTypeFull);
        if (use_tlab_) {
          ChangeAllocator(kAllocatorTypeRegionTLAB);
        } else {
          ChangeAllocator(kAllocatorTypeRegion);
        }
        break;
      }
      case kCollectorTypeMC:  // Fall-through.
      case kCollectorTypeSS:  // Fall-through.
      case kCollectorTypeGSS: {
        gc_plan_.push_back(collector::kGcTypeFull);
        if (use_tlab_) {
          ChangeAllocator(kAllocatorTypeTLAB);
        } else {
          ChangeAllocator(kAllocatorTypeBumpPointer);
        }
        break;
      }
      case kCollectorTypeMS: {
        gc_plan_.push_back(collector::kGcTypeSticky);
        gc_plan_.push_back(collector::kGcTypePartial);
        gc_plan_.push_back(collector::kGcTypeFull);
        ChangeAllocator(kUseRosAlloc ? kAllocatorTypeRosAlloc : kAllocatorTypeDlMalloc);
        break;
      }
      case kCollectorTypeCMS: {
        gc_plan_.push_back(collector::kGcTypeSticky);
        gc_plan_.push_back(collector::kGcTypePartial);
        gc_plan_.push_back(collector::kGcTypeFull);
        ChangeAllocator(kUseRosAlloc ? kAllocatorTypeRosAlloc : kAllocatorTypeDlMalloc);
        break;
      }
      default: {
        UNIMPLEMENTED(FATAL);
        UNREACHABLE();
      }
    }
    if (IsGcConcurrent()) {
      concurrent_start_bytes_ =
          std::max(max_allowed_footprint_, kMinConcurrentRemainingBytes) - kMinConcurrentRemainingBytes;
    } else {
      concurrent_start_bytes_ = std::numeric_limits<size_t>::max();
    }
  }
}

// Special compacting collector which uses sub-optimal bin packing to reduce zygote space size.
class ZygoteCompactingCollector FINAL : public collector::SemiSpace {
 public:
  explicit ZygoteCompactingCollector(gc::Heap* heap) : SemiSpace(heap, false, "zygote collector"),
      bin_live_bitmap_(nullptr), bin_mark_bitmap_(nullptr) {
  }

  void BuildBins(space::ContinuousSpace* space) {
    bin_live_bitmap_ = space->GetLiveBitmap();
    bin_mark_bitmap_ = space->GetMarkBitmap();
    BinContext context;
    context.prev_ = reinterpret_cast<uintptr_t>(space->Begin());
    context.collector_ = this;
    WriterMutexLock mu(Thread::Current(), *Locks::heap_bitmap_lock_);
    // Note: This requires traversing the space in increasing order of object addresses.
    bin_live_bitmap_->Walk(Callback, reinterpret_cast<void*>(&context));
    // Add the last bin which spans after the last object to the end of the space.
    AddBin(reinterpret_cast<uintptr_t>(space->End()) - context.prev_, context.prev_);
  }

 private:
  struct BinContext {
    uintptr_t prev_;  // The end of the previous object.
    ZygoteCompactingCollector* collector_;
  };
  // Maps from bin sizes to locations.
  std::multimap<size_t, uintptr_t> bins_;
  // Live bitmap of the space which contains the bins.
  accounting::ContinuousSpaceBitmap* bin_live_bitmap_;
  // Mark bitmap of the space which contains the bins.
  accounting::ContinuousSpaceBitmap* bin_mark_bitmap_;

  static void Callback(mirror::Object* obj, void* arg)
      SHARED_LOCKS_REQUIRED(Locks::mutator_lock_) {
    DCHECK(arg != nullptr);
    BinContext* context = reinterpret_cast<BinContext*>(arg);
    ZygoteCompactingCollector* collector = context->collector_;
    uintptr_t object_addr = reinterpret_cast<uintptr_t>(obj);
    size_t bin_size = object_addr - context->prev_;
    // Add the bin consisting of the end of the previous object to the start of the current object.
    collector->AddBin(bin_size, context->prev_);
    context->prev_ = object_addr + RoundUp(obj->SizeOf(), kObjectAlignment);
  }

  void AddBin(size_t size, uintptr_t position) {
    if (size != 0) {
      bins_.insert(std::make_pair(size, position));
    }
  }

  virtual bool ShouldSweepSpace(space::ContinuousSpace* space) const {
    // Don't sweep any spaces since we probably blasted the internal accounting of the free list
    // allocator.
    UNUSED(space);
    return false;
  }

  virtual mirror::Object* MarkNonForwardedObject(mirror::Object* obj)
      EXCLUSIVE_LOCKS_REQUIRED(Locks::heap_bitmap_lock_, Locks::mutator_lock_) {
    size_t obj_size = obj->SizeOf();
    size_t alloc_size = RoundUp(obj_size, kObjectAlignment);
    mirror::Object* forward_address;
    // Find the smallest bin which we can move obj in.
    auto it = bins_.lower_bound(alloc_size);
    if (it == bins_.end()) {
      // No available space in the bins, place it in the target space instead (grows the zygote
      // space).
      size_t bytes_allocated, dummy;
      forward_address = to_space_->Alloc(self_, alloc_size, &bytes_allocated, nullptr, &dummy);
      if (to_space_live_bitmap_ != nullptr) {
        to_space_live_bitmap_->Set(forward_address);
      } else {
        GetHeap()->GetNonMovingSpace()->GetLiveBitmap()->Set(forward_address);
        GetHeap()->GetNonMovingSpace()->GetMarkBitmap()->Set(forward_address);
      }
    } else {
      size_t size = it->first;
      uintptr_t pos = it->second;
      bins_.erase(it);  // Erase the old bin which we replace with the new smaller bin.
      forward_address = reinterpret_cast<mirror::Object*>(pos);
      // Set the live and mark bits so that sweeping system weaks works properly.
      bin_live_bitmap_->Set(forward_address);
      bin_mark_bitmap_->Set(forward_address);
      DCHECK_GE(size, alloc_size);
      // Add a new bin with the remaining space.
      AddBin(size - alloc_size, pos + alloc_size);
    }
    // Copy the object over to its new location. Don't use alloc_size to avoid valgrind error.
    memcpy(reinterpret_cast<void*>(forward_address), obj, obj_size);
    if (kUseBakerOrBrooksReadBarrier) {
      obj->AssertReadBarrierPointer();
      if (kUseBrooksReadBarrier) {
        DCHECK_EQ(forward_address->GetReadBarrierPointer(), obj);
        forward_address->SetReadBarrierPointer(forward_address);
      }
      forward_address->AssertReadBarrierPointer();
    }
    return forward_address;
  }
};

void Heap::UnBindBitmaps() {
  TimingLogger::ScopedTiming t("UnBindBitmaps", GetCurrentGcIteration()->GetTimings());
  for (const auto& space : GetContinuousSpaces()) {
    if (space->IsContinuousMemMapAllocSpace()) {
      space::ContinuousMemMapAllocSpace* alloc_space = space->AsContinuousMemMapAllocSpace();
      if (alloc_space->HasBoundBitmaps()) {
        alloc_space->UnBindBitmaps();
      }
    }
  }
}

void Heap::PreZygoteFork() {
  if (!HasZygoteSpace()) {
    // We still want to GC in case there is some unreachable non moving objects that could cause a
    // suboptimal bin packing when we compact the zygote space.
    CollectGarbageInternal(collector::kGcTypeFull, kGcCauseBackground, false);
  }
  Thread* self = Thread::Current();
  MutexLock mu(self, zygote_creation_lock_);
  // Try to see if we have any Zygote spaces.
  if (HasZygoteSpace()) {
    return;
  }
  Runtime::Current()->GetInternTable()->SwapPostZygoteWithPreZygote();
  Runtime::Current()->GetClassLinker()->MoveClassTableToPreZygote();
  VLOG(heap) << "Starting PreZygoteFork";
  // Trim the pages at the end of the non moving space.
  non_moving_space_->Trim();
  // The end of the non-moving space may be protected, unprotect it so that we can copy the zygote
  // there.
  non_moving_space_->GetMemMap()->Protect(PROT_READ | PROT_WRITE);
  const bool same_space = non_moving_space_ == main_space_;
  if (kCompactZygote) {
    // Temporarily disable rosalloc verification because the zygote
    // compaction will mess up the rosalloc internal metadata.
    ScopedDisableRosAllocVerification disable_rosalloc_verif(this);
    ZygoteCompactingCollector zygote_collector(this);
    zygote_collector.BuildBins(non_moving_space_);
    // Create a new bump pointer space which we will compact into.
    space::BumpPointerSpace target_space("zygote bump space", non_moving_space_->End(),
                                         non_moving_space_->Limit());
    // Compact the bump pointer space to a new zygote bump pointer space.
    bool reset_main_space = false;
    if (IsMovingGc(collector_type_)) {
      if (collector_type_ == kCollectorTypeCC) {
        zygote_collector.SetFromSpace(region_space_);
      } else {
        zygote_collector.SetFromSpace(bump_pointer_space_);
      }
    } else {
      CHECK(main_space_ != nullptr);
      CHECK_NE(main_space_, non_moving_space_)
          << "Does not make sense to compact within the same space";
      // Copy from the main space.
      zygote_collector.SetFromSpace(main_space_);
      reset_main_space = true;
    }
    zygote_collector.SetToSpace(&target_space);
    zygote_collector.SetSwapSemiSpaces(false);
    zygote_collector.Run(kGcCauseCollectorTransition, false);
    if (reset_main_space) {
      main_space_->GetMemMap()->Protect(PROT_READ | PROT_WRITE);
      madvise(main_space_->Begin(), main_space_->Capacity(), MADV_DONTNEED);
      MemMap* mem_map = main_space_->ReleaseMemMap();
      RemoveSpace(main_space_);
      space::Space* old_main_space = main_space_;
      CreateMainMallocSpace(mem_map, kDefaultInitialSize, std::min(mem_map->Size(), growth_limit_),
                            mem_map->Size());
      delete old_main_space;
      AddSpace(main_space_);
    } else {
      if (collector_type_ == kCollectorTypeCC) {
        region_space_->GetMemMap()->Protect(PROT_READ | PROT_WRITE);
      } else {
        bump_pointer_space_->GetMemMap()->Protect(PROT_READ | PROT_WRITE);
      }
    }
    if (temp_space_ != nullptr) {
      CHECK(temp_space_->IsEmpty());
    }
    total_objects_freed_ever_ += GetCurrentGcIteration()->GetFreedObjects();
    total_bytes_freed_ever_ += GetCurrentGcIteration()->GetFreedBytes();
    // Update the end and write out image.
    non_moving_space_->SetEnd(target_space.End());
    non_moving_space_->SetLimit(target_space.Limit());
    VLOG(heap) << "Create zygote space with size=" << non_moving_space_->Size() << " bytes";
  }
  // Change the collector to the post zygote one.
  ChangeCollector(foreground_collector_type_);
  // Save the old space so that we can remove it after we complete creating the zygote space.
  space::MallocSpace* old_alloc_space = non_moving_space_;
  // Turn the current alloc space into a zygote space and obtain the new alloc space composed of
  // the remaining available space.
  // Remove the old space before creating the zygote space since creating the zygote space sets
  // the old alloc space's bitmaps to null.
  RemoveSpace(old_alloc_space);
  if (collector::SemiSpace::kUseRememberedSet) {
    // Sanity bound check.
    FindRememberedSetFromSpace(old_alloc_space)->AssertAllDirtyCardsAreWithinSpace();
    // Remove the remembered set for the now zygote space (the old
    // non-moving space). Note now that we have compacted objects into
    // the zygote space, the data in the remembered set is no longer
    // needed. The zygote space will instead have a mod-union table
    // from this point on.
    RemoveRememberedSet(old_alloc_space);
  }
  // Remaining space becomes the new non moving space.
  zygote_space_ = old_alloc_space->CreateZygoteSpace(kNonMovingSpaceName, low_memory_mode_,
                                                     &non_moving_space_);
  CHECK(!non_moving_space_->CanMoveObjects());
  if (same_space) {
    main_space_ = non_moving_space_;
    SetSpaceAsDefault(main_space_);
  }
  delete old_alloc_space;
  CHECK(HasZygoteSpace()) << "Failed creating zygote space";
  AddSpace(zygote_space_);
  non_moving_space_->SetFootprintLimit(non_moving_space_->Capacity());
  AddSpace(non_moving_space_);
  // Create the zygote space mod union table.
  accounting::ModUnionTable* mod_union_table =
      new accounting::ModUnionTableCardCache("zygote space mod-union table", this,
                                             zygote_space_);
  CHECK(mod_union_table != nullptr) << "Failed to create zygote space mod-union table";
  // Set all the cards in the mod-union table since we don't know which objects contain references
  // to large objects.
  mod_union_table->SetCards();
  AddModUnionTable(mod_union_table);
  large_object_space_->SetAllLargeObjectsAsZygoteObjects(self);
  if (collector::SemiSpace::kUseRememberedSet) {
    // Add a new remembered set for the post-zygote non-moving space.
    accounting::RememberedSet* post_zygote_non_moving_space_rem_set =
        new accounting::RememberedSet("Post-zygote non-moving space remembered set", this,
                                      non_moving_space_);
    CHECK(post_zygote_non_moving_space_rem_set != nullptr)
        << "Failed to create post-zygote non-moving space remembered set";
    AddRememberedSet(post_zygote_non_moving_space_rem_set);
  }
}

void Heap::FlushAllocStack() {
  MarkAllocStackAsLive(allocation_stack_.get());
  allocation_stack_->Reset();
}

void Heap::MarkAllocStack(accounting::ContinuousSpaceBitmap* bitmap1,
                          accounting::ContinuousSpaceBitmap* bitmap2,
                          accounting::LargeObjectBitmap* large_objects,
                          accounting::ObjectStack* stack) {
  DCHECK(bitmap1 != nullptr);
  DCHECK(bitmap2 != nullptr);
  const auto* limit = stack->End();
  for (auto* it = stack->Begin(); it != limit; ++it) {
    const mirror::Object* obj = it->AsMirrorPtr();
    if (!kUseThreadLocalAllocationStack || obj != nullptr) {
      if (bitmap1->HasAddress(obj)) {
        bitmap1->Set(obj);
      } else if (bitmap2->HasAddress(obj)) {
        bitmap2->Set(obj);
      } else {
        DCHECK(large_objects != nullptr);
        large_objects->Set(obj);
      }
    }
  }
}

void Heap::SwapSemiSpaces() {
  CHECK(bump_pointer_space_ != nullptr);
  CHECK(temp_space_ != nullptr);
  std::swap(bump_pointer_space_, temp_space_);
}

collector::GarbageCollector* Heap::Compact(space::ContinuousMemMapAllocSpace* target_space,
                                           space::ContinuousMemMapAllocSpace* source_space,
                                           GcCause gc_cause) {
  CHECK(kMovingCollector);
  if (target_space != source_space) {
    // Don't swap spaces since this isn't a typical semi space collection.
    semi_space_collector_->SetSwapSemiSpaces(false);
    semi_space_collector_->SetFromSpace(source_space);
    semi_space_collector_->SetToSpace(target_space);
    semi_space_collector_->Run(gc_cause, false);
    return semi_space_collector_;
  } else {
    CHECK(target_space->IsBumpPointerSpace())
        << "In-place compaction is only supported for bump pointer spaces";
    mark_compact_collector_->SetSpace(target_space->AsBumpPointerSpace());
    mark_compact_collector_->Run(kGcCauseCollectorTransition, false);
    return mark_compact_collector_;
  }
}

collector::GcType Heap::CollectGarbageInternal(collector::GcType gc_type, GcCause gc_cause,
                                               bool clear_soft_references) {
  Thread* self = Thread::Current();
  Runtime* runtime = Runtime::Current();
  // If the heap can't run the GC, silently fail and return that no GC was run.
  switch (gc_type) {
    case collector::kGcTypePartial: {
      if (!HasZygoteSpace()) {
        return collector::kGcTypeNone;
      }
      break;
    }
    default: {
      // Other GC types don't have any special cases which makes them not runnable. The main case
      // here is full GC.
    }
  }
  ScopedThreadStateChange tsc(self, kWaitingPerformingGc);
  Locks::mutator_lock_->AssertNotHeld(self);
  if (self->IsHandlingStackOverflow()) {
    // If we are throwing a stack overflow error we probably don't have enough remaining stack
    // space to run the GC.
    return collector::kGcTypeNone;
  }
  bool compacting_gc;
  {
    gc_complete_lock_->AssertNotHeld(self);
    ScopedThreadStateChange tsc2(self, kWaitingForGcToComplete);
    MutexLock mu(self, *gc_complete_lock_);
    // Ensure there is only one GC at a time.
    WaitForGcToCompleteLocked(gc_cause, self);
    compacting_gc = IsMovingGc(collector_type_);
    // GC can be disabled if someone has a used GetPrimitiveArrayCritical.
    if (compacting_gc && disable_moving_gc_count_ != 0) {
      LOG(WARNING) << "Skipping GC due to disable moving GC count " << disable_moving_gc_count_;
      return collector::kGcTypeNone;
    }
    collector_type_running_ = collector_type_;
  }
  if (gc_cause == kGcCauseForAlloc && runtime->HasStatsEnabled()) {
    ++runtime->GetStats()->gc_for_alloc_count;
    ++self->GetStats()->gc_for_alloc_count;
  }
  const uint64_t bytes_allocated_before_gc = GetBytesAllocated();
  // Approximate heap size.
  ATRACE_INT("Heap size (KB)", bytes_allocated_before_gc / KB);

  DCHECK_LT(gc_type, collector::kGcTypeMax);
  DCHECK_NE(gc_type, collector::kGcTypeNone);

  collector::GarbageCollector* collector = nullptr;
  // TODO: Clean this up.
  if (compacting_gc) {
    DCHECK(current_allocator_ == kAllocatorTypeBumpPointer ||
           current_allocator_ == kAllocatorTypeTLAB ||
           current_allocator_ == kAllocatorTypeRegion ||
           current_allocator_ == kAllocatorTypeRegionTLAB);
    switch (collector_type_) {
      case kCollectorTypeSS:
        // Fall-through.
      case kCollectorTypeGSS:
        semi_space_collector_->SetFromSpace(bump_pointer_space_);
        semi_space_collector_->SetToSpace(temp_space_);
        semi_space_collector_->SetSwapSemiSpaces(true);
        collector = semi_space_collector_;
        break;
      case kCollectorTypeCC:
        concurrent_copying_collector_->SetRegionSpace(region_space_);
        collector = concurrent_copying_collector_;
        break;
      case kCollectorTypeMC:
        mark_compact_collector_->SetSpace(bump_pointer_space_);
        collector = mark_compact_collector_;
        break;
      default:
        LOG(FATAL) << "Invalid collector type " << static_cast<size_t>(collector_type_);
    }
    if (collector != mark_compact_collector_ && collector != concurrent_copying_collector_) {
      temp_space_->GetMemMap()->Protect(PROT_READ | PROT_WRITE);
      CHECK(temp_space_->IsEmpty());
    }
    gc_type = collector::kGcTypeFull;  // TODO: Not hard code this in.
  } else if (current_allocator_ == kAllocatorTypeRosAlloc ||
      current_allocator_ == kAllocatorTypeDlMalloc) {
    collector = FindCollectorByGcType(gc_type);
  } else {
    LOG(FATAL) << "Invalid current allocator " << current_allocator_;
  }
  if (IsGcConcurrent()) {
    // Disable concurrent GC check so that we don't have spammy JNI requests.
    // This gets recalculated in GrowForUtilization. It is important that it is disabled /
    // calculated in the same thread so that there aren't any races that can cause it to become
    // permanantly disabled. b/17942071
    concurrent_start_bytes_ = std::numeric_limits<size_t>::max();
  }
  CHECK(collector != nullptr)
      << "Could not find garbage collector with collector_type="
      << static_cast<size_t>(collector_type_) << " and gc_type=" << gc_type;
  collector->Run(gc_cause, clear_soft_references || runtime->IsZygote());
  total_objects_freed_ever_ += GetCurrentGcIteration()->GetFreedObjects();
  total_bytes_freed_ever_ += GetCurrentGcIteration()->GetFreedBytes();
  RequestTrim(self);
  // Enqueue cleared references.
  reference_processor_.EnqueueClearedReferences(self);
  // Grow the heap so that we know when to perform the next GC.
  GrowForUtilization(collector, bytes_allocated_before_gc);
  LogGC(gc_cause, collector);
  FinishGC(self, gc_type);
  // Inform DDMS that a GC completed.
  Dbg::GcDidFinish();
  return gc_type;
}

void Heap::LogGC(GcCause gc_cause, collector::GarbageCollector* collector) {
  const size_t duration = GetCurrentGcIteration()->GetDurationNs();
  const std::vector<uint64_t>& pause_times = GetCurrentGcIteration()->GetPauseTimes();
  // Print the GC if it is an explicit GC (e.g. Runtime.gc()) or a slow GC
  // (mutator time blocked >= long_pause_log_threshold_).
  bool log_gc = gc_cause == kGcCauseExplicit;
  if (!log_gc && CareAboutPauseTimes()) {
    // GC for alloc pauses the allocating thread, so consider it as a pause.
    log_gc = duration > long_gc_log_threshold_ ||
        (gc_cause == kGcCauseForAlloc && duration > long_pause_log_threshold_);
    for (uint64_t pause : pause_times) {
      log_gc = log_gc || pause >= long_pause_log_threshold_;
    }
  }
  if (log_gc) {
    const size_t percent_free = GetPercentFree();
    const size_t current_heap_size = GetBytesAllocated();
    const size_t total_memory = GetTotalMemory();
    std::ostringstream pause_string;
    for (size_t i = 0; i < pause_times.size(); ++i) {
      pause_string << PrettyDuration((pause_times[i] / 1000) * 1000)
                   << ((i != pause_times.size() - 1) ? "," : "");
    }
    LOG(INFO) << gc_cause << " " << collector->GetName()
              << " GC freed "  << current_gc_iteration_.GetFreedObjects() << "("
              << PrettySize(current_gc_iteration_.GetFreedBytes()) << ") AllocSpace objects, "
              << current_gc_iteration_.GetFreedLargeObjects() << "("
              << PrettySize(current_gc_iteration_.GetFreedLargeObjectBytes()) << ") LOS objects, "
              << percent_free << "% free, " << PrettySize(current_heap_size) << "/"
              << PrettySize(total_memory) << ", " << "paused " << pause_string.str()
              << " total " << PrettyDuration((duration / 1000) * 1000);
    VLOG(heap) << Dumpable<TimingLogger>(*current_gc_iteration_.GetTimings());
  }
}

void Heap::FinishGC(Thread* self, collector::GcType gc_type) {
  MutexLock mu(self, *gc_complete_lock_);
  collector_type_running_ = kCollectorTypeNone;
  if (gc_type != collector::kGcTypeNone) {
    last_gc_type_ = gc_type;

    // Update stats.
    ++gc_count_last_window_;
    if (running_collection_is_blocking_) {
      // If the currently running collection was a blocking one,
      // increment the counters and reset the flag.
      ++blocking_gc_count_;
      blocking_gc_time_ += GetCurrentGcIteration()->GetDurationNs();
      ++blocking_gc_count_last_window_;
    }
    // Update the gc count rate histograms if due.
    UpdateGcCountRateHistograms();
  }
  // Reset.
  running_collection_is_blocking_ = false;
  // Wake anyone who may have been waiting for the GC to complete.
  gc_complete_cond_->Broadcast(self);
}

void Heap::UpdateGcCountRateHistograms() {
  // Invariant: if the time since the last update includes more than
  // one windows, all the GC runs (if > 0) must have happened in first
  // window because otherwise the update must have already taken place
  // at an earlier GC run. So, we report the non-first windows with
  // zero counts to the histograms.
  DCHECK_EQ(last_update_time_gc_count_rate_histograms_ % kGcCountRateHistogramWindowDuration, 0U);
  uint64_t now = NanoTime();
  DCHECK_GE(now, last_update_time_gc_count_rate_histograms_);
  uint64_t time_since_last_update = now - last_update_time_gc_count_rate_histograms_;
  uint64_t num_of_windows = time_since_last_update / kGcCountRateHistogramWindowDuration;
  if (time_since_last_update >= kGcCountRateHistogramWindowDuration) {
    // Record the first window.
    gc_count_rate_histogram_.AddValue(gc_count_last_window_ - 1);  // Exclude the current run.
    blocking_gc_count_rate_histogram_.AddValue(running_collection_is_blocking_ ?
        blocking_gc_count_last_window_ - 1 : blocking_gc_count_last_window_);
    // Record the other windows (with zero counts).
    for (uint64_t i = 0; i < num_of_windows - 1; ++i) {
      gc_count_rate_histogram_.AddValue(0);
      blocking_gc_count_rate_histogram_.AddValue(0);
    }
    // Update the last update time and reset the counters.
    last_update_time_gc_count_rate_histograms_ =
        (now / kGcCountRateHistogramWindowDuration) * kGcCountRateHistogramWindowDuration;
    gc_count_last_window_ = 1;  // Include the current run.
    blocking_gc_count_last_window_ = running_collection_is_blocking_ ? 1 : 0;
  }
  DCHECK_EQ(last_update_time_gc_count_rate_histograms_ % kGcCountRateHistogramWindowDuration, 0U);
}

class RootMatchesObjectVisitor : public SingleRootVisitor {
 public:
  explicit RootMatchesObjectVisitor(const mirror::Object* obj) : obj_(obj) { }

  void VisitRoot(mirror::Object* root, const RootInfo& info)
      OVERRIDE SHARED_LOCKS_REQUIRED(Locks::mutator_lock_) {
    if (root == obj_) {
      LOG(INFO) << "Object " << obj_ << " is a root " << info.ToString();
    }
  }

 private:
  const mirror::Object* const obj_;
};


class ScanVisitor {
 public:
  void operator()(const mirror::Object* obj) const {
    LOG(ERROR) << "Would have rescanned object " << obj;
  }
};

// Verify a reference from an object.
class VerifyReferenceVisitor : public SingleRootVisitor {
 public:
  explicit VerifyReferenceVisitor(Heap* heap, Atomic<size_t>* fail_count, bool verify_referent)
      SHARED_LOCKS_REQUIRED(Locks::mutator_lock_, Locks::heap_bitmap_lock_)
      : heap_(heap), fail_count_(fail_count), verify_referent_(verify_referent) {}

  size_t GetFailureCount() const {
    return fail_count_->LoadSequentiallyConsistent();
  }

  void operator()(mirror::Class* klass, mirror::Reference* ref) const
      SHARED_LOCKS_REQUIRED(Locks::mutator_lock_) {
    UNUSED(klass);
    if (verify_referent_) {
      VerifyReference(ref, ref->GetReferent(), mirror::Reference::ReferentOffset());
    }
  }

  void operator()(mirror::Object* obj, MemberOffset offset, bool /*is_static*/) const
      SHARED_LOCKS_REQUIRED(Locks::mutator_lock_) {
    VerifyReference(obj, obj->GetFieldObject<mirror::Object>(offset), offset);
  }

  bool IsLive(mirror::Object* obj) const NO_THREAD_SAFETY_ANALYSIS {
    return heap_->IsLiveObjectLocked(obj, true, false, true);
  }

  void VisitRoot(mirror::Object* root, const RootInfo& root_info) OVERRIDE
      SHARED_LOCKS_REQUIRED(Locks::mutator_lock_) {
    if (root == nullptr) {
      LOG(ERROR) << "Root is null with info " << root_info.GetType();
    } else if (!VerifyReference(nullptr, root, MemberOffset(0))) {
      LOG(ERROR) << "Root " << root << " is dead with type " << PrettyTypeOf(root)
          << " thread_id= " << root_info.GetThreadId() << " root_type= " << root_info.GetType();
    }
  }

 private:
  // TODO: Fix the no thread safety analysis.
  // Returns false on failure.
  bool VerifyReference(mirror::Object* obj, mirror::Object* ref, MemberOffset offset) const
      NO_THREAD_SAFETY_ANALYSIS {
    if (ref == nullptr || IsLive(ref)) {
      // Verify that the reference is live.
      return true;
    }
    if (fail_count_->FetchAndAddSequentiallyConsistent(1) == 0) {
      // Print message on only on first failure to prevent spam.
      LOG(ERROR) << "!!!!!!!!!!!!!!Heap corruption detected!!!!!!!!!!!!!!!!!!!";
    }
    if (obj != nullptr) {
      // Only do this part for non roots.
      accounting::CardTable* card_table = heap_->GetCardTable();
      accounting::ObjectStack* alloc_stack = heap_->allocation_stack_.get();
      accounting::ObjectStack* live_stack = heap_->live_stack_.get();
      uint8_t* card_addr = card_table->CardFromAddr(obj);
      LOG(ERROR) << "Object " << obj << " references dead object " << ref << " at offset "
                 << offset << "\n card value = " << static_cast<int>(*card_addr);
      if (heap_->IsValidObjectAddress(obj->GetClass())) {
        LOG(ERROR) << "Obj type " << PrettyTypeOf(obj);
      } else {
        LOG(ERROR) << "Object " << obj << " class(" << obj->GetClass() << ") not a heap address";
      }

      // Attempt to find the class inside of the recently freed objects.
      space::ContinuousSpace* ref_space = heap_->FindContinuousSpaceFromObject(ref, true);
      if (ref_space != nullptr && ref_space->IsMallocSpace()) {
        space::MallocSpace* space = ref_space->AsMallocSpace();
        mirror::Class* ref_class = space->FindRecentFreedObject(ref);
        if (ref_class != nullptr) {
          LOG(ERROR) << "Reference " << ref << " found as a recently freed object with class "
                     << PrettyClass(ref_class);
        } else {
          LOG(ERROR) << "Reference " << ref << " not found as a recently freed object";
        }
      }

      if (ref->GetClass() != nullptr && heap_->IsValidObjectAddress(ref->GetClass()) &&
          ref->GetClass()->IsClass()) {
        LOG(ERROR) << "Ref type " << PrettyTypeOf(ref);
      } else {
        LOG(ERROR) << "Ref " << ref << " class(" << ref->GetClass()
                   << ") is not a valid heap address";
      }

      card_table->CheckAddrIsInCardTable(reinterpret_cast<const uint8_t*>(obj));
      void* cover_begin = card_table->AddrFromCard(card_addr);
      void* cover_end = reinterpret_cast<void*>(reinterpret_cast<size_t>(cover_begin) +
          accounting::CardTable::kCardSize);
      LOG(ERROR) << "Card " << reinterpret_cast<void*>(card_addr) << " covers " << cover_begin
          << "-" << cover_end;
      accounting::ContinuousSpaceBitmap* bitmap =
          heap_->GetLiveBitmap()->GetContinuousSpaceBitmap(obj);

      if (bitmap == nullptr) {
        LOG(ERROR) << "Object " << obj << " has no bitmap";
        if (!VerifyClassClass(obj->GetClass())) {
          LOG(ERROR) << "Object " << obj << " failed class verification!";
        }
      } else {
        // Print out how the object is live.
        if (bitmap->Test(obj)) {
          LOG(ERROR) << "Object " << obj << " found in live bitmap";
        }
        if (alloc_stack->Contains(const_cast<mirror::Object*>(obj))) {
          LOG(ERROR) << "Object " << obj << " found in allocation stack";
        }
        if (live_stack->Contains(const_cast<mirror::Object*>(obj))) {
          LOG(ERROR) << "Object " << obj << " found in live stack";
        }
        if (alloc_stack->Contains(const_cast<mirror::Object*>(ref))) {
          LOG(ERROR) << "Ref " << ref << " found in allocation stack";
        }
        if (live_stack->Contains(const_cast<mirror::Object*>(ref))) {
          LOG(ERROR) << "Ref " << ref << " found in live stack";
        }
        // Attempt to see if the card table missed the reference.
        ScanVisitor scan_visitor;
        uint8_t* byte_cover_begin = reinterpret_cast<uint8_t*>(card_table->AddrFromCard(card_addr));
        card_table->Scan<false>(bitmap, byte_cover_begin,
                                byte_cover_begin + accounting::CardTable::kCardSize, scan_visitor);
      }

      // Search to see if any of the roots reference our object.
      RootMatchesObjectVisitor visitor1(obj);
      Runtime::Current()->VisitRoots(&visitor1);
      // Search to see if any of the roots reference our reference.
      RootMatchesObjectVisitor visitor2(ref);
      Runtime::Current()->VisitRoots(&visitor2);
    }
    return false;
  }

  Heap* const heap_;
  Atomic<size_t>* const fail_count_;
  const bool verify_referent_;
};

// Verify all references within an object, for use with HeapBitmap::Visit.
class VerifyObjectVisitor {
 public:
  explicit VerifyObjectVisitor(Heap* heap, Atomic<size_t>* fail_count, bool verify_referent)
      : heap_(heap), fail_count_(fail_count), verify_referent_(verify_referent) {
  }

  void operator()(mirror::Object* obj) const
      SHARED_LOCKS_REQUIRED(Locks::mutator_lock_, Locks::heap_bitmap_lock_) {
    // Note: we are verifying the references in obj but not obj itself, this is because obj must
    // be live or else how did we find it in the live bitmap?
    VerifyReferenceVisitor visitor(heap_, fail_count_, verify_referent_);
    // The class doesn't count as a reference but we should verify it anyways.
    obj->VisitReferences<true>(visitor, visitor);
  }

  static void VisitCallback(mirror::Object* obj, void* arg)
      SHARED_LOCKS_REQUIRED(Locks::mutator_lock_, Locks::heap_bitmap_lock_) {
    VerifyObjectVisitor* visitor = reinterpret_cast<VerifyObjectVisitor*>(arg);
    visitor->operator()(obj);
  }

  void VerifyRoots() SHARED_LOCKS_REQUIRED(Locks::mutator_lock_)
      LOCKS_EXCLUDED(Locks::heap_bitmap_lock_) {
    ReaderMutexLock mu(Thread::Current(), *Locks::heap_bitmap_lock_);
    VerifyReferenceVisitor visitor(heap_, fail_count_, verify_referent_);
    Runtime::Current()->VisitRoots(&visitor);
  }

  size_t GetFailureCount() const {
    return fail_count_->LoadSequentiallyConsistent();
  }

 private:
  Heap* const heap_;
  Atomic<size_t>* const fail_count_;
  const bool verify_referent_;
};

void Heap::PushOnAllocationStackWithInternalGC(Thread* self, mirror::Object** obj) {
  // Slow path, the allocation stack push back must have already failed.
  DCHECK(!allocation_stack_->AtomicPushBack(*obj));
  do {
    // TODO: Add handle VerifyObject.
    StackHandleScope<1> hs(self);
    HandleWrapper<mirror::Object> wrapper(hs.NewHandleWrapper(obj));
    // Push our object into the reserve region of the allocaiton stack. This is only required due
    // to heap verification requiring that roots are live (either in the live bitmap or in the
    // allocation stack).
    CHECK(allocation_stack_->AtomicPushBackIgnoreGrowthLimit(*obj));
    CollectGarbageInternal(collector::kGcTypeSticky, kGcCauseForAlloc, false);
  } while (!allocation_stack_->AtomicPushBack(*obj));
}

void Heap::PushOnThreadLocalAllocationStackWithInternalGC(Thread* self, mirror::Object** obj) {
  // Slow path, the allocation stack push back must have already failed.
  DCHECK(!self->PushOnThreadLocalAllocationStack(*obj));
  StackReference<mirror::Object>* start_address;
  StackReference<mirror::Object>* end_address;
  while (!allocation_stack_->AtomicBumpBack(kThreadLocalAllocationStackSize, &start_address,
                                            &end_address)) {
    // TODO: Add handle VerifyObject.
    StackHandleScope<1> hs(self);
    HandleWrapper<mirror::Object> wrapper(hs.NewHandleWrapper(obj));
    // Push our object into the reserve region of the allocaiton stack. This is only required due
    // to heap verification requiring that roots are live (either in the live bitmap or in the
    // allocation stack).
    CHECK(allocation_stack_->AtomicPushBackIgnoreGrowthLimit(*obj));
    // Push into the reserve allocation stack.
    CollectGarbageInternal(collector::kGcTypeSticky, kGcCauseForAlloc, false);
  }
  self->SetThreadLocalAllocationStack(start_address, end_address);
  // Retry on the new thread-local allocation stack.
  CHECK(self->PushOnThreadLocalAllocationStack(*obj));  // Must succeed.
}

// Must do this with mutators suspended since we are directly accessing the allocation stacks.
size_t Heap::VerifyHeapReferences(bool verify_referents) {
  Thread* self = Thread::Current();
  Locks::mutator_lock_->AssertExclusiveHeld(self);
  // Lets sort our allocation stacks so that we can efficiently binary search them.
  allocation_stack_->Sort();
  live_stack_->Sort();
  // Since we sorted the allocation stack content, need to revoke all
  // thread-local allocation stacks.
  RevokeAllThreadLocalAllocationStacks(self);
  Atomic<size_t> fail_count_(0);
  VerifyObjectVisitor visitor(this, &fail_count_, verify_referents);
  // Verify objects in the allocation stack since these will be objects which were:
  // 1. Allocated prior to the GC (pre GC verification).
  // 2. Allocated during the GC (pre sweep GC verification).
  // We don't want to verify the objects in the live stack since they themselves may be
  // pointing to dead objects if they are not reachable.
  VisitObjectsPaused(VerifyObjectVisitor::VisitCallback, &visitor);
  // Verify the roots:
  visitor.VerifyRoots();
  if (visitor.GetFailureCount() > 0) {
    // Dump mod-union tables.
    for (const auto& table_pair : mod_union_tables_) {
      accounting::ModUnionTable* mod_union_table = table_pair.second;
      mod_union_table->Dump(LOG(ERROR) << mod_union_table->GetName() << ": ");
    }
    // Dump remembered sets.
    for (const auto& table_pair : remembered_sets_) {
      accounting::RememberedSet* remembered_set = table_pair.second;
      remembered_set->Dump(LOG(ERROR) << remembered_set->GetName() << ": ");
    }
    DumpSpaces(LOG(ERROR));
  }
  return visitor.GetFailureCount();
}

class VerifyReferenceCardVisitor {
 public:
  VerifyReferenceCardVisitor(Heap* heap, bool* failed)
      SHARED_LOCKS_REQUIRED(Locks::mutator_lock_,
                            Locks::heap_bitmap_lock_)
      : heap_(heap), failed_(failed) {
  }

  // TODO: Fix lock analysis to not use NO_THREAD_SAFETY_ANALYSIS, requires support for
  // annotalysis on visitors.
  void operator()(mirror::Object* obj, MemberOffset offset, bool is_static) const
      NO_THREAD_SAFETY_ANALYSIS {
    mirror::Object* ref = obj->GetFieldObject<mirror::Object>(offset);
    // Filter out class references since changing an object's class does not mark the card as dirty.
    // Also handles large objects, since the only reference they hold is a class reference.
    if (ref != nullptr && !ref->IsClass()) {
      accounting::CardTable* card_table = heap_->GetCardTable();
      // If the object is not dirty and it is referencing something in the live stack other than
      // class, then it must be on a dirty card.
      if (!card_table->AddrIsInCardTable(obj)) {
        LOG(ERROR) << "Object " << obj << " is not in the address range of the card table";
        *failed_ = true;
      } else if (!card_table->IsDirty(obj)) {
        // TODO: Check mod-union tables.
        // Card should be either kCardDirty if it got re-dirtied after we aged it, or
        // kCardDirty - 1 if it didnt get touched since we aged it.
        accounting::ObjectStack* live_stack = heap_->live_stack_.get();
        if (live_stack->ContainsSorted(ref)) {
          if (live_stack->ContainsSorted(obj)) {
            LOG(ERROR) << "Object " << obj << " found in live stack";
          }
          if (heap_->GetLiveBitmap()->Test(obj)) {
            LOG(ERROR) << "Object " << obj << " found in live bitmap";
          }
          LOG(ERROR) << "Object " << obj << " " << PrettyTypeOf(obj)
                    << " references " << ref << " " << PrettyTypeOf(ref) << " in live stack";

          // Print which field of the object is dead.
          if (!obj->IsObjectArray()) {
            mirror::Class* klass = is_static ? obj->AsClass() : obj->GetClass();
            CHECK(klass != nullptr);
            auto* fields = is_static ? klass->GetSFields() : klass->GetIFields();
            auto num_fields = is_static ? klass->NumStaticFields() : klass->NumInstanceFields();
            CHECK_EQ(fields == nullptr, num_fields == 0u);
            for (size_t i = 0; i < num_fields; ++i) {
              ArtField* cur = &fields[i];
              if (cur->GetOffset().Int32Value() == offset.Int32Value()) {
                LOG(ERROR) << (is_static ? "Static " : "") << "field in the live stack is "
                          << PrettyField(cur);
                break;
              }
            }
          } else {
            mirror::ObjectArray<mirror::Object>* object_array =
                obj->AsObjectArray<mirror::Object>();
            for (int32_t i = 0; i < object_array->GetLength(); ++i) {
              if (object_array->Get(i) == ref) {
                LOG(ERROR) << (is_static ? "Static " : "") << "obj[" << i << "] = ref";
              }
            }
          }

          *failed_ = true;
        }
      }
    }
  }

 private:
  Heap* const heap_;
  bool* const failed_;
};

class VerifyLiveStackReferences {
 public:
  explicit VerifyLiveStackReferences(Heap* heap)
      : heap_(heap),
        failed_(false) {}

  void operator()(mirror::Object* obj) const
      SHARED_LOCKS_REQUIRED(Locks::mutator_lock_, Locks::heap_bitmap_lock_) {
    VerifyReferenceCardVisitor visitor(heap_, const_cast<bool*>(&failed_));
    obj->VisitReferences<true>(visitor, VoidFunctor());
  }

  bool Failed() const {
    return failed_;
  }

 private:
  Heap* const heap_;
  bool failed_;
};

bool Heap::VerifyMissingCardMarks() {
  Thread* self = Thread::Current();
  Locks::mutator_lock_->AssertExclusiveHeld(self);
  // We need to sort the live stack since we binary search it.
  live_stack_->Sort();
  // Since we sorted the allocation stack content, need to revoke all
  // thread-local allocation stacks.
  RevokeAllThreadLocalAllocationStacks(self);
  VerifyLiveStackReferences visitor(this);
  GetLiveBitmap()->Visit(visitor);
  // We can verify objects in the live stack since none of these should reference dead objects.
  for (auto* it = live_stack_->Begin(); it != live_stack_->End(); ++it) {
    if (!kUseThreadLocalAllocationStack || it->AsMirrorPtr() != nullptr) {
      visitor(it->AsMirrorPtr());
    }
  }
  return !visitor.Failed();
}

void Heap::SwapStacks(Thread* self) {
  UNUSED(self);
  if (kUseThreadLocalAllocationStack) {
    live_stack_->AssertAllZero();
  }
  allocation_stack_.swap(live_stack_);
}

void Heap::RevokeAllThreadLocalAllocationStacks(Thread* self) {
  // This must be called only during the pause.
  DCHECK(Locks::mutator_lock_->IsExclusiveHeld(self));
  MutexLock mu(self, *Locks::runtime_shutdown_lock_);
  MutexLock mu2(self, *Locks::thread_list_lock_);
  std::list<Thread*> thread_list = Runtime::Current()->GetThreadList()->GetList();
  for (Thread* t : thread_list) {
    t->RevokeThreadLocalAllocationStack();
  }
}

void Heap::AssertThreadLocalBuffersAreRevoked(Thread* thread) {
  if (kIsDebugBuild) {
    if (rosalloc_space_ != nullptr) {
      rosalloc_space_->AssertThreadLocalBuffersAreRevoked(thread);
    }
    if (bump_pointer_space_ != nullptr) {
      bump_pointer_space_->AssertThreadLocalBuffersAreRevoked(thread);
    }
  }
}

void Heap::AssertAllBumpPointerSpaceThreadLocalBuffersAreRevoked() {
  if (kIsDebugBuild) {
    if (bump_pointer_space_ != nullptr) {
      bump_pointer_space_->AssertAllThreadLocalBuffersAreRevoked();
    }
  }
}

accounting::ModUnionTable* Heap::FindModUnionTableFromSpace(space::Space* space) {
  auto it = mod_union_tables_.find(space);
  if (it == mod_union_tables_.end()) {
    return nullptr;
  }
  return it->second;
}

accounting::RememberedSet* Heap::FindRememberedSetFromSpace(space::Space* space) {
  auto it = remembered_sets_.find(space);
  if (it == remembered_sets_.end()) {
    return nullptr;
  }
  return it->second;
}

void Heap::ProcessCards(TimingLogger* timings, bool use_rem_sets, bool process_alloc_space_cards,
                        bool clear_alloc_space_cards) {
  TimingLogger::ScopedTiming t(__FUNCTION__, timings);
  // Clear cards and keep track of cards cleared in the mod-union table.
  for (const auto& space : continuous_spaces_) {
    accounting::ModUnionTable* table = FindModUnionTableFromSpace(space);
    accounting::RememberedSet* rem_set = FindRememberedSetFromSpace(space);
    if (table != nullptr) {
      const char* name = space->IsZygoteSpace() ? "ZygoteModUnionClearCards" :
          "ImageModUnionClearCards";
      TimingLogger::ScopedTiming t2(name, timings);
      table->ClearCards();
    } else if (use_rem_sets && rem_set != nullptr) {
      DCHECK(collector::SemiSpace::kUseRememberedSet && collector_type_ == kCollectorTypeGSS)
          << static_cast<int>(collector_type_);
      TimingLogger::ScopedTiming t2("AllocSpaceRemSetClearCards", timings);
      rem_set->ClearCards();
    } else if (process_alloc_space_cards) {
      TimingLogger::ScopedTiming t2("AllocSpaceClearCards", timings);
      if (clear_alloc_space_cards) {
        card_table_->ClearCardRange(space->Begin(), space->End());
      } else {
        // No mod union table for the AllocSpace. Age the cards so that the GC knows that these
        // cards were dirty before the GC started.
        // TODO: Need to use atomic for the case where aged(cleaning thread) -> dirty(other thread)
        // -> clean(cleaning thread).
        // The races are we either end up with: Aged card, unaged card. Since we have the
        // checkpoint roots and then we scan / update mod union tables after. We will always
        // scan either card. If we end up with the non aged card, we scan it it in the pause.
        card_table_->ModifyCardsAtomic(space->Begin(), space->End(), AgeCardVisitor(),
                                       VoidFunctor());
      }
    }
  }
}

static void IdentityMarkHeapReferenceCallback(mirror::HeapReference<mirror::Object>*, void*) {
}

void Heap::PreGcVerificationPaused(collector::GarbageCollector* gc) {
  Thread* const self = Thread::Current();
  TimingLogger* const timings = current_gc_iteration_.GetTimings();
  TimingLogger::ScopedTiming t(__FUNCTION__, timings);
  if (verify_pre_gc_heap_) {
    TimingLogger::ScopedTiming t2("(Paused)PreGcVerifyHeapReferences", timings);
    size_t failures = VerifyHeapReferences();
    if (failures > 0) {
      LOG(FATAL) << "Pre " << gc->GetName() << " heap verification failed with " << failures
          << " failures";
    }
  }
  // Check that all objects which reference things in the live stack are on dirty cards.
  if (verify_missing_card_marks_) {
    TimingLogger::ScopedTiming t2("(Paused)PreGcVerifyMissingCardMarks", timings);
    ReaderMutexLock mu(self, *Locks::heap_bitmap_lock_);
    SwapStacks(self);
    // Sort the live stack so that we can quickly binary search it later.
    CHECK(VerifyMissingCardMarks()) << "Pre " << gc->GetName()
                                    << " missing card mark verification failed\n" << DumpSpaces();
    SwapStacks(self);
  }
  if (verify_mod_union_table_) {
    TimingLogger::ScopedTiming t2("(Paused)PreGcVerifyModUnionTables", timings);
    ReaderMutexLock reader_lock(self, *Locks::heap_bitmap_lock_);
    for (const auto& table_pair : mod_union_tables_) {
      accounting::ModUnionTable* mod_union_table = table_pair.second;
      mod_union_table->UpdateAndMarkReferences(IdentityMarkHeapReferenceCallback, nullptr);
      mod_union_table->Verify();
    }
  }
}

void Heap::PreGcVerification(collector::GarbageCollector* gc) {
  if (verify_pre_gc_heap_ || verify_missing_card_marks_ || verify_mod_union_table_) {
    collector::GarbageCollector::ScopedPause pause(gc);
    PreGcVerificationPaused(gc);
  }
}

void Heap::PrePauseRosAllocVerification(collector::GarbageCollector* gc) {
  UNUSED(gc);
  // TODO: Add a new runtime option for this?
  if (verify_pre_gc_rosalloc_) {
    RosAllocVerification(current_gc_iteration_.GetTimings(), "PreGcRosAllocVerification");
  }
}

void Heap::PreSweepingGcVerification(collector::GarbageCollector* gc) {
  Thread* const self = Thread::Current();
  TimingLogger* const timings = current_gc_iteration_.GetTimings();
  TimingLogger::ScopedTiming t(__FUNCTION__, timings);
  // Called before sweeping occurs since we want to make sure we are not going so reclaim any
  // reachable objects.
  if (verify_pre_sweeping_heap_) {
    TimingLogger::ScopedTiming t2("(Paused)PostSweepingVerifyHeapReferences", timings);
    CHECK_NE(self->GetState(), kRunnable);
    {
      WriterMutexLock mu(self, *Locks::heap_bitmap_lock_);
      // Swapping bound bitmaps does nothing.
      gc->SwapBitmaps();
    }
    // Pass in false since concurrent reference processing can mean that the reference referents
    // may point to dead objects at the point which PreSweepingGcVerification is called.
    size_t failures = VerifyHeapReferences(false);
    if (failures > 0) {
      LOG(FATAL) << "Pre sweeping " << gc->GetName() << " GC verification failed with " << failures
          << " failures";
    }
    {
      WriterMutexLock mu(self, *Locks::heap_bitmap_lock_);
      gc->SwapBitmaps();
    }
  }
  if (verify_pre_sweeping_rosalloc_) {
    RosAllocVerification(timings, "PreSweepingRosAllocVerification");
  }
}

void Heap::PostGcVerificationPaused(collector::GarbageCollector* gc) {
  // Only pause if we have to do some verification.
  Thread* const self = Thread::Current();
  TimingLogger* const timings = GetCurrentGcIteration()->GetTimings();
  TimingLogger::ScopedTiming t(__FUNCTION__, timings);
  if (verify_system_weaks_) {
    ReaderMutexLock mu2(self, *Locks::heap_bitmap_lock_);
    collector::MarkSweep* mark_sweep = down_cast<collector::MarkSweep*>(gc);
    mark_sweep->VerifySystemWeaks();
  }
  if (verify_post_gc_rosalloc_) {
    RosAllocVerification(timings, "(Paused)PostGcRosAllocVerification");
  }
  if (verify_post_gc_heap_) {
    TimingLogger::ScopedTiming t2("(Paused)PostGcVerifyHeapReferences", timings);
    size_t failures = VerifyHeapReferences();
    if (failures > 0) {
      LOG(FATAL) << "Pre " << gc->GetName() << " heap verification failed with " << failures
          << " failures";
    }
  }
}

void Heap::PostGcVerification(collector::GarbageCollector* gc) {
  if (verify_system_weaks_ || verify_post_gc_rosalloc_ || verify_post_gc_heap_) {
    collector::GarbageCollector::ScopedPause pause(gc);
    PostGcVerificationPaused(gc);
  }
}

void Heap::RosAllocVerification(TimingLogger* timings, const char* name) {
  TimingLogger::ScopedTiming t(name, timings);
  for (const auto& space : continuous_spaces_) {
    if (space->IsRosAllocSpace()) {
      VLOG(heap) << name << " : " << space->GetName();
      space->AsRosAllocSpace()->Verify();
    }
  }
}

collector::GcType Heap::WaitForGcToComplete(GcCause cause, Thread* self) {
  ScopedThreadStateChange tsc(self, kWaitingForGcToComplete);
  MutexLock mu(self, *gc_complete_lock_);
  return WaitForGcToCompleteLocked(cause, self);
}

collector::GcType Heap::WaitForGcToCompleteLocked(GcCause cause, Thread* self) {
  collector::GcType last_gc_type = collector::kGcTypeNone;
  uint64_t wait_start = NanoTime();
  while (collector_type_running_ != kCollectorTypeNone) {
    if (self != task_processor_->GetRunningThread()) {
      // The current thread is about to wait for a currently running
      // collection to finish. If the waiting thread is not the heap
      // task daemon thread, the currently running collection is
      // considered as a blocking GC.
      running_collection_is_blocking_ = true;
      VLOG(gc) << "Waiting for a blocking GC " << cause;
    }
    ATRACE_BEGIN("GC: Wait For Completion");
    // We must wait, change thread state then sleep on gc_complete_cond_;
    gc_complete_cond_->Wait(self);
    last_gc_type = last_gc_type_;
    ATRACE_END();
  }
  uint64_t wait_time = NanoTime() - wait_start;
  total_wait_time_ += wait_time;
  if (wait_time > long_pause_log_threshold_) {
    LOG(INFO) << "WaitForGcToComplete blocked for " << PrettyDuration(wait_time)
        << " for cause " << cause;
  }
  if (self != task_processor_->GetRunningThread()) {
    // The current thread is about to run a collection. If the thread
    // is not the heap task daemon thread, it's considered as a
    // blocking GC (i.e., blocking itself).
    running_collection_is_blocking_ = true;
    VLOG(gc) << "Starting a blocking GC " << cause;
  }
  return last_gc_type;
}

void Heap::DumpForSigQuit(std::ostream& os) {
  os << "Heap: " << GetPercentFree() << "% free, " << PrettySize(GetBytesAllocated()) << "/"
     << PrettySize(GetTotalMemory()) << "; " << GetObjectsAllocated() << " objects\n";
  DumpGcPerformanceInfo(os);
}

size_t Heap::GetPercentFree() {
  return static_cast<size_t>(100.0f * static_cast<float>(GetFreeMemory()) / max_allowed_footprint_);
}

void Heap::SetIdealFootprint(size_t max_allowed_footprint) {
  if (max_allowed_footprint > GetMaxMemory()) {
    VLOG(gc) << "Clamp target GC heap from " << PrettySize(max_allowed_footprint) << " to "
             << PrettySize(GetMaxMemory());
    max_allowed_footprint = GetMaxMemory();
  }
  max_allowed_footprint_ = max_allowed_footprint;
}

bool Heap::IsMovableObject(const mirror::Object* obj) const {
  if (kMovingCollector) {
    space::Space* space = FindContinuousSpaceFromObject(obj, true);
    if (space != nullptr) {
      // TODO: Check large object?
      return space->CanMoveObjects();
    }
  }
  return false;
}

void Heap::UpdateMaxNativeFootprint() {
  size_t native_size = native_bytes_allocated_.LoadRelaxed();
  // TODO: Tune the native heap utilization to be a value other than the java heap utilization.
  size_t target_size = native_size / GetTargetHeapUtilization();
  if (target_size > native_size + max_free_) {
    target_size = native_size + max_free_;
  } else if (target_size < native_size + min_free_) {
    target_size = native_size + min_free_;
  }
  native_footprint_gc_watermark_ = std::min(growth_limit_, target_size);
}

collector::GarbageCollector* Heap::FindCollectorByGcType(collector::GcType gc_type) {
  for (const auto& collector : garbage_collectors_) {
    if (collector->GetCollectorType() == collector_type_ &&
        collector->GetGcType() == gc_type) {
      return collector;
    }
  }
  return nullptr;
}

double Heap::HeapGrowthMultiplier() const {
  // If we don't care about pause times we are background, so return 1.0.
  if (!CareAboutPauseTimes() || IsLowMemoryMode()) {
    return 1.0;
  }
  return foreground_heap_growth_multiplier_;
}

void Heap::GrowForUtilization(collector::GarbageCollector* collector_ran,
                              uint64_t bytes_allocated_before_gc) {
  // We know what our utilization is at this moment.
  // This doesn't actually resize any memory. It just lets the heap grow more when necessary.
  const uint64_t bytes_allocated = GetBytesAllocated();
  uint64_t target_size;
  collector::GcType gc_type = collector_ran->GetGcType();
  const double multiplier = HeapGrowthMultiplier();  // Use the multiplier to grow more for
  // foreground.
  const uint64_t adjusted_min_free = static_cast<uint64_t>(min_free_ * multiplier);
  const uint64_t adjusted_max_free = static_cast<uint64_t>(max_free_ * multiplier);
  if (gc_type != collector::kGcTypeSticky) {
    // Grow the heap for non sticky GC.
    ssize_t delta = bytes_allocated / GetTargetHeapUtilization() - bytes_allocated;
    CHECK_GE(delta, 0);
    target_size = bytes_allocated + delta * multiplier;
    target_size = std::min(target_size, bytes_allocated + adjusted_max_free);
    target_size = std::max(target_size, bytes_allocated + adjusted_min_free);
    native_need_to_run_finalization_ = true;
    next_gc_type_ = collector::kGcTypeSticky;
  } else {
    collector::GcType non_sticky_gc_type =
        HasZygoteSpace() ? collector::kGcTypePartial : collector::kGcTypeFull;
    // Find what the next non sticky collector will be.
    collector::GarbageCollector* non_sticky_collector = FindCollectorByGcType(non_sticky_gc_type);
    // If the throughput of the current sticky GC >= throughput of the non sticky collector, then
    // do another sticky collection next.
    // We also check that the bytes allocated aren't over the footprint limit in order to prevent a
    // pathological case where dead objects which aren't reclaimed by sticky could get accumulated
    // if the sticky GC throughput always remained >= the full/partial throughput.
    if (current_gc_iteration_.GetEstimatedThroughput() * kStickyGcThroughputAdjustment >=
        non_sticky_collector->GetEstimatedMeanThroughput() &&
        non_sticky_collector->NumberOfIterations() > 0 &&
        bytes_allocated <= max_allowed_footprint_) {
      next_gc_type_ = collector::kGcTypeSticky;
    } else {
      next_gc_type_ = non_sticky_gc_type;
    }
    // If we have freed enough memory, shrink the heap back down.
    if (bytes_allocated + adjusted_max_free < max_allowed_footprint_) {
      target_size = bytes_allocated + adjusted_max_free;
    } else {
      target_size = std::max(bytes_allocated, static_cast<uint64_t>(max_allowed_footprint_));
    }
  }
  if (!ignore_max_footprint_) {
    SetIdealFootprint(target_size);
    if (IsGcConcurrent()) {
      const uint64_t freed_bytes = current_gc_iteration_.GetFreedBytes() +
          current_gc_iteration_.GetFreedLargeObjectBytes() +
          current_gc_iteration_.GetFreedRevokeBytes();
      // Bytes allocated will shrink by freed_bytes after the GC runs, so if we want to figure out
      // how many bytes were allocated during the GC we need to add freed_bytes back on.
      CHECK_GE(bytes_allocated + freed_bytes, bytes_allocated_before_gc);
      const uint64_t bytes_allocated_during_gc = bytes_allocated + freed_bytes -
          bytes_allocated_before_gc;
      // Calculate when to perform the next ConcurrentGC.
      // Calculate the estimated GC duration.
      const double gc_duration_seconds = NsToMs(current_gc_iteration_.GetDurationNs()) / 1000.0;
      // Estimate how many remaining bytes we will have when we need to start the next GC.
      size_t remaining_bytes = bytes_allocated_during_gc * gc_duration_seconds;
      remaining_bytes = std::min(remaining_bytes, kMaxConcurrentRemainingBytes);
      remaining_bytes = std::max(remaining_bytes, kMinConcurrentRemainingBytes);
      if (UNLIKELY(remaining_bytes > max_allowed_footprint_)) {
        // A never going to happen situation that from the estimated allocation rate we will exceed
        // the applications entire footprint with the given estimated allocation rate. Schedule
        // another GC nearly straight away.
        remaining_bytes = kMinConcurrentRemainingBytes;
      }
      DCHECK_LE(remaining_bytes, max_allowed_footprint_);
      DCHECK_LE(max_allowed_footprint_, GetMaxMemory());
      // Start a concurrent GC when we get close to the estimated remaining bytes. When the
      // allocation rate is very high, remaining_bytes could tell us that we should start a GC
      // right away.
      concurrent_start_bytes_ = std::max(max_allowed_footprint_ - remaining_bytes,
                                         static_cast<size_t>(bytes_allocated));
    }
  }
}

void Heap::ClampGrowthLimit() {
  // Use heap bitmap lock to guard against races with BindLiveToMarkBitmap.
  WriterMutexLock mu(Thread::Current(), *Locks::heap_bitmap_lock_);
  capacity_ = growth_limit_;
  for (const auto& space : continuous_spaces_) {
    if (space->IsMallocSpace()) {
      gc::space::MallocSpace* malloc_space = space->AsMallocSpace();
      malloc_space->ClampGrowthLimit();
    }
  }
  // This space isn't added for performance reasons.
  if (main_space_backup_.get() != nullptr) {
    main_space_backup_->ClampGrowthLimit();
  }
}

void Heap::ClearGrowthLimit() {
  growth_limit_ = capacity_;
  for (const auto& space : continuous_spaces_) {
    if (space->IsMallocSpace()) {
      gc::space::MallocSpace* malloc_space = space->AsMallocSpace();
      malloc_space->ClearGrowthLimit();
      malloc_space->SetFootprintLimit(malloc_space->Capacity());
    }
  }
  // This space isn't added for performance reasons.
  if (main_space_backup_.get() != nullptr) {
    main_space_backup_->ClearGrowthLimit();
    main_space_backup_->SetFootprintLimit(main_space_backup_->Capacity());
  }
}

void Heap::AddFinalizerReference(Thread* self, mirror::Object** object) {
  ScopedObjectAccess soa(self);
  ScopedLocalRef<jobject> arg(self->GetJniEnv(), soa.AddLocalReference<jobject>(*object));
  jvalue args[1];
  args[0].l = arg.get();
  InvokeWithJValues(soa, nullptr, WellKnownClasses::java_lang_ref_FinalizerReference_add, args);
  // Restore object in case it gets moved.
  *object = soa.Decode<mirror::Object*>(arg.get());
}

void Heap::RequestConcurrentGCAndSaveObject(Thread* self, bool force_full, mirror::Object** obj) {
  StackHandleScope<1> hs(self);
  HandleWrapper<mirror::Object> wrapper(hs.NewHandleWrapper(obj));
  RequestConcurrentGC(self, force_full);
}

class Heap::ConcurrentGCTask : public HeapTask {
 public:
  explicit ConcurrentGCTask(uint64_t target_time, bool force_full)
    : HeapTask(target_time), force_full_(force_full) { }
  virtual void Run(Thread* self) OVERRIDE {
    gc::Heap* heap = Runtime::Current()->GetHeap();
    heap->ConcurrentGC(self, force_full_);
    heap->ClearConcurrentGCRequest();
  }

 private:
  const bool force_full_;  // If true, force full (or partial) collection.
};

static bool CanAddHeapTask(Thread* self) LOCKS_EXCLUDED(Locks::runtime_shutdown_lock_) {
  Runtime* runtime = Runtime::Current();
  return runtime != nullptr && runtime->IsFinishedStarting() && !runtime->IsShuttingDown(self) &&
      !self->IsHandlingStackOverflow();
}

void Heap::ClearConcurrentGCRequest() {
  concurrent_gc_pending_.StoreRelaxed(false);
}

void Heap::RequestConcurrentGC(Thread* self, bool force_full) {
  if (CanAddHeapTask(self) &&
      concurrent_gc_pending_.CompareExchangeStrongSequentiallyConsistent(false, true)) {
    task_processor_->AddTask(self, new ConcurrentGCTask(NanoTime(),  // Start straight away.
                                                        force_full));
  }
}

void Heap::ConcurrentGC(Thread* self, bool force_full) {
  if (!Runtime::Current()->IsShuttingDown(self)) {
    // Wait for any GCs currently running to finish.
    if (WaitForGcToComplete(kGcCauseBackground, self) == collector::kGcTypeNone) {
      // If the we can't run the GC type we wanted to run, find the next appropriate one and try that
      // instead. E.g. can't do partial, so do full instead.
      collector::GcType next_gc_type = next_gc_type_;
      // If forcing full and next gc type is sticky, override with a non-sticky type.
      if (force_full && next_gc_type == collector::kGcTypeSticky) {
        next_gc_type = HasZygoteSpace() ? collector::kGcTypePartial : collector::kGcTypeFull;
      }
      if (CollectGarbageInternal(next_gc_type, kGcCauseBackground, false) ==
          collector::kGcTypeNone) {
        for (collector::GcType gc_type : gc_plan_) {
          // Attempt to run the collector, if we succeed, we are done.
          if (gc_type > next_gc_type &&
              CollectGarbageInternal(gc_type, kGcCauseBackground, false) !=
                  collector::kGcTypeNone) {
            break;
          }
        }
      }
    }
  }
}

class Heap::CollectorTransitionTask : public HeapTask {
 public:
  explicit CollectorTransitionTask(uint64_t target_time) : HeapTask(target_time) { }
  virtual void Run(Thread* self) OVERRIDE {
    gc::Heap* heap = Runtime::Current()->GetHeap();
    heap->DoPendingCollectorTransition();
    heap->ClearPendingCollectorTransition(self);
  }
};

void Heap::ClearPendingCollectorTransition(Thread* self) {
  MutexLock mu(self, *pending_task_lock_);
  pending_collector_transition_ = nullptr;
}

void Heap::RequestCollectorTransition(CollectorType desired_collector_type, uint64_t delta_time) {
  Thread* self = Thread::Current();
  desired_collector_type_ = desired_collector_type;
  if (desired_collector_type_ == collector_type_ || !CanAddHeapTask(self)) {
    return;
  }
  CollectorTransitionTask* added_task = nullptr;
  const uint64_t target_time = NanoTime() + delta_time;
  {
    MutexLock mu(self, *pending_task_lock_);
    // If we have an existing collector transition, update the targe time to be the new target.
    if (pending_collector_transition_ != nullptr) {
      task_processor_->UpdateTargetRunTime(self, pending_collector_transition_, target_time);
      return;
    }
    added_task = new CollectorTransitionTask(target_time);
    pending_collector_transition_ = added_task;
  }
  task_processor_->AddTask(self, added_task);
}

class Heap::HeapTrimTask : public HeapTask {
 public:
  explicit HeapTrimTask(uint64_t delta_time) : HeapTask(NanoTime() + delta_time) { }
  virtual void Run(Thread* self) OVERRIDE {
    gc::Heap* heap = Runtime::Current()->GetHeap();
    heap->Trim(self);
    heap->ClearPendingTrim(self);
  }
};

void Heap::ClearPendingTrim(Thread* self) {
  MutexLock mu(self, *pending_task_lock_);
  pending_heap_trim_ = nullptr;
}

void Heap::RequestTrim(Thread* self) {
  if (!CanAddHeapTask(self)) {
    return;
  }
  // GC completed and now we must decide whether to request a heap trim (advising pages back to the
  // kernel) or not. Issuing a request will also cause trimming of the libc heap. As a trim scans
  // a space it will hold its lock and can become a cause of jank.
  // Note, the large object space self trims and the Zygote space was trimmed and unchanging since
  // forking.

  // We don't have a good measure of how worthwhile a trim might be. We can't use the live bitmap
  // because that only marks object heads, so a large array looks like lots of empty space. We
  // don't just call dlmalloc all the time, because the cost of an _attempted_ trim is proportional
  // to utilization (which is probably inversely proportional to how much benefit we can expect).
  // We could try mincore(2) but that's only a measure of how many pages we haven't given away,
  // not how much use we're making of those pages.
  HeapTrimTask* added_task = nullptr;
  {
    MutexLock mu(self, *pending_task_lock_);
    if (pending_heap_trim_ != nullptr) {
      // Already have a heap trim request in task processor, ignore this request.
      return;
    }
    added_task = new HeapTrimTask(kHeapTrimWait);
    pending_heap_trim_ = added_task;
  }
  task_processor_->AddTask(self, added_task);
}

void Heap::RevokeThreadLocalBuffers(Thread* thread) {
  if (rosalloc_space_ != nullptr) {
    size_t freed_bytes_revoke = rosalloc_space_->RevokeThreadLocalBuffers(thread);
    if (freed_bytes_revoke > 0U) {
      num_bytes_freed_revoke_.FetchAndAddSequentiallyConsistent(freed_bytes_revoke);
      CHECK_GE(num_bytes_allocated_.LoadRelaxed(), num_bytes_freed_revoke_.LoadRelaxed());
    }
  }
  if (bump_pointer_space_ != nullptr) {
    CHECK_EQ(bump_pointer_space_->RevokeThreadLocalBuffers(thread), 0U);
  }
  if (region_space_ != nullptr) {
    CHECK_EQ(region_space_->RevokeThreadLocalBuffers(thread), 0U);
  }
}

void Heap::RevokeRosAllocThreadLocalBuffers(Thread* thread) {
  if (rosalloc_space_ != nullptr) {
    size_t freed_bytes_revoke = rosalloc_space_->RevokeThreadLocalBuffers(thread);
    if (freed_bytes_revoke > 0U) {
      num_bytes_freed_revoke_.FetchAndAddSequentiallyConsistent(freed_bytes_revoke);
      CHECK_GE(num_bytes_allocated_.LoadRelaxed(), num_bytes_freed_revoke_.LoadRelaxed());
    }
  }
}

void Heap::RevokeAllThreadLocalBuffers() {
  if (rosalloc_space_ != nullptr) {
    size_t freed_bytes_revoke = rosalloc_space_->RevokeAllThreadLocalBuffers();
    if (freed_bytes_revoke > 0U) {
      num_bytes_freed_revoke_.FetchAndAddSequentiallyConsistent(freed_bytes_revoke);
      CHECK_GE(num_bytes_allocated_.LoadRelaxed(), num_bytes_freed_revoke_.LoadRelaxed());
    }
  }
  if (bump_pointer_space_ != nullptr) {
    CHECK_EQ(bump_pointer_space_->RevokeAllThreadLocalBuffers(), 0U);
  }
  if (region_space_ != nullptr) {
    CHECK_EQ(region_space_->RevokeAllThreadLocalBuffers(), 0U);
  }
}

bool Heap::IsGCRequestPending() const {
  return concurrent_gc_pending_.LoadRelaxed();
}

void Heap::RunFinalization(JNIEnv* env, uint64_t timeout) {
  env->CallStaticVoidMethod(WellKnownClasses::dalvik_system_VMRuntime,
                            WellKnownClasses::dalvik_system_VMRuntime_runFinalization,
                            static_cast<jlong>(timeout));
}

void Heap::RegisterNativeAllocation(JNIEnv* env, size_t bytes) {
  Thread* self = ThreadForEnv(env);
  if (native_need_to_run_finalization_) {
    RunFinalization(env, kNativeAllocationFinalizeTimeout);
    UpdateMaxNativeFootprint();
    native_need_to_run_finalization_ = false;
  }
  // Total number of native bytes allocated.
  size_t new_native_bytes_allocated = native_bytes_allocated_.FetchAndAddSequentiallyConsistent(bytes);
  new_native_bytes_allocated += bytes;
  if (new_native_bytes_allocated > native_footprint_gc_watermark_) {
    collector::GcType gc_type = HasZygoteSpace() ? collector::kGcTypePartial :
        collector::kGcTypeFull;

    // The second watermark is higher than the gc watermark. If you hit this it means you are
    // allocating native objects faster than the GC can keep up with.
    if (new_native_bytes_allocated > growth_limit_) {
      if (WaitForGcToComplete(kGcCauseForNativeAlloc, self) != collector::kGcTypeNone) {
        // Just finished a GC, attempt to run finalizers.
        RunFinalization(env, kNativeAllocationFinalizeTimeout);
        CHECK(!env->ExceptionCheck());
        // Native bytes allocated may be updated by finalization, refresh it.
        new_native_bytes_allocated = native_bytes_allocated_.LoadRelaxed();
      }
      // If we still are over the watermark, attempt a GC for alloc and run finalizers.
      if (new_native_bytes_allocated > growth_limit_) {
        CollectGarbageInternal(gc_type, kGcCauseForNativeAlloc, false);
        RunFinalization(env, kNativeAllocationFinalizeTimeout);
        native_need_to_run_finalization_ = false;
        CHECK(!env->ExceptionCheck());
      }
      // We have just run finalizers, update the native watermark since it is very likely that
      // finalizers released native managed allocations.
      UpdateMaxNativeFootprint();
    } else if (!IsGCRequestPending()) {
      if (IsGcConcurrent()) {
        RequestConcurrentGC(self, true);  // Request non-sticky type.
      } else {
        CollectGarbageInternal(gc_type, kGcCauseForNativeAlloc, false);
      }
    }
  }
}

void Heap::RegisterNativeFree(JNIEnv* env, size_t bytes) {
  size_t expected_size;
  do {
    expected_size = native_bytes_allocated_.LoadRelaxed();
    if (UNLIKELY(bytes > expected_size)) {
      ScopedObjectAccess soa(env);
      env->ThrowNew(WellKnownClasses::java_lang_RuntimeException,
                    StringPrintf("Attempted to free %zd native bytes with only %zd native bytes "
                                 "registered as allocated", bytes, expected_size).c_str());
      break;
    }
  } while (!native_bytes_allocated_.CompareExchangeWeakRelaxed(expected_size,
                                                               expected_size - bytes));
}

size_t Heap::GetTotalMemory() const {
  return std::max(max_allowed_footprint_, GetBytesAllocated());
}

void Heap::AddModUnionTable(accounting::ModUnionTable* mod_union_table) {
  DCHECK(mod_union_table != nullptr);
  mod_union_tables_.Put(mod_union_table->GetSpace(), mod_union_table);
}

void Heap::CheckPreconditionsForAllocObject(mirror::Class* c, size_t byte_count) {
  CHECK(c == nullptr || (c->IsClassClass() && byte_count >= sizeof(mirror::Class)) ||
        (c->IsVariableSize() || c->GetObjectSize() == byte_count));
  CHECK_GE(byte_count, sizeof(mirror::Object));
}

void Heap::AddRememberedSet(accounting::RememberedSet* remembered_set) {
  CHECK(remembered_set != nullptr);
  space::Space* space = remembered_set->GetSpace();
  CHECK(space != nullptr);
  CHECK(remembered_sets_.find(space) == remembered_sets_.end()) << space;
  remembered_sets_.Put(space, remembered_set);
  CHECK(remembered_sets_.find(space) != remembered_sets_.end()) << space;
}

void Heap::RemoveRememberedSet(space::Space* space) {
  CHECK(space != nullptr);
  auto it = remembered_sets_.find(space);
  CHECK(it != remembered_sets_.end());
  delete it->second;
  remembered_sets_.erase(it);
  CHECK(remembered_sets_.find(space) == remembered_sets_.end());
}

void Heap::ClearMarkedObjects() {
  // Clear all of the spaces' mark bitmaps.
  for (const auto& space : GetContinuousSpaces()) {
    accounting::ContinuousSpaceBitmap* mark_bitmap = space->GetMarkBitmap();
    if (space->GetLiveBitmap() != mark_bitmap) {
      mark_bitmap->Clear();
    }
  }
  // Clear the marked objects in the discontinous space object sets.
  for (const auto& space : GetDiscontinuousSpaces()) {
    space->GetMarkBitmap()->Clear();
  }
}

// Based on debug malloc logic from libc/bionic/debug_stacktrace.cpp.
class StackCrawlState {
 public:
  StackCrawlState(uintptr_t* frames, size_t max_depth, size_t skip_count)
      : frames_(frames), frame_count_(0), max_depth_(max_depth), skip_count_(skip_count) {
  }
  size_t GetFrameCount() const {
    return frame_count_;
  }
  static _Unwind_Reason_Code Callback(_Unwind_Context* context, void* arg) {
    auto* const state = reinterpret_cast<StackCrawlState*>(arg);
    const uintptr_t ip = _Unwind_GetIP(context);
    // The first stack frame is get_backtrace itself. Skip it.
    if (ip != 0 && state->skip_count_ > 0) {
      --state->skip_count_;
      return _URC_NO_REASON;
    }
    // ip may be off for ARM but it shouldn't matter since we only use it for hashing.
    state->frames_[state->frame_count_] = ip;
    state->frame_count_++;
    return state->frame_count_ >= state->max_depth_ ? _URC_END_OF_STACK : _URC_NO_REASON;
  }

 private:
  uintptr_t* const frames_;
  size_t frame_count_;
  const size_t max_depth_;
  size_t skip_count_;
};

static size_t get_backtrace(uintptr_t* frames, size_t max_depth) {
  StackCrawlState state(frames, max_depth, 0u);
  _Unwind_Backtrace(&StackCrawlState::Callback, &state);
  return state.GetFrameCount();
}

void Heap::CheckGcStressMode(Thread* self, mirror::Object** obj) {
  auto* const runtime = Runtime::Current();
  if (gc_stress_mode_ && runtime->GetClassLinker()->IsInitialized() &&
      !runtime->IsActiveTransaction() && mirror::Class::HasJavaLangClass()) {
    // Check if we should GC.
    bool new_backtrace = false;
    {
      static constexpr size_t kMaxFrames = 16u;
      uintptr_t backtrace[kMaxFrames];
      const size_t frames = get_backtrace(backtrace, kMaxFrames);
      uint64_t hash = 0;
      for (size_t i = 0; i < frames; ++i) {
        hash = hash * 2654435761 + backtrace[i];
        hash += (hash >> 13) ^ (hash << 6);
      }
      MutexLock mu(self, *backtrace_lock_);
      new_backtrace = seen_backtraces_.find(hash) == seen_backtraces_.end();
      if (new_backtrace) {
        seen_backtraces_.insert(hash);
      }
    }
    if (new_backtrace) {
      StackHandleScope<1> hs(self);
      auto h = hs.NewHandleWrapper(obj);
      CollectGarbage(false);
      unique_backtrace_count_.FetchAndAddSequentiallyConsistent(1);
    } else {
      seen_backtrace_count_.FetchAndAddSequentiallyConsistent(1);
    }
  }
}

}  // namespace gc
}  // namespace art