summaryrefslogtreecommitdiffstats
path: root/runtime/gc/heap.cc
blob: b6cef58fa2846d708006b2b041fb90ce49f6b53f (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835
1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889
1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
/*
 * Copyright (C) 2011 The Android Open Source Project
 *
 * Licensed under the Apache License, Version 2.0 (the "License");
 * you may not use this file except in compliance with the License.
 * You may obtain a copy of the License at
 *
 *      http://www.apache.org/licenses/LICENSE-2.0
 *
 * Unless required by applicable law or agreed to in writing, software
 * distributed under the License is distributed on an "AS IS" BASIS,
 * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
 * See the License for the specific language governing permissions and
 * limitations under the License.
 */

#include "heap.h"

#define ATRACE_TAG ATRACE_TAG_DALVIK
#include <cutils/trace.h>

#include <limits>
#include <vector>

#include "base/stl_util.h"
#include "common_throws.h"
#include "cutils/sched_policy.h"
#include "debugger.h"
#include "gc/accounting/atomic_stack.h"
#include "gc/accounting/card_table-inl.h"
#include "gc/accounting/heap_bitmap-inl.h"
#include "gc/accounting/mod_union_table-inl.h"
#include "gc/accounting/space_bitmap-inl.h"
#include "gc/collector/mark_sweep-inl.h"
#include "gc/collector/partial_mark_sweep.h"
#include "gc/collector/sticky_mark_sweep.h"
#include "gc/space/image_space.h"
#include "gc/space/large_object_space.h"
#include "gc/space/space-inl.h"
#include "image.h"
#include "invoke_arg_array_builder.h"
#include "mirror/class-inl.h"
#include "mirror/field-inl.h"
#include "mirror/object.h"
#include "mirror/object-inl.h"
#include "mirror/object_array-inl.h"
#include "object_utils.h"
#include "os.h"
#include "ScopedLocalRef.h"
#include "scoped_thread_state_change.h"
#include "sirt_ref.h"
#include "thread_list.h"
#include "UniquePtr.h"
#include "well_known_classes.h"

namespace art {
namespace gc {

// When to create a log message about a slow GC, 100ms.
static const uint64_t kSlowGcThreshold = MsToNs(100);
// When to create a log message about a long pause, 5ms.
static const uint64_t kLongGcPauseThreshold = MsToNs(5);
static const bool kDumpGcPerformanceOnShutdown = false;
// Minimum amount of remaining bytes before a concurrent GC is triggered.
static const size_t kMinConcurrentRemainingBytes = 128 * KB;
const double Heap::kDefaultTargetUtilization = 0.5;

Heap::Heap(size_t initial_size, size_t growth_limit, size_t min_free, size_t max_free,
           double target_utilization, size_t capacity,
           const std::string& original_image_file_name, bool concurrent_gc, size_t num_gc_threads)
    : alloc_space_(NULL),
      card_table_(NULL),
      concurrent_gc_(concurrent_gc),
      num_gc_threads_(num_gc_threads),
      have_zygote_space_(false),
      reference_queue_lock_(NULL),
      is_gc_running_(false),
      last_gc_type_(collector::kGcTypeNone),
      next_gc_type_(collector::kGcTypePartial),
      capacity_(capacity),
      growth_limit_(growth_limit),
      max_allowed_footprint_(initial_size),
      native_footprint_gc_watermark_(initial_size),
      native_footprint_limit_(2 * initial_size),
      concurrent_start_bytes_(concurrent_gc ? initial_size - (kMinConcurrentRemainingBytes)
                                            :  std::numeric_limits<size_t>::max()),
      total_bytes_freed_ever_(0),
      total_objects_freed_ever_(0),
      large_object_threshold_(3 * kPageSize),
      num_bytes_allocated_(0),
      native_bytes_allocated_(0),
      process_state_(PROCESS_STATE_TOP),
      verify_missing_card_marks_(false),
      verify_system_weaks_(false),
      verify_pre_gc_heap_(false),
      verify_post_gc_heap_(false),
      verify_mod_union_table_(false),
      min_alloc_space_size_for_sticky_gc_(2 * MB),
      min_remaining_space_for_sticky_gc_(1 * MB),
      last_trim_time_ms_(0),
      allocation_rate_(0),
      max_allocation_stack_size_(kDesiredHeapVerification > kNoHeapVerification? KB : MB),
      reference_referent_offset_(0),
      reference_queue_offset_(0),
      reference_queueNext_offset_(0),
      reference_pendingNext_offset_(0),
      finalizer_reference_zombie_offset_(0),
      min_free_(min_free),
      max_free_(max_free),
      target_utilization_(target_utilization),
      total_wait_time_(0),
      measure_allocation_time_(false),
      total_allocation_time_(0),
      verify_object_mode_(kHeapVerificationNotPermitted) {
  if (VLOG_IS_ON(heap) || VLOG_IS_ON(startup)) {
    LOG(INFO) << "Heap() entering";
  }

  live_bitmap_.reset(new accounting::HeapBitmap(this));
  mark_bitmap_.reset(new accounting::HeapBitmap(this));

  // Requested begin for the alloc space, to follow the mapped image and oat files
  byte* requested_alloc_space_begin = NULL;
  std::string image_file_name(original_image_file_name);
  if (!image_file_name.empty()) {
    space::ImageSpace* image_space = space::ImageSpace::Create(image_file_name);
    CHECK(image_space != NULL) << "Failed to create space for " << image_file_name;
    AddContinuousSpace(image_space);
    // Oat files referenced by image files immediately follow them in memory, ensure alloc space
    // isn't going to get in the middle
    byte* oat_file_end_addr = image_space->GetImageHeader().GetOatFileEnd();
    CHECK_GT(oat_file_end_addr, image_space->End());
    if (oat_file_end_addr > requested_alloc_space_begin) {
      requested_alloc_space_begin =
          reinterpret_cast<byte*>(RoundUp(reinterpret_cast<uintptr_t>(oat_file_end_addr),
                                          kPageSize));
    }
  }

  // Allocate the large object space.
  const bool kUseFreeListSpaceForLOS  = false;
  if (kUseFreeListSpaceForLOS) {
    large_object_space_ = space::FreeListSpace::Create("large object space", NULL, capacity);
  } else {
    large_object_space_ = space::LargeObjectMapSpace::Create("large object space");
  }
  CHECK(large_object_space_ != NULL) << "Failed to create large object space";
  AddDiscontinuousSpace(large_object_space_);

  alloc_space_ = space::DlMallocSpace::Create("alloc space",
                                              initial_size,
                                              growth_limit, capacity,
                                              requested_alloc_space_begin);
  CHECK(alloc_space_ != NULL) << "Failed to create alloc space";
  alloc_space_->SetFootprintLimit(alloc_space_->Capacity());
  AddContinuousSpace(alloc_space_);

  // Compute heap capacity. Continuous spaces are sorted in order of Begin().
  byte* heap_begin = continuous_spaces_.front()->Begin();
  size_t heap_capacity = continuous_spaces_.back()->End() - continuous_spaces_.front()->Begin();
  if (continuous_spaces_.back()->IsDlMallocSpace()) {
    heap_capacity += continuous_spaces_.back()->AsDlMallocSpace()->NonGrowthLimitCapacity();
  }

  // Mark image objects in the live bitmap
  // TODO: C++0x
  typedef std::vector<space::ContinuousSpace*>::iterator It;
  for (It it = continuous_spaces_.begin(); it != continuous_spaces_.end(); ++it) {
    space::ContinuousSpace* space = *it;
    if (space->IsImageSpace()) {
      space::ImageSpace* image_space = space->AsImageSpace();
      image_space->RecordImageAllocations(image_space->GetLiveBitmap());
    }
  }

  // Allocate the card table.
  card_table_.reset(accounting::CardTable::Create(heap_begin, heap_capacity));
  CHECK(card_table_.get() != NULL) << "Failed to create card table";

  image_mod_union_table_.reset(new accounting::ModUnionTableToZygoteAllocspace(this));
  CHECK(image_mod_union_table_.get() != NULL) << "Failed to create image mod-union table";

  zygote_mod_union_table_.reset(new accounting::ModUnionTableCardCache(this));
  CHECK(zygote_mod_union_table_.get() != NULL) << "Failed to create Zygote mod-union table";

  // TODO: Count objects in the image space here.
  num_bytes_allocated_ = 0;

  // Default mark stack size in bytes.
  static const size_t default_mark_stack_size = 64 * KB;
  mark_stack_.reset(accounting::ObjectStack::Create("mark stack", default_mark_stack_size));
  allocation_stack_.reset(accounting::ObjectStack::Create("allocation stack",
                                                          max_allocation_stack_size_));
  live_stack_.reset(accounting::ObjectStack::Create("live stack",
                                                    max_allocation_stack_size_));

  // It's still too early to take a lock because there are no threads yet, but we can create locks
  // now. We don't create it earlier to make it clear that you can't use locks during heap
  // initialization.
  gc_complete_lock_ = new Mutex("GC complete lock");
  gc_complete_cond_.reset(new ConditionVariable("GC complete condition variable",
                                                *gc_complete_lock_));

  // Create the reference queue lock, this is required so for parallel object scanning in the GC.
  reference_queue_lock_ = new Mutex("reference queue lock");

  last_gc_time_ns_ = NanoTime();
  last_gc_size_ = GetBytesAllocated();

  // Create our garbage collectors.
  for (size_t i = 0; i < 2; ++i) {
    const bool concurrent = i != 0;
    mark_sweep_collectors_.push_back(new collector::MarkSweep(this, concurrent));
    mark_sweep_collectors_.push_back(new collector::PartialMarkSweep(this, concurrent));
    mark_sweep_collectors_.push_back(new collector::StickyMarkSweep(this, concurrent));
  }

  CHECK_NE(max_allowed_footprint_, 0U);
  if (VLOG_IS_ON(heap) || VLOG_IS_ON(startup)) {
    LOG(INFO) << "Heap() exiting";
  }
}

void Heap::CreateThreadPool() {
  thread_pool_.reset(new ThreadPool(num_gc_threads_));
}

void Heap::DeleteThreadPool() {
  thread_pool_.reset(NULL);
}

// Sort spaces based on begin address
struct ContinuousSpaceSorter {
  bool operator()(const space::ContinuousSpace* a, const space::ContinuousSpace* b) const {
    return a->Begin() < b->Begin();
  }
};

void Heap::UpdateProcessState(ProcessState process_state) {
  process_state_ = process_state;
}

void Heap::AddContinuousSpace(space::ContinuousSpace* space) {
  WriterMutexLock mu(Thread::Current(), *Locks::heap_bitmap_lock_);
  DCHECK(space != NULL);
  DCHECK(space->GetLiveBitmap() != NULL);
  live_bitmap_->AddContinuousSpaceBitmap(space->GetLiveBitmap());
  DCHECK(space->GetMarkBitmap() != NULL);
  mark_bitmap_->AddContinuousSpaceBitmap(space->GetMarkBitmap());
  continuous_spaces_.push_back(space);
  if (space->IsDlMallocSpace() && !space->IsLargeObjectSpace()) {
    alloc_space_ = space->AsDlMallocSpace();
  }

  // Ensure that spaces remain sorted in increasing order of start address (required for CMS finger)
  std::sort(continuous_spaces_.begin(), continuous_spaces_.end(), ContinuousSpaceSorter());

  // Ensure that ImageSpaces < ZygoteSpaces < AllocSpaces so that we can do address based checks to
  // avoid redundant marking.
  bool seen_zygote = false, seen_alloc = false;
  typedef std::vector<space::ContinuousSpace*>::const_iterator It;
  for (It it = continuous_spaces_.begin(); it != continuous_spaces_.end(); ++it) {
    space::ContinuousSpace* space = *it;
    if (space->IsImageSpace()) {
      DCHECK(!seen_zygote);
      DCHECK(!seen_alloc);
    } else if (space->IsZygoteSpace()) {
      DCHECK(!seen_alloc);
      seen_zygote = true;
    } else if (space->IsDlMallocSpace()) {
      seen_alloc = true;
    }
  }
}

void Heap::AddDiscontinuousSpace(space::DiscontinuousSpace* space) {
  WriterMutexLock mu(Thread::Current(), *Locks::heap_bitmap_lock_);
  DCHECK(space != NULL);
  DCHECK(space->GetLiveObjects() != NULL);
  live_bitmap_->AddDiscontinuousObjectSet(space->GetLiveObjects());
  DCHECK(space->GetMarkObjects() != NULL);
  mark_bitmap_->AddDiscontinuousObjectSet(space->GetMarkObjects());
  discontinuous_spaces_.push_back(space);
}

void Heap::DumpGcPerformanceInfo(std::ostream& os) {
  // Dump cumulative timings.
  os << "Dumping cumulative Gc timings\n";
  uint64_t total_duration = 0;

  // Dump cumulative loggers for each GC type.
  // TODO: C++0x
  uint64_t total_paused_time = 0;
  typedef std::vector<collector::MarkSweep*>::const_iterator It;
  for (It it = mark_sweep_collectors_.begin();
       it != mark_sweep_collectors_.end(); ++it) {
    collector::MarkSweep* collector = *it;
    CumulativeLogger& logger = collector->GetCumulativeTimings();
    if (logger.GetTotalNs() != 0) {
      os << Dumpable<CumulativeLogger>(logger);
      const uint64_t total_ns = logger.GetTotalNs();
      const uint64_t total_pause_ns = (*it)->GetTotalPausedTimeNs();
      double seconds = NsToMs(logger.GetTotalNs()) / 1000.0;
      const uint64_t freed_bytes = collector->GetTotalFreedBytes();
      const uint64_t freed_objects = collector->GetTotalFreedObjects();
      os << collector->GetName() << " total time: " << PrettyDuration(total_ns) << "\n"
         << collector->GetName() << " paused time: " << PrettyDuration(total_pause_ns) << "\n"
         << collector->GetName() << " freed: " << freed_objects
         << " objects with total size " << PrettySize(freed_bytes) << "\n"
         << collector->GetName() << " throughput: " << freed_objects / seconds << "/s / "
         << PrettySize(freed_bytes / seconds) << "/s\n";
      total_duration += total_ns;
      total_paused_time += total_pause_ns;
    }
  }
  uint64_t allocation_time = static_cast<uint64_t>(total_allocation_time_) * kTimeAdjust;
  size_t total_objects_allocated = GetObjectsAllocatedEver();
  size_t total_bytes_allocated = GetBytesAllocatedEver();
  if (total_duration != 0) {
    const double total_seconds = static_cast<double>(total_duration / 1000) / 1000000.0;
    os << "Total time spent in GC: " << PrettyDuration(total_duration) << "\n";
    os << "Mean GC size throughput: "
       << PrettySize(GetBytesFreedEver() / total_seconds) << "/s\n";
    os << "Mean GC object throughput: "
       << (GetObjectsFreedEver() / total_seconds) << " objects/s\n";
  }
  os << "Total number of allocations: " << total_objects_allocated << "\n";
  os << "Total bytes allocated " << PrettySize(total_bytes_allocated) << "\n";
  if (measure_allocation_time_) {
    os << "Total time spent allocating: " << PrettyDuration(allocation_time) << "\n";
    os << "Mean allocation time: " << PrettyDuration(allocation_time / total_objects_allocated)
       << "\n";
  }
  os << "Total mutator paused time: " << PrettyDuration(total_paused_time) << "\n";
  os << "Total time waiting for GC to complete: " << PrettyDuration(total_wait_time_) << "\n";
}

Heap::~Heap() {
  if (kDumpGcPerformanceOnShutdown) {
    DumpGcPerformanceInfo(LOG(INFO));
  }

  STLDeleteElements(&mark_sweep_collectors_);

  // If we don't reset then the mark stack complains in it's destructor.
  allocation_stack_->Reset();
  live_stack_->Reset();

  VLOG(heap) << "~Heap()";
  // We can't take the heap lock here because there might be a daemon thread suspended with the
  // heap lock held. We know though that no non-daemon threads are executing, and we know that
  // all daemon threads are suspended, and we also know that the threads list have been deleted, so
  // those threads can't resume. We're the only running thread, and we can do whatever we like...
  STLDeleteElements(&continuous_spaces_);
  STLDeleteElements(&discontinuous_spaces_);
  delete gc_complete_lock_;
  delete reference_queue_lock_;
}

space::ContinuousSpace* Heap::FindContinuousSpaceFromObject(const mirror::Object* obj,
                                                            bool fail_ok) const {
  // TODO: C++0x auto
  typedef std::vector<space::ContinuousSpace*>::const_iterator It;
  for (It it = continuous_spaces_.begin(), end = continuous_spaces_.end(); it != end; ++it) {
    if ((*it)->Contains(obj)) {
      return *it;
    }
  }
  if (!fail_ok) {
    LOG(FATAL) << "object " << reinterpret_cast<const void*>(obj) << " not inside any spaces!";
  }
  return NULL;
}

space::DiscontinuousSpace* Heap::FindDiscontinuousSpaceFromObject(const mirror::Object* obj,
                                                                  bool fail_ok) const {
  // TODO: C++0x auto
  typedef std::vector<space::DiscontinuousSpace*>::const_iterator It;
  for (It it = discontinuous_spaces_.begin(), end = discontinuous_spaces_.end(); it != end; ++it) {
    if ((*it)->Contains(obj)) {
      return *it;
    }
  }
  if (!fail_ok) {
    LOG(FATAL) << "object " << reinterpret_cast<const void*>(obj) << " not inside any spaces!";
  }
  return NULL;
}

space::Space* Heap::FindSpaceFromObject(const mirror::Object* obj, bool fail_ok) const {
  space::Space* result = FindContinuousSpaceFromObject(obj, true);
  if (result != NULL) {
    return result;
  }
  return FindDiscontinuousSpaceFromObject(obj, true);
}

space::ImageSpace* Heap::GetImageSpace() const {
  // TODO: C++0x auto
  typedef std::vector<space::ContinuousSpace*>::const_iterator It;
  for (It it = continuous_spaces_.begin(), end = continuous_spaces_.end(); it != end; ++it) {
    if ((*it)->IsImageSpace()) {
      return (*it)->AsImageSpace();
    }
  }
  return NULL;
}

static void MSpaceChunkCallback(void* start, void* end, size_t used_bytes, void* arg) {
  size_t chunk_size = reinterpret_cast<uint8_t*>(end) - reinterpret_cast<uint8_t*>(start);
  if (used_bytes < chunk_size) {
    size_t chunk_free_bytes = chunk_size - used_bytes;
    size_t& max_contiguous_allocation = *reinterpret_cast<size_t*>(arg);
    max_contiguous_allocation = std::max(max_contiguous_allocation, chunk_free_bytes);
  }
}

mirror::Object* Heap::AllocObject(Thread* self, mirror::Class* c, size_t byte_count) {
  DCHECK(c == NULL || (c->IsClassClass() && byte_count >= sizeof(mirror::Class)) ||
         (c->IsVariableSize() || c->GetObjectSize() == byte_count) ||
         strlen(ClassHelper(c).GetDescriptor()) == 0);
  DCHECK_GE(byte_count, sizeof(mirror::Object));

  mirror::Object* obj = NULL;
  size_t size = 0;
  uint64_t allocation_start = 0;
  if (UNLIKELY(measure_allocation_time_)) {
    allocation_start = NanoTime() / kTimeAdjust;
  }

  // We need to have a zygote space or else our newly allocated large object can end up in the
  // Zygote resulting in it being prematurely freed.
  // We can only do this for primive objects since large objects will not be within the card table
  // range. This also means that we rely on SetClass not dirtying the object's card.
  bool large_object_allocation =
      byte_count >= large_object_threshold_ && have_zygote_space_ && c->IsPrimitiveArray();
  if (UNLIKELY(large_object_allocation)) {
    size = RoundUp(byte_count, kPageSize);
    obj = Allocate(self, large_object_space_, size);
    // Make sure that our large object didn't get placed anywhere within the space interval or else
    // it breaks the immune range.
    DCHECK(obj == NULL ||
           reinterpret_cast<byte*>(obj) < continuous_spaces_.front()->Begin() ||
           reinterpret_cast<byte*>(obj) >= continuous_spaces_.back()->End());
  } else {
    obj = Allocate(self, alloc_space_, byte_count);

    // Ensure that we did not allocate into a zygote space.
    DCHECK(obj == NULL || !have_zygote_space_ || !FindSpaceFromObject(obj, false)->IsZygoteSpace());
    size = alloc_space_->AllocationSize(obj);
  }

  if (LIKELY(obj != NULL)) {
    obj->SetClass(c);

    // Record allocation after since we want to use the atomic add for the atomic fence to guard
    // the SetClass since we do not want the class to appear NULL in another thread.
    RecordAllocation(size, obj);

    if (Dbg::IsAllocTrackingEnabled()) {
      Dbg::RecordAllocation(c, byte_count);
    }
    if (static_cast<size_t>(num_bytes_allocated_) >= concurrent_start_bytes_) {
      // The SirtRef is necessary since the calls in RequestConcurrentGC are a safepoint.
      SirtRef<mirror::Object> ref(self, obj);
      RequestConcurrentGC(self);
    }
    VerifyObject(obj);

    if (UNLIKELY(measure_allocation_time_)) {
      total_allocation_time_.fetch_add(NanoTime() / kTimeAdjust - allocation_start);
    }

    return obj;
  } else {
    std::ostringstream oss;
    int64_t total_bytes_free = GetFreeMemory();
    oss << "Failed to allocate a " << byte_count << " byte allocation with " << total_bytes_free
        << " free bytes";
    // If the allocation failed due to fragmentation, print out the largest continuous allocation.
    if (!large_object_allocation && total_bytes_free >= byte_count) {
      size_t max_contiguous_allocation = 0;
      // TODO: C++0x auto
      typedef std::vector<space::ContinuousSpace*>::const_iterator It;
      for (It it = continuous_spaces_.begin(), end = continuous_spaces_.end(); it != end; ++it) {
        space::ContinuousSpace* space = *it;
        if (space->IsDlMallocSpace()) {
          space->AsDlMallocSpace()->Walk(MSpaceChunkCallback, &max_contiguous_allocation);
        }
      }
      oss << "; failed due to fragmentation (largest possible contiguous allocation "
          <<  max_contiguous_allocation << " bytes)";
    }
    self->ThrowOutOfMemoryError(oss.str().c_str());
    return NULL;
  }
}

bool Heap::IsHeapAddress(const mirror::Object* obj) {
  // Note: we deliberately don't take the lock here, and mustn't test anything that would
  // require taking the lock.
  if (obj == NULL) {
    return true;
  }
  if (UNLIKELY(!IsAligned<kObjectAlignment>(obj))) {
    return false;
  }
  return FindSpaceFromObject(obj, true) != NULL;
}

bool Heap::IsLiveObjectLocked(const mirror::Object* obj) {
  //Locks::heap_bitmap_lock_->AssertReaderHeld(Thread::Current());
  if (obj == NULL) {
    return false;
  }
  if (UNLIKELY(!IsAligned<kObjectAlignment>(obj))) {
    return false;
  }
  space::ContinuousSpace* cont_space = FindContinuousSpaceFromObject(obj, true);
  if (cont_space != NULL) {
    if (cont_space->GetLiveBitmap()->Test(obj)) {
      return true;
    }
  } else {
    space::DiscontinuousSpace* disc_space = FindDiscontinuousSpaceFromObject(obj, true);
    if (disc_space != NULL) {
      if (disc_space->GetLiveObjects()->Test(obj)) {
        return true;
      }
    }
  }
  for (size_t i = 0; i < 5; ++i) {
    if (allocation_stack_->Contains(const_cast<mirror::Object*>(obj)) ||
        live_stack_->Contains(const_cast<mirror::Object*>(obj))) {
      return true;
    }
    NanoSleep(MsToNs(10));
  }
  return false;
}

void Heap::VerifyObjectImpl(const mirror::Object* obj) {
  if (Thread::Current() == NULL ||
      Runtime::Current()->GetThreadList()->GetLockOwner() == Thread::Current()->GetTid()) {
    return;
  }
  VerifyObjectBody(obj);
}

void Heap::DumpSpaces() {
  // TODO: C++0x auto
  typedef std::vector<space::ContinuousSpace*>::const_iterator It;
  for (It it = continuous_spaces_.begin(), end = continuous_spaces_.end(); it != end; ++it) {
    space::ContinuousSpace* space = *it;
    accounting::SpaceBitmap* live_bitmap = space->GetLiveBitmap();
    accounting::SpaceBitmap* mark_bitmap = space->GetMarkBitmap();
    LOG(INFO) << space << " " << *space << "\n"
              << live_bitmap << " " << *live_bitmap << "\n"
              << mark_bitmap << " " << *mark_bitmap;
  }
  typedef std::vector<space::DiscontinuousSpace*>::const_iterator It2;
  for (It2 it = discontinuous_spaces_.begin(), end = discontinuous_spaces_.end(); it != end; ++it) {
    space::DiscontinuousSpace* space = *it;
    LOG(INFO) << space << " " << *space << "\n";
  }
}

void Heap::VerifyObjectBody(const mirror::Object* obj) {
  if (UNLIKELY(!IsAligned<kObjectAlignment>(obj))) {
    LOG(FATAL) << "Object isn't aligned: " << obj;
  }
  if (UNLIKELY(GetObjectsAllocated() <= 10)) {  // Ignore early dawn of the universe verifications.
    return;
  }
  const byte* raw_addr = reinterpret_cast<const byte*>(obj) +
      mirror::Object::ClassOffset().Int32Value();
  const mirror::Class* c = *reinterpret_cast<mirror::Class* const *>(raw_addr);
  if (UNLIKELY(c == NULL)) {
    LOG(FATAL) << "Null class in object: " << obj;
  } else if (UNLIKELY(!IsAligned<kObjectAlignment>(c))) {
    LOG(FATAL) << "Class isn't aligned: " << c << " in object: " << obj;
  }
  // Check obj.getClass().getClass() == obj.getClass().getClass().getClass()
  // Note: we don't use the accessors here as they have internal sanity checks
  // that we don't want to run
  raw_addr = reinterpret_cast<const byte*>(c) + mirror::Object::ClassOffset().Int32Value();
  const mirror::Class* c_c = *reinterpret_cast<mirror::Class* const *>(raw_addr);
  raw_addr = reinterpret_cast<const byte*>(c_c) + mirror::Object::ClassOffset().Int32Value();
  const mirror::Class* c_c_c = *reinterpret_cast<mirror::Class* const *>(raw_addr);
  CHECK_EQ(c_c, c_c_c);

  if (verify_object_mode_ != kVerifyAllFast) {
    // TODO: the bitmap tests below are racy if VerifyObjectBody is called without the
    //       heap_bitmap_lock_.
    if (!IsLiveObjectLocked(obj)) {
      DumpSpaces();
      LOG(FATAL) << "Object is dead: " << obj;
    }
    if (!IsLiveObjectLocked(c)) {
      LOG(FATAL) << "Class of object is dead: " << c << " in object: " << obj;
    }
  }
}

void Heap::VerificationCallback(mirror::Object* obj, void* arg) {
  DCHECK(obj != NULL);
  reinterpret_cast<Heap*>(arg)->VerifyObjectBody(obj);
}

void Heap::VerifyHeap() {
  ReaderMutexLock mu(Thread::Current(), *Locks::heap_bitmap_lock_);
  GetLiveBitmap()->Walk(Heap::VerificationCallback, this);
}

void Heap::RecordAllocation(size_t size, mirror::Object* obj) {
  DCHECK(obj != NULL);
  DCHECK_GT(size, 0u);
  num_bytes_allocated_.fetch_add(size);

  if (Runtime::Current()->HasStatsEnabled()) {
    RuntimeStats* thread_stats = Thread::Current()->GetStats();
    ++thread_stats->allocated_objects;
    thread_stats->allocated_bytes += size;

    // TODO: Update these atomically.
    RuntimeStats* global_stats = Runtime::Current()->GetStats();
    ++global_stats->allocated_objects;
    global_stats->allocated_bytes += size;
  }

  // This is safe to do since the GC will never free objects which are neither in the allocation
  // stack or the live bitmap.
  while (!allocation_stack_->AtomicPushBack(obj)) {
    CollectGarbageInternal(collector::kGcTypeSticky, kGcCauseForAlloc, false);
  }
}

void Heap::RecordFree(size_t freed_objects, size_t freed_bytes) {
  DCHECK_LE(freed_bytes, static_cast<size_t>(num_bytes_allocated_));
  num_bytes_allocated_.fetch_sub(freed_bytes);

  if (Runtime::Current()->HasStatsEnabled()) {
    RuntimeStats* thread_stats = Thread::Current()->GetStats();
    thread_stats->freed_objects += freed_objects;
    thread_stats->freed_bytes += freed_bytes;

    // TODO: Do this concurrently.
    RuntimeStats* global_stats = Runtime::Current()->GetStats();
    global_stats->freed_objects += freed_objects;
    global_stats->freed_bytes += freed_bytes;
  }
}

mirror::Object* Heap::TryToAllocate(Thread* self, space::AllocSpace* space, size_t alloc_size,
                                    bool grow) {
  // Should we try to use a CAS here and fix up num_bytes_allocated_ later with AllocationSize?
  if (num_bytes_allocated_ + alloc_size > max_allowed_footprint_) {
    // max_allowed_footprint_ <= growth_limit_ so it is safe to check in here.
    if (num_bytes_allocated_ + alloc_size > growth_limit_) {
      // Completely out of memory.
      return NULL;
    }
  }

  return space->Alloc(self, alloc_size);
}

mirror::Object* Heap::Allocate(Thread* self, space::AllocSpace* space, size_t alloc_size) {
  // Since allocation can cause a GC which will need to SuspendAll, make sure all allocations are
  // done in the runnable state where suspension is expected.
  DCHECK_EQ(self->GetState(), kRunnable);
  self->AssertThreadSuspensionIsAllowable();

  mirror::Object* ptr = TryToAllocate(self, space, alloc_size, false);
  if (ptr != NULL) {
    return ptr;
  }

  // The allocation failed. If the GC is running, block until it completes, and then retry the
  // allocation.
  collector::GcType last_gc = WaitForConcurrentGcToComplete(self);
  if (last_gc != collector::kGcTypeNone) {
    // A GC was in progress and we blocked, retry allocation now that memory has been freed.
    ptr = TryToAllocate(self, space, alloc_size, false);
    if (ptr != NULL) {
      return ptr;
    }
  }

  // Loop through our different Gc types and try to Gc until we get enough free memory.
  for (size_t i = static_cast<size_t>(last_gc) + 1;
      i < static_cast<size_t>(collector::kGcTypeMax); ++i) {
    bool run_gc = false;
    collector::GcType gc_type = static_cast<collector::GcType>(i);
    switch (gc_type) {
      case collector::kGcTypeSticky: {
          const size_t alloc_space_size = alloc_space_->Size();
          run_gc = alloc_space_size > min_alloc_space_size_for_sticky_gc_ &&
              alloc_space_->Capacity() - alloc_space_size >= min_remaining_space_for_sticky_gc_;
          break;
        }
      case collector::kGcTypePartial:
        run_gc = have_zygote_space_;
        break;
      case collector::kGcTypeFull:
        run_gc = true;
        break;
      default:
        break;
    }

    if (run_gc) {
      // If we actually ran a different type of Gc than requested, we can skip the index forwards.
      collector::GcType gc_type_ran = CollectGarbageInternal(gc_type, kGcCauseForAlloc, false);
      DCHECK_GE(static_cast<size_t>(gc_type_ran), i);
      i = static_cast<size_t>(gc_type_ran);

      // Did we free sufficient memory for the allocation to succeed?
      ptr = TryToAllocate(self, space, alloc_size, false);
      if (ptr != NULL) {
        return ptr;
      }
    }
  }

  // Allocations have failed after GCs;  this is an exceptional state.
  // Try harder, growing the heap if necessary.
  ptr = TryToAllocate(self, space, alloc_size, true);
  if (ptr != NULL) {
    return ptr;
  }

  // Most allocations should have succeeded by now, so the heap is really full, really fragmented,
  // or the requested size is really big. Do another GC, collecting SoftReferences this time. The
  // VM spec requires that all SoftReferences have been collected and cleared before throwing OOME.

  // OLD-TODO: wait for the finalizers from the previous GC to finish
  VLOG(gc) << "Forcing collection of SoftReferences for " << PrettySize(alloc_size)
           << " allocation";

  // We don't need a WaitForConcurrentGcToComplete here either.
  CollectGarbageInternal(collector::kGcTypeFull, kGcCauseForAlloc, true);
  return TryToAllocate(self, space, alloc_size, true);
}

void Heap::SetTargetHeapUtilization(float target) {
  DCHECK_GT(target, 0.0f);  // asserted in Java code
  DCHECK_LT(target, 1.0f);
  target_utilization_ = target;
}

size_t Heap::GetObjectsAllocated() const {
  size_t total = 0;
  typedef std::vector<space::ContinuousSpace*>::const_iterator It;
  for (It it = continuous_spaces_.begin(), end = continuous_spaces_.end(); it != end; ++it) {
    space::ContinuousSpace* space = *it;
    if (space->IsDlMallocSpace()) {
      total += space->AsDlMallocSpace()->GetObjectsAllocated();
    }
  }
  typedef std::vector<space::DiscontinuousSpace*>::const_iterator It2;
  for (It2 it = discontinuous_spaces_.begin(), end = discontinuous_spaces_.end(); it != end; ++it) {
    space::DiscontinuousSpace* space = *it;
    total += space->AsLargeObjectSpace()->GetObjectsAllocated();
  }
  return total;
}

size_t Heap::GetObjectsAllocatedEver() const {
  size_t total = 0;
  typedef std::vector<space::ContinuousSpace*>::const_iterator It;
  for (It it = continuous_spaces_.begin(), end = continuous_spaces_.end(); it != end; ++it) {
    space::ContinuousSpace* space = *it;
    if (space->IsDlMallocSpace()) {
      total += space->AsDlMallocSpace()->GetTotalObjectsAllocated();
    }
  }
  typedef std::vector<space::DiscontinuousSpace*>::const_iterator It2;
  for (It2 it = discontinuous_spaces_.begin(), end = discontinuous_spaces_.end(); it != end; ++it) {
    space::DiscontinuousSpace* space = *it;
    total += space->AsLargeObjectSpace()->GetTotalObjectsAllocated();
  }
  return total;
}

size_t Heap::GetBytesAllocatedEver() const {
  size_t total = 0;
  typedef std::vector<space::ContinuousSpace*>::const_iterator It;
  for (It it = continuous_spaces_.begin(), end = continuous_spaces_.end(); it != end; ++it) {
    space::ContinuousSpace* space = *it;
    if (space->IsDlMallocSpace()) {
      total += space->AsDlMallocSpace()->GetTotalBytesAllocated();
    }
  }
  typedef std::vector<space::DiscontinuousSpace*>::const_iterator It2;
  for (It2 it = discontinuous_spaces_.begin(), end = discontinuous_spaces_.end(); it != end; ++it) {
    space::DiscontinuousSpace* space = *it;
    total += space->AsLargeObjectSpace()->GetTotalBytesAllocated();
  }
  return total;
}

class InstanceCounter {
 public:
  InstanceCounter(const std::vector<mirror::Class*>& classes, bool use_is_assignable_from, uint64_t* counts)
      SHARED_LOCKS_REQUIRED(Locks::mutator_lock_)
      : classes_(classes), use_is_assignable_from_(use_is_assignable_from), counts_(counts) {
  }

  void operator()(const mirror::Object* o) const SHARED_LOCKS_REQUIRED(Locks::mutator_lock_) {
    for (size_t i = 0; i < classes_.size(); ++i) {
      const mirror::Class* instance_class = o->GetClass();
      if (use_is_assignable_from_) {
        if (instance_class != NULL && classes_[i]->IsAssignableFrom(instance_class)) {
          ++counts_[i];
        }
      } else {
        if (instance_class == classes_[i]) {
          ++counts_[i];
        }
      }
    }
  }

 private:
  const std::vector<mirror::Class*>& classes_;
  bool use_is_assignable_from_;
  uint64_t* const counts_;

  DISALLOW_COPY_AND_ASSIGN(InstanceCounter);
};

void Heap::CountInstances(const std::vector<mirror::Class*>& classes, bool use_is_assignable_from,
                          uint64_t* counts) {
  // We only want reachable instances, so do a GC. This also ensures that the alloc stack
  // is empty, so the live bitmap is the only place we need to look.
  Thread* self = Thread::Current();
  self->TransitionFromRunnableToSuspended(kNative);
  CollectGarbage(false);
  self->TransitionFromSuspendedToRunnable();

  InstanceCounter counter(classes, use_is_assignable_from, counts);
  ReaderMutexLock mu(self, *Locks::heap_bitmap_lock_);
  GetLiveBitmap()->Visit(counter);
}

class InstanceCollector {
 public:
  InstanceCollector(mirror::Class* c, int32_t max_count, std::vector<mirror::Object*>& instances)
      SHARED_LOCKS_REQUIRED(Locks::mutator_lock_)
      : class_(c), max_count_(max_count), instances_(instances) {
  }

  void operator()(const mirror::Object* o) const SHARED_LOCKS_REQUIRED(Locks::mutator_lock_) {
    const mirror::Class* instance_class = o->GetClass();
    if (instance_class == class_) {
      if (max_count_ == 0 || instances_.size() < max_count_) {
        instances_.push_back(const_cast<mirror::Object*>(o));
      }
    }
  }

 private:
  mirror::Class* class_;
  uint32_t max_count_;
  std::vector<mirror::Object*>& instances_;

  DISALLOW_COPY_AND_ASSIGN(InstanceCollector);
};

void Heap::GetInstances(mirror::Class* c, int32_t max_count,
                        std::vector<mirror::Object*>& instances) {
  // We only want reachable instances, so do a GC. This also ensures that the alloc stack
  // is empty, so the live bitmap is the only place we need to look.
  Thread* self = Thread::Current();
  self->TransitionFromRunnableToSuspended(kNative);
  CollectGarbage(false);
  self->TransitionFromSuspendedToRunnable();

  InstanceCollector collector(c, max_count, instances);
  ReaderMutexLock mu(self, *Locks::heap_bitmap_lock_);
  GetLiveBitmap()->Visit(collector);
}

class ReferringObjectsFinder {
 public:
  ReferringObjectsFinder(mirror::Object* object, int32_t max_count,
                         std::vector<mirror::Object*>& referring_objects)
      SHARED_LOCKS_REQUIRED(Locks::mutator_lock_)
      : object_(object), max_count_(max_count), referring_objects_(referring_objects) {
  }

  // For bitmap Visit.
  // TODO: Fix lock analysis to not use NO_THREAD_SAFETY_ANALYSIS, requires support for
  // annotalysis on visitors.
  void operator()(const mirror::Object* o) const NO_THREAD_SAFETY_ANALYSIS {
    collector::MarkSweep::VisitObjectReferences(o, *this);
  }

  // For MarkSweep::VisitObjectReferences.
  void operator()(const mirror::Object* referrer, const mirror::Object* object,
                  const MemberOffset&, bool) const {
    if (object == object_ && (max_count_ == 0 || referring_objects_.size() < max_count_)) {
      referring_objects_.push_back(const_cast<mirror::Object*>(referrer));
    }
  }

 private:
  mirror::Object* object_;
  uint32_t max_count_;
  std::vector<mirror::Object*>& referring_objects_;

  DISALLOW_COPY_AND_ASSIGN(ReferringObjectsFinder);
};

void Heap::GetReferringObjects(mirror::Object* o, int32_t max_count,
                               std::vector<mirror::Object*>& referring_objects) {
  // We only want reachable instances, so do a GC. This also ensures that the alloc stack
  // is empty, so the live bitmap is the only place we need to look.
  Thread* self = Thread::Current();
  self->TransitionFromRunnableToSuspended(kNative);
  CollectGarbage(false);
  self->TransitionFromSuspendedToRunnable();

  ReferringObjectsFinder finder(o, max_count, referring_objects);
  ReaderMutexLock mu(self, *Locks::heap_bitmap_lock_);
  GetLiveBitmap()->Visit(finder);
}

void Heap::CollectGarbage(bool clear_soft_references) {
  // Even if we waited for a GC we still need to do another GC since weaks allocated during the
  // last GC will not have necessarily been cleared.
  Thread* self = Thread::Current();
  WaitForConcurrentGcToComplete(self);
  CollectGarbageInternal(collector::kGcTypeFull, kGcCauseExplicit, clear_soft_references);
}

void Heap::PreZygoteFork() {
  static Mutex zygote_creation_lock_("zygote creation lock", kZygoteCreationLock);
  // Do this before acquiring the zygote creation lock so that we don't get lock order violations.
  CollectGarbage(false);
  Thread* self = Thread::Current();
  MutexLock mu(self, zygote_creation_lock_);

  // Try to see if we have any Zygote spaces.
  if (have_zygote_space_) {
    return;
  }

  VLOG(heap) << "Starting PreZygoteFork with alloc space size " << PrettySize(alloc_space_->Size());

  {
    // Flush the alloc stack.
    WriterMutexLock mu(self, *Locks::heap_bitmap_lock_);
    FlushAllocStack();
  }

  // Turns the current alloc space into a Zygote space and obtain the new alloc space composed
  // of the remaining available heap memory.
  space::DlMallocSpace* zygote_space = alloc_space_;
  alloc_space_ = zygote_space->CreateZygoteSpace();
  alloc_space_->SetFootprintLimit(alloc_space_->Capacity());

  // Change the GC retention policy of the zygote space to only collect when full.
  zygote_space->SetGcRetentionPolicy(space::kGcRetentionPolicyFullCollect);
  AddContinuousSpace(alloc_space_);
  have_zygote_space_ = true;

  // Reset the cumulative loggers since we now have a few additional timing phases.
  // TODO: C++0x
  typedef std::vector<collector::MarkSweep*>::const_iterator It;
  for (It it = mark_sweep_collectors_.begin(), end = mark_sweep_collectors_.end();
      it != end; ++it) {
    (*it)->ResetCumulativeStatistics();
  }
}

void Heap::FlushAllocStack() {
  MarkAllocStack(alloc_space_->GetLiveBitmap(), large_object_space_->GetLiveObjects(),
                 allocation_stack_.get());
  allocation_stack_->Reset();
}

void Heap::MarkAllocStack(accounting::SpaceBitmap* bitmap, accounting::SpaceSetMap* large_objects,
                          accounting::ObjectStack* stack) {
  mirror::Object** limit = stack->End();
  for (mirror::Object** it = stack->Begin(); it != limit; ++it) {
    const mirror::Object* obj = *it;
    DCHECK(obj != NULL);
    if (LIKELY(bitmap->HasAddress(obj))) {
      bitmap->Set(obj);
    } else {
      large_objects->Set(obj);
    }
  }
}

void Heap::UnMarkAllocStack(accounting::SpaceBitmap* bitmap, accounting::SpaceSetMap* large_objects,
                            accounting::ObjectStack* stack) {
  mirror::Object** limit = stack->End();
  for (mirror::Object** it = stack->Begin(); it != limit; ++it) {
    const mirror::Object* obj = *it;
    DCHECK(obj != NULL);
    if (LIKELY(bitmap->HasAddress(obj))) {
      bitmap->Clear(obj);
    } else {
      large_objects->Clear(obj);
    }
  }
}

collector::GcType Heap::CollectGarbageInternal(collector::GcType gc_type, GcCause gc_cause,
                                               bool clear_soft_references) {
  Thread* self = Thread::Current();

  switch (gc_cause) {
    case kGcCauseForAlloc:
      ATRACE_BEGIN("GC (alloc)");
      break;
    case kGcCauseBackground:
      ATRACE_BEGIN("GC (background)");
      break;
    case kGcCauseExplicit:
      ATRACE_BEGIN("GC (explicit)");
      break;
  }

  ScopedThreadStateChange tsc(self, kWaitingPerformingGc);
  Locks::mutator_lock_->AssertNotHeld(self);

  if (self->IsHandlingStackOverflow()) {
    LOG(WARNING) << "Performing GC on a thread that is handling a stack overflow.";
  }

  // Ensure there is only one GC at a time.
  bool start_collect = false;
  while (!start_collect) {
    {
      MutexLock mu(self, *gc_complete_lock_);
      if (!is_gc_running_) {
        is_gc_running_ = true;
        start_collect = true;
      }
    }
    if (!start_collect) {
      WaitForConcurrentGcToComplete(self);
      // TODO: if another thread beat this one to do the GC, perhaps we should just return here?
      //       Not doing at the moment to ensure soft references are cleared.
    }
  }
  gc_complete_lock_->AssertNotHeld(self);

  if (gc_cause == kGcCauseForAlloc && Runtime::Current()->HasStatsEnabled()) {
    ++Runtime::Current()->GetStats()->gc_for_alloc_count;
    ++Thread::Current()->GetStats()->gc_for_alloc_count;
  }

  uint64_t gc_start_time_ns = NanoTime();
  uint64_t gc_start_size = GetBytesAllocated();
  // Approximate allocation rate in bytes / second.
  if (UNLIKELY(gc_start_time_ns == last_gc_time_ns_)) {
    LOG(WARNING) << "Timers are broken (gc_start_time == last_gc_time_).";
  }
  uint64_t ms_delta = NsToMs(gc_start_time_ns - last_gc_time_ns_);
  if (ms_delta != 0) {
    allocation_rate_ = ((gc_start_size - last_gc_size_) * 1000) / ms_delta;
    VLOG(heap) << "Allocation rate: " << PrettySize(allocation_rate_) << "/s";
  }

  if (gc_type == collector::kGcTypeSticky &&
      alloc_space_->Size() < min_alloc_space_size_for_sticky_gc_) {
    gc_type = collector::kGcTypePartial;
  }

  DCHECK_LT(gc_type, collector::kGcTypeMax);
  DCHECK_NE(gc_type, collector::kGcTypeNone);
  collector::MarkSweep* collector = NULL;
  typedef std::vector<collector::MarkSweep*>::iterator It;
  for (It it = mark_sweep_collectors_.begin(), end = mark_sweep_collectors_.end();
      it != end; ++it) {
    collector::MarkSweep* cur_collector = *it;
    if (cur_collector->IsConcurrent() == concurrent_gc_ && cur_collector->GetGcType() == gc_type) {
      collector = cur_collector;
      break;
    }
  }
  CHECK(collector != NULL)
      << "Could not find garbage collector with concurrent=" << concurrent_gc_
      << " and type=" << gc_type;
  collector->clear_soft_references_ = clear_soft_references;
  collector->Run();
  total_objects_freed_ever_ += collector->GetFreedObjects();
  total_bytes_freed_ever_ += collector->GetFreedBytes();

  const size_t duration = collector->GetDurationNs();
  std::vector<uint64_t> pauses = collector->GetPauseTimes();
  bool was_slow = duration > kSlowGcThreshold ||
      (gc_cause == kGcCauseForAlloc && duration > kLongGcPauseThreshold);
  for (size_t i = 0; i < pauses.size(); ++i) {
    if (pauses[i] > kLongGcPauseThreshold) {
      was_slow = true;
    }
  }

  if (was_slow) {
    const size_t percent_free = GetPercentFree();
    const size_t current_heap_size = GetBytesAllocated();
    const size_t total_memory = GetTotalMemory();
    std::ostringstream pause_string;
    for (size_t i = 0; i < pauses.size(); ++i) {
      pause_string << PrettyDuration((pauses[i] / 1000) * 1000)
                   << ((i != pauses.size() - 1) ? ", " : "");
    }
    LOG(INFO) << gc_cause << " " << collector->GetName()
              << "GC freed " << PrettySize(collector->GetFreedBytes()) << ", "
              << percent_free << "% free, " << PrettySize(current_heap_size) << "/"
              << PrettySize(total_memory) << ", " << "paused " << pause_string.str()
              << " total " << PrettyDuration((duration / 1000) * 1000);
    if (VLOG_IS_ON(heap)) {
      LOG(INFO) << Dumpable<base::NewTimingLogger>(collector->GetTimings());
    }
  }

  {
    MutexLock mu(self, *gc_complete_lock_);
    is_gc_running_ = false;
    last_gc_type_ = gc_type;
    // Wake anyone who may have been waiting for the GC to complete.
    gc_complete_cond_->Broadcast(self);
  }
  // Inform DDMS that a GC completed.
  ATRACE_END();
  Dbg::GcDidFinish();
  return gc_type;
}

void Heap::UpdateAndMarkModUnion(collector::MarkSweep* mark_sweep, base::NewTimingLogger& timings,
                                 collector::GcType gc_type) {
  if (gc_type == collector::kGcTypeSticky) {
    // Don't need to do anything for mod union table in this case since we are only scanning dirty
    // cards.
    return;
  }

  // Update zygote mod union table.
  if (gc_type == collector::kGcTypePartial) {
    timings.NewSplit("UpdateZygoteModUnionTable");
    zygote_mod_union_table_->Update();

    timings.NewSplit("ZygoteMarkReferences");
    zygote_mod_union_table_->MarkReferences(mark_sweep);
  }

  // Processes the cards we cleared earlier and adds their objects into the mod-union table.
  timings.NewSplit("UpdateModUnionTable");
  image_mod_union_table_->Update();

  // Scans all objects in the mod-union table.
  timings.NewSplit("MarkImageToAllocSpaceReferences");
  image_mod_union_table_->MarkReferences(mark_sweep);
}

static void RootMatchesObjectVisitor(const mirror::Object* root, void* arg) {
  mirror::Object* obj = reinterpret_cast<mirror::Object*>(arg);
  if (root == obj) {
    LOG(INFO) << "Object " << obj << " is a root";
  }
}

class ScanVisitor {
 public:
  void operator()(const mirror::Object* obj) const {
    LOG(INFO) << "Would have rescanned object " << obj;
  }
};

// Verify a reference from an object.
class VerifyReferenceVisitor {
 public:
  explicit VerifyReferenceVisitor(Heap* heap)
      SHARED_LOCKS_REQUIRED(Locks::mutator_lock_, Locks::heap_bitmap_lock_)
      : heap_(heap), failed_(false) {}

  bool Failed() const {
    return failed_;
  }

  // TODO: Fix lock analysis to not use NO_THREAD_SAFETY_ANALYSIS, requires support for smarter
  // analysis on visitors.
  void operator()(const mirror::Object* obj, const mirror::Object* ref,
                  const MemberOffset& offset, bool /* is_static */) const
      NO_THREAD_SAFETY_ANALYSIS {
    // Verify that the reference is live.
    if (UNLIKELY(ref != NULL && !IsLive(ref))) {
      accounting::CardTable* card_table = heap_->GetCardTable();
      accounting::ObjectStack* alloc_stack = heap_->allocation_stack_.get();
      accounting::ObjectStack* live_stack = heap_->live_stack_.get();

      if (obj != NULL) {
        byte* card_addr = card_table->CardFromAddr(obj);
        LOG(ERROR) << "Object " << obj << " references dead object " << ref << " at offset " << offset
                   << "\nIsDirty = " << (*card_addr == accounting::CardTable::kCardDirty)
                   << "\nObj type " << PrettyTypeOf(obj)
                   << "\nRef type " << PrettyTypeOf(ref);
        card_table->CheckAddrIsInCardTable(reinterpret_cast<const byte*>(obj));
        void* cover_begin = card_table->AddrFromCard(card_addr);
        void* cover_end = reinterpret_cast<void*>(reinterpret_cast<size_t>(cover_begin) +
            accounting::CardTable::kCardSize);
        LOG(ERROR) << "Card " << reinterpret_cast<void*>(card_addr) << " covers " << cover_begin
            << "-" << cover_end;
        accounting::SpaceBitmap* bitmap = heap_->GetLiveBitmap()->GetContinuousSpaceBitmap(obj);

        // Print out how the object is live.
        if (bitmap != NULL && bitmap->Test(obj)) {
          LOG(ERROR) << "Object " << obj << " found in live bitmap";
        }
        if (alloc_stack->Contains(const_cast<mirror::Object*>(obj))) {
          LOG(ERROR) << "Object " << obj << " found in allocation stack";
        }
        if (live_stack->Contains(const_cast<mirror::Object*>(obj))) {
          LOG(ERROR) << "Object " << obj << " found in live stack";
        }
        // Attempt to see if the card table missed the reference.
        ScanVisitor scan_visitor;
        byte* byte_cover_begin = reinterpret_cast<byte*>(card_table->AddrFromCard(card_addr));
        card_table->Scan(bitmap, byte_cover_begin,
                         byte_cover_begin + accounting::CardTable::kCardSize,
                         scan_visitor, VoidFunctor());

        // Search to see if any of the roots reference our object.
        void* arg = const_cast<void*>(reinterpret_cast<const void*>(obj));
        Runtime::Current()->VisitRoots(&RootMatchesObjectVisitor, arg, false, false);

        // Search to see if any of the roots reference our reference.
        arg = const_cast<void*>(reinterpret_cast<const void*>(ref));
        Runtime::Current()->VisitRoots(&RootMatchesObjectVisitor, arg, false, false);
      } else {
        LOG(ERROR) << "Root references dead object " << ref << "\nRef type " << PrettyTypeOf(ref);
      }
      if (alloc_stack->Contains(const_cast<mirror::Object*>(ref))) {
        LOG(ERROR) << "Reference " << ref << " found in allocation stack!";
      }
      if (live_stack->Contains(const_cast<mirror::Object*>(ref))) {
        LOG(ERROR) << "Reference " << ref << " found in live stack!";
      }
      heap_->image_mod_union_table_->Dump(LOG(ERROR) << "Image mod-union table: ");
      heap_->zygote_mod_union_table_->Dump(LOG(ERROR) << "Zygote mod-union table: ");
      failed_ = true;
    }
  }

  bool IsLive(const mirror::Object* obj) const NO_THREAD_SAFETY_ANALYSIS {
    return heap_->IsLiveObjectLocked(obj);
  }

  static void VerifyRoots(const mirror::Object* root, void* arg) {
    VerifyReferenceVisitor* visitor = reinterpret_cast<VerifyReferenceVisitor*>(arg);
    (*visitor)(NULL, root, MemberOffset(0), true);
  }

 private:
  Heap* const heap_;
  mutable bool failed_;
};

// Verify all references within an object, for use with HeapBitmap::Visit.
class VerifyObjectVisitor {
 public:
  explicit VerifyObjectVisitor(Heap* heap) : heap_(heap), failed_(false) {}

  void operator()(const mirror::Object* obj) const
      SHARED_LOCKS_REQUIRED(Locks::mutator_lock_, Locks::heap_bitmap_lock_) {
    // Note: we are verifying the references in obj but not obj itself, this is because obj must
    // be live or else how did we find it in the live bitmap?
    VerifyReferenceVisitor visitor(heap_);
    collector::MarkSweep::VisitObjectReferences(obj, visitor);
    failed_ = failed_ || visitor.Failed();
  }

  bool Failed() const {
    return failed_;
  }

 private:
  Heap* const heap_;
  mutable bool failed_;
};

// Must do this with mutators suspended since we are directly accessing the allocation stacks.
bool Heap::VerifyHeapReferences() {
  Locks::mutator_lock_->AssertExclusiveHeld(Thread::Current());
  // Lets sort our allocation stacks so that we can efficiently binary search them.
  allocation_stack_->Sort();
  live_stack_->Sort();
  // Perform the verification.
  VerifyObjectVisitor visitor(this);
  Runtime::Current()->VisitRoots(VerifyReferenceVisitor::VerifyRoots, &visitor, false, false);
  GetLiveBitmap()->Visit(visitor);
  // We don't want to verify the objects in the allocation stack since they themselves may be
  // pointing to dead objects if they are not reachable.
  if (visitor.Failed()) {
    DumpSpaces();
    return false;
  }
  return true;
}

class VerifyReferenceCardVisitor {
 public:
  VerifyReferenceCardVisitor(Heap* heap, bool* failed)
      SHARED_LOCKS_REQUIRED(Locks::mutator_lock_,
                            Locks::heap_bitmap_lock_)
      : heap_(heap), failed_(failed) {
  }

  // TODO: Fix lock analysis to not use NO_THREAD_SAFETY_ANALYSIS, requires support for
  // annotalysis on visitors.
  void operator()(const mirror::Object* obj, const mirror::Object* ref, const MemberOffset& offset,
                  bool is_static) const NO_THREAD_SAFETY_ANALYSIS {
    // Filter out class references since changing an object's class does not mark the card as dirty.
    // Also handles large objects, since the only reference they hold is a class reference.
    if (ref != NULL && !ref->IsClass()) {
      accounting::CardTable* card_table = heap_->GetCardTable();
      // If the object is not dirty and it is referencing something in the live stack other than
      // class, then it must be on a dirty card.
      if (!card_table->AddrIsInCardTable(obj)) {
        LOG(ERROR) << "Object " << obj << " is not in the address range of the card table";
        *failed_ = true;
      } else if (!card_table->IsDirty(obj)) {
        // Card should be either kCardDirty if it got re-dirtied after we aged it, or
        // kCardDirty - 1 if it didnt get touched since we aged it.
        accounting::ObjectStack* live_stack = heap_->live_stack_.get();
        if (live_stack->Contains(const_cast<mirror::Object*>(ref))) {
          if (live_stack->Contains(const_cast<mirror::Object*>(obj))) {
            LOG(ERROR) << "Object " << obj << " found in live stack";
          }
          if (heap_->GetLiveBitmap()->Test(obj)) {
            LOG(ERROR) << "Object " << obj << " found in live bitmap";
          }
          LOG(ERROR) << "Object " << obj << " " << PrettyTypeOf(obj)
                    << " references " << ref << " " << PrettyTypeOf(ref) << " in live stack";

          // Print which field of the object is dead.
          if (!obj->IsObjectArray()) {
            const mirror::Class* klass = is_static ? obj->AsClass() : obj->GetClass();
            CHECK(klass != NULL);
            const mirror::ObjectArray<mirror::Field>* fields = is_static ? klass->GetSFields()
                                                                         : klass->GetIFields();
            CHECK(fields != NULL);
            for (int32_t i = 0; i < fields->GetLength(); ++i) {
              const mirror::Field* cur = fields->Get(i);
              if (cur->GetOffset().Int32Value() == offset.Int32Value()) {
                LOG(ERROR) << (is_static ? "Static " : "") << "field in the live stack is "
                          << PrettyField(cur);
                break;
              }
            }
          } else {
            const mirror::ObjectArray<mirror::Object>* object_array =
                obj->AsObjectArray<mirror::Object>();
            for (int32_t i = 0; i < object_array->GetLength(); ++i) {
              if (object_array->Get(i) == ref) {
                LOG(ERROR) << (is_static ? "Static " : "") << "obj[" << i << "] = ref";
              }
            }
          }

          *failed_ = true;
        }
      }
    }
  }

 private:
  Heap* const heap_;
  bool* const failed_;
};

class VerifyLiveStackReferences {
 public:
  explicit VerifyLiveStackReferences(Heap* heap)
      : heap_(heap),
        failed_(false) {}

  void operator()(const mirror::Object* obj) const
      SHARED_LOCKS_REQUIRED(Locks::mutator_lock_, Locks::heap_bitmap_lock_) {
    VerifyReferenceCardVisitor visitor(heap_, const_cast<bool*>(&failed_));
    collector::MarkSweep::VisitObjectReferences(obj, visitor);
  }

  bool Failed() const {
    return failed_;
  }

 private:
  Heap* const heap_;
  bool failed_;
};

bool Heap::VerifyMissingCardMarks() {
  Locks::mutator_lock_->AssertExclusiveHeld(Thread::Current());

  // We need to sort the live stack since we binary search it.
  live_stack_->Sort();
  VerifyLiveStackReferences visitor(this);
  GetLiveBitmap()->Visit(visitor);

  // We can verify objects in the live stack since none of these should reference dead objects.
  for (mirror::Object** it = live_stack_->Begin(); it != live_stack_->End(); ++it) {
    visitor(*it);
  }

  if (visitor.Failed()) {
    DumpSpaces();
    return false;
  }
  return true;
}

void Heap::SwapStacks() {
  allocation_stack_.swap(live_stack_);

  // Sort the live stack so that we can quickly binary search it later.
  if (verify_object_mode_ > kNoHeapVerification) {
    live_stack_->Sort();
  }
}

void Heap::ProcessCards(base::NewTimingLogger& timings) {
  // Clear cards and keep track of cards cleared in the mod-union table.
  typedef std::vector<space::ContinuousSpace*>::iterator It;
  for (It it = continuous_spaces_.begin(), end = continuous_spaces_.end(); it != end; ++it) {
    space::ContinuousSpace* space = *it;
    if (space->IsImageSpace()) {
      timings.NewSplit("ModUnionClearCards");
      image_mod_union_table_->ClearCards(space);
    } else if (space->IsZygoteSpace()) {
      timings.NewSplit("ZygoteModUnionClearCards");
      zygote_mod_union_table_->ClearCards(space);
    } else {
      // No mod union table for the AllocSpace. Age the cards so that the GC knows that these cards
      // were dirty before the GC started.
      timings.NewSplit("AllocSpaceClearCards");
      card_table_->ModifyCardsAtomic(space->Begin(), space->End(), AgeCardVisitor(), VoidFunctor());
    }
  }
}

void Heap::PreGcVerification(collector::GarbageCollector* gc) {
  ThreadList* thread_list = Runtime::Current()->GetThreadList();
  Thread* self = Thread::Current();

  if (verify_pre_gc_heap_) {
    thread_list->SuspendAll();
    {
      ReaderMutexLock mu(self, *Locks::heap_bitmap_lock_);
      if (!VerifyHeapReferences()) {
        LOG(FATAL) << "Pre " << gc->GetName() << " heap verification failed";
      }
    }
    thread_list->ResumeAll();
  }

  // Check that all objects which reference things in the live stack are on dirty cards.
  if (verify_missing_card_marks_) {
    thread_list->SuspendAll();
    {
      ReaderMutexLock mu(self, *Locks::heap_bitmap_lock_);
      SwapStacks();
      // Sort the live stack so that we can quickly binary search it later.
      if (!VerifyMissingCardMarks()) {
        LOG(FATAL) << "Pre " << gc->GetName() << " missing card mark verification failed";
      }
      SwapStacks();
    }
    thread_list->ResumeAll();
  }

  if (verify_mod_union_table_) {
    thread_list->SuspendAll();
    ReaderMutexLock reader_lock(self, *Locks::heap_bitmap_lock_);
    zygote_mod_union_table_->Update();
    zygote_mod_union_table_->Verify();
    image_mod_union_table_->Update();
    image_mod_union_table_->Verify();
    thread_list->ResumeAll();
  }
}

void Heap::PreSweepingGcVerification(collector::GarbageCollector* gc) {
  ThreadList* thread_list = Runtime::Current()->GetThreadList();

  // Called before sweeping occurs since we want to make sure we are not going so reclaim any
  // reachable objects.
  if (verify_post_gc_heap_) {
    Thread* self = Thread::Current();
    CHECK_NE(self->GetState(), kRunnable);
    Locks::mutator_lock_->SharedUnlock(self);
    thread_list->SuspendAll();
    {
      WriterMutexLock mu(self, *Locks::heap_bitmap_lock_);
      // Swapping bound bitmaps does nothing.
      gc->SwapBitmaps();
      if (!VerifyHeapReferences()) {
        LOG(FATAL) << "Post " << gc->GetName() << "GC verification failed";
      }
      gc->SwapBitmaps();
    }
    thread_list->ResumeAll();
    Locks::mutator_lock_->SharedLock(self);
  }
}

void Heap::PostGcVerification(collector::GarbageCollector* gc) {
  Thread* self = Thread::Current();

  if (verify_system_weaks_) {
    ReaderMutexLock mu(self, *Locks::heap_bitmap_lock_);
    collector::MarkSweep* mark_sweep = down_cast<collector::MarkSweep*>(gc);
    mark_sweep->VerifySystemWeaks();
  }
}

collector::GcType Heap::WaitForConcurrentGcToComplete(Thread* self) {
  collector::GcType last_gc_type = collector::kGcTypeNone;
  if (concurrent_gc_) {
    ATRACE_BEGIN("GC: Wait For Concurrent");
    bool do_wait;
    uint64_t wait_start = NanoTime();
    {
      // Check if GC is running holding gc_complete_lock_.
      MutexLock mu(self, *gc_complete_lock_);
      do_wait = is_gc_running_;
    }
    if (do_wait) {
      uint64_t wait_time;
      // We must wait, change thread state then sleep on gc_complete_cond_;
      ScopedThreadStateChange tsc(Thread::Current(), kWaitingForGcToComplete);
      {
        MutexLock mu(self, *gc_complete_lock_);
        while (is_gc_running_) {
          gc_complete_cond_->Wait(self);
        }
        last_gc_type = last_gc_type_;
        wait_time = NanoTime() - wait_start;
        total_wait_time_ += wait_time;
      }
      if (wait_time > kLongGcPauseThreshold) {
        LOG(INFO) << "WaitForConcurrentGcToComplete blocked for " << PrettyDuration(wait_time);
      }
    }
    ATRACE_END();
  }
  return last_gc_type;
}

void Heap::DumpForSigQuit(std::ostream& os) {
  os << "Heap: " << GetPercentFree() << "% free, " << PrettySize(GetBytesAllocated()) << "/"
     << PrettySize(GetTotalMemory()) << "; " << GetObjectsAllocated() << " objects\n";
  DumpGcPerformanceInfo(os);
}

size_t Heap::GetPercentFree() {
  return static_cast<size_t>(100.0f * static_cast<float>(GetFreeMemory()) / GetTotalMemory());
}

void Heap::SetIdealFootprint(size_t max_allowed_footprint) {
  if (max_allowed_footprint > GetMaxMemory()) {
    VLOG(gc) << "Clamp target GC heap from " << PrettySize(max_allowed_footprint) << " to "
             << PrettySize(GetMaxMemory());
    max_allowed_footprint = GetMaxMemory();
  }
  max_allowed_footprint_ = max_allowed_footprint;
}

void Heap::UpdateMaxNativeFootprint() {
  size_t native_size = native_bytes_allocated_;
  // TODO: Tune the native heap utilization to be a value other than the java heap utilization.
  size_t target_size = native_size / GetTargetHeapUtilization();
  if (target_size > native_size + max_free_) {
    target_size = native_size + max_free_;
  } else if (target_size < native_size + min_free_) {
    target_size = native_size + min_free_;
  }
  native_footprint_gc_watermark_ = target_size;
  native_footprint_limit_ = 2 * target_size - native_size;
}

void Heap::GrowForUtilization(collector::GcType gc_type, uint64_t gc_duration) {
  // We know what our utilization is at this moment.
  // This doesn't actually resize any memory. It just lets the heap grow more when necessary.
  const size_t bytes_allocated = GetBytesAllocated();
  last_gc_size_ = bytes_allocated;
  last_gc_time_ns_ = NanoTime();

  size_t target_size;
  if (gc_type != collector::kGcTypeSticky) {
    // Grow the heap for non sticky GC.
    target_size = bytes_allocated / GetTargetHeapUtilization();
    if (target_size > bytes_allocated + max_free_) {
      target_size = bytes_allocated + max_free_;
    } else if (target_size < bytes_allocated + min_free_) {
      target_size = bytes_allocated + min_free_;
    }
    next_gc_type_ = collector::kGcTypeSticky;
  } else {
    // Based on how close the current heap size is to the target size, decide
    // whether or not to do a partial or sticky GC next.
    if (bytes_allocated + min_free_ <= max_allowed_footprint_) {
      next_gc_type_ = collector::kGcTypeSticky;
    } else {
      next_gc_type_ = collector::kGcTypePartial;
    }

    // If we have freed enough memory, shrink the heap back down.
    if (bytes_allocated + max_free_ < max_allowed_footprint_) {
      target_size = bytes_allocated + max_free_;
    } else {
      target_size = std::max(bytes_allocated, max_allowed_footprint_);
    }
  }
  SetIdealFootprint(target_size);

  // Calculate when to perform the next ConcurrentGC.
  if (concurrent_gc_) {
    // Calculate the estimated GC duration.
    double gc_duration_seconds = NsToMs(gc_duration) / 1000.0;
    // Estimate how many remaining bytes we will have when we need to start the next GC.
    size_t remaining_bytes = allocation_rate_ * gc_duration_seconds;
    remaining_bytes = std::max(remaining_bytes, kMinConcurrentRemainingBytes);
    if (UNLIKELY(remaining_bytes > max_allowed_footprint_)) {
      // A never going to happen situation that from the estimated allocation rate we will exceed
      // the applications entire footprint with the given estimated allocation rate. Schedule
      // another GC straight away.
      concurrent_start_bytes_ = bytes_allocated;
    } else {
      // Start a concurrent GC when we get close to the estimated remaining bytes. When the
      // allocation rate is very high, remaining_bytes could tell us that we should start a GC
      // right away.
      concurrent_start_bytes_ = std::max(max_allowed_footprint_ - remaining_bytes, bytes_allocated);
    }
    DCHECK_LE(concurrent_start_bytes_, max_allowed_footprint_);
    DCHECK_LE(max_allowed_footprint_, growth_limit_);
  }

  UpdateMaxNativeFootprint();
}

void Heap::ClearGrowthLimit() {
  growth_limit_ = capacity_;
  alloc_space_->ClearGrowthLimit();
}

void Heap::SetReferenceOffsets(MemberOffset reference_referent_offset,
                                MemberOffset reference_queue_offset,
                                MemberOffset reference_queueNext_offset,
                                MemberOffset reference_pendingNext_offset,
                                MemberOffset finalizer_reference_zombie_offset) {
  reference_referent_offset_ = reference_referent_offset;
  reference_queue_offset_ = reference_queue_offset;
  reference_queueNext_offset_ = reference_queueNext_offset;
  reference_pendingNext_offset_ = reference_pendingNext_offset;
  finalizer_reference_zombie_offset_ = finalizer_reference_zombie_offset;
  CHECK_NE(reference_referent_offset_.Uint32Value(), 0U);
  CHECK_NE(reference_queue_offset_.Uint32Value(), 0U);
  CHECK_NE(reference_queueNext_offset_.Uint32Value(), 0U);
  CHECK_NE(reference_pendingNext_offset_.Uint32Value(), 0U);
  CHECK_NE(finalizer_reference_zombie_offset_.Uint32Value(), 0U);
}

mirror::Object* Heap::GetReferenceReferent(mirror::Object* reference) {
  DCHECK(reference != NULL);
  DCHECK_NE(reference_referent_offset_.Uint32Value(), 0U);
  return reference->GetFieldObject<mirror::Object*>(reference_referent_offset_, true);
}

void Heap::ClearReferenceReferent(mirror::Object* reference) {
  DCHECK(reference != NULL);
  DCHECK_NE(reference_referent_offset_.Uint32Value(), 0U);
  reference->SetFieldObject(reference_referent_offset_, NULL, true);
}

// Returns true if the reference object has not yet been enqueued.
bool Heap::IsEnqueuable(const mirror::Object* ref) {
  DCHECK(ref != NULL);
  const mirror::Object* queue =
      ref->GetFieldObject<mirror::Object*>(reference_queue_offset_, false);
  const mirror::Object* queue_next =
      ref->GetFieldObject<mirror::Object*>(reference_queueNext_offset_, false);
  return (queue != NULL) && (queue_next == NULL);
}

void Heap::EnqueueReference(mirror::Object* ref, mirror::Object** cleared_reference_list) {
  DCHECK(ref != NULL);
  CHECK(ref->GetFieldObject<mirror::Object*>(reference_queue_offset_, false) != NULL);
  CHECK(ref->GetFieldObject<mirror::Object*>(reference_queueNext_offset_, false) == NULL);
  EnqueuePendingReference(ref, cleared_reference_list);
}

void Heap::EnqueuePendingReference(mirror::Object* ref, mirror::Object** list) {
  DCHECK(ref != NULL);
  DCHECK(list != NULL);

  // TODO: Remove this lock, use atomic stacks for storing references.
  MutexLock mu(Thread::Current(), *reference_queue_lock_);
  if (*list == NULL) {
    ref->SetFieldObject(reference_pendingNext_offset_, ref, false);
    *list = ref;
  } else {
    mirror::Object* head =
        (*list)->GetFieldObject<mirror::Object*>(reference_pendingNext_offset_, false);
    ref->SetFieldObject(reference_pendingNext_offset_, head, false);
    (*list)->SetFieldObject(reference_pendingNext_offset_, ref, false);
  }
}

mirror::Object* Heap::DequeuePendingReference(mirror::Object** list) {
  DCHECK(list != NULL);
  DCHECK(*list != NULL);
  mirror::Object* head = (*list)->GetFieldObject<mirror::Object*>(reference_pendingNext_offset_,
                                                                  false);
  mirror::Object* ref;

  // Note: the following code is thread-safe because it is only called from ProcessReferences which
  // is single threaded.
  if (*list == head) {
    ref = *list;
    *list = NULL;
  } else {
    mirror::Object* next = head->GetFieldObject<mirror::Object*>(reference_pendingNext_offset_,
                                                                 false);
    (*list)->SetFieldObject(reference_pendingNext_offset_, next, false);
    ref = head;
  }
  ref->SetFieldObject(reference_pendingNext_offset_, NULL, false);
  return ref;
}

void Heap::AddFinalizerReference(Thread* self, mirror::Object* object) {
  ScopedObjectAccess soa(self);
  JValue result;
  ArgArray arg_array(NULL, 0);
  arg_array.Append(reinterpret_cast<uint32_t>(object));
  soa.DecodeMethod(WellKnownClasses::java_lang_ref_FinalizerReference_add)->Invoke(self,
      arg_array.GetArray(), arg_array.GetNumBytes(), &result, 'V');
}

void Heap::EnqueueClearedReferences(mirror::Object** cleared) {
  DCHECK(cleared != NULL);
  if (*cleared != NULL) {
    // When a runtime isn't started there are no reference queues to care about so ignore.
    if (LIKELY(Runtime::Current()->IsStarted())) {
      ScopedObjectAccess soa(Thread::Current());
      JValue result;
      ArgArray arg_array(NULL, 0);
      arg_array.Append(reinterpret_cast<uint32_t>(*cleared));
      soa.DecodeMethod(WellKnownClasses::java_lang_ref_ReferenceQueue_add)->Invoke(soa.Self(),
          arg_array.GetArray(), arg_array.GetNumBytes(), &result, 'V');
    }
    *cleared = NULL;
  }
}

void Heap::RequestConcurrentGC(Thread* self) {
  // Make sure that we can do a concurrent GC.
  Runtime* runtime = Runtime::Current();
  DCHECK(concurrent_gc_);
  if (runtime == NULL || !runtime->IsFinishedStarting() ||
      !runtime->IsConcurrentGcEnabled()) {
    return;
  }
  {
    MutexLock mu(self, *Locks::runtime_shutdown_lock_);
    if (runtime->IsShuttingDown()) {
      return;
    }
  }
  if (self->IsHandlingStackOverflow()) {
    return;
  }

  // We already have a request pending, no reason to start more until we update
  // concurrent_start_bytes_.
  concurrent_start_bytes_ = std::numeric_limits<size_t>::max();

  JNIEnv* env = self->GetJniEnv();
  DCHECK(WellKnownClasses::java_lang_Daemons != NULL);
  DCHECK(WellKnownClasses::java_lang_Daemons_requestGC != NULL);
  env->CallStaticVoidMethod(WellKnownClasses::java_lang_Daemons,
                            WellKnownClasses::java_lang_Daemons_requestGC);
  CHECK(!env->ExceptionCheck());
}

void Heap::ConcurrentGC(Thread* self) {
  {
    MutexLock mu(self, *Locks::runtime_shutdown_lock_);
    if (Runtime::Current()->IsShuttingDown()) {
      return;
    }
  }

  // Wait for any GCs currently running to finish.
  if (WaitForConcurrentGcToComplete(self) == collector::kGcTypeNone) {
    CollectGarbageInternal(next_gc_type_, kGcCauseBackground, false);
  }
}

void Heap::RequestHeapTrim() {
  // GC completed and now we must decide whether to request a heap trim (advising pages back to the
  // kernel) or not. Issuing a request will also cause trimming of the libc heap. As a trim scans
  // a space it will hold its lock and can become a cause of jank.
  // Note, the large object space self trims and the Zygote space was trimmed and unchanging since
  // forking.

  // We don't have a good measure of how worthwhile a trim might be. We can't use the live bitmap
  // because that only marks object heads, so a large array looks like lots of empty space. We
  // don't just call dlmalloc all the time, because the cost of an _attempted_ trim is proportional
  // to utilization (which is probably inversely proportional to how much benefit we can expect).
  // We could try mincore(2) but that's only a measure of how many pages we haven't given away,
  // not how much use we're making of those pages.
  uint64_t ms_time = MilliTime();
  float utilization =
      static_cast<float>(alloc_space_->GetBytesAllocated()) / alloc_space_->Size();
  if ((utilization > 0.75f) || ((ms_time - last_trim_time_ms_) < 2 * 1000)) {
    // Don't bother trimming the alloc space if it's more than 75% utilized, or if a
    // heap trim occurred in the last two seconds.
    return;
  }

  Thread* self = Thread::Current();
  {
    MutexLock mu(self, *Locks::runtime_shutdown_lock_);
    Runtime* runtime = Runtime::Current();
    if (runtime == NULL || !runtime->IsFinishedStarting() || runtime->IsShuttingDown()) {
      // Heap trimming isn't supported without a Java runtime or Daemons (such as at dex2oat time)
      // Also: we do not wish to start a heap trim if the runtime is shutting down (a racy check
      // as we don't hold the lock while requesting the trim).
      return;
    }
  }

  SchedPolicy policy;
  get_sched_policy(self->GetTid(), &policy);
  if (policy == SP_FOREGROUND || policy == SP_AUDIO_APP) {
    // Don't trim the heap if we are a foreground or audio app.
    return;
  }

  last_trim_time_ms_ = ms_time;
  JNIEnv* env = self->GetJniEnv();
  DCHECK(WellKnownClasses::java_lang_Daemons != NULL);
  DCHECK(WellKnownClasses::java_lang_Daemons_requestHeapTrim != NULL);
  env->CallStaticVoidMethod(WellKnownClasses::java_lang_Daemons,
                            WellKnownClasses::java_lang_Daemons_requestHeapTrim);
  CHECK(!env->ExceptionCheck());
}

size_t Heap::Trim() {
  // Handle a requested heap trim on a thread outside of the main GC thread.
  return alloc_space_->Trim();
}

bool Heap::IsGCRequestPending() const {
  return concurrent_start_bytes_ != std::numeric_limits<size_t>::max();
}

void Heap::RegisterNativeAllocation(int bytes) {
  // Total number of native bytes allocated.
  native_bytes_allocated_.fetch_add(bytes);
  Thread* self = Thread::Current();
  if (static_cast<size_t>(native_bytes_allocated_) > native_footprint_gc_watermark_) {
    // The second watermark is higher than the gc watermark. If you hit this it means you are
    // allocating native objects faster than the GC can keep up with.
    if (static_cast<size_t>(native_bytes_allocated_) > native_footprint_limit_) {
        JNIEnv* env = self->GetJniEnv();
        // Can't do this in WellKnownClasses::Init since System is not properly set up at that
        // point.
        if (WellKnownClasses::java_lang_System_runFinalization == NULL) {
          DCHECK(WellKnownClasses::java_lang_System != NULL);
          WellKnownClasses::java_lang_System_runFinalization =
              CacheMethod(env, WellKnownClasses::java_lang_System, true, "runFinalization", "()V");
          assert(WellKnownClasses::java_lang_System_runFinalization != NULL);
        }
        if (WaitForConcurrentGcToComplete(self) != collector::kGcTypeNone) {
          // Just finished a GC, attempt to run finalizers.
          env->CallStaticVoidMethod(WellKnownClasses::java_lang_System,
                                    WellKnownClasses::java_lang_System_runFinalization);
          CHECK(!env->ExceptionCheck());
        }

        // If we still are over the watermark, attempt a GC for alloc and run finalizers.
        if (static_cast<size_t>(native_bytes_allocated_) > native_footprint_limit_) {
          CollectGarbageInternal(collector::kGcTypePartial, kGcCauseForAlloc, false);
          env->CallStaticVoidMethod(WellKnownClasses::java_lang_System,
                                    WellKnownClasses::java_lang_System_runFinalization);
          CHECK(!env->ExceptionCheck());
        }
        // We have just run finalizers, update the native watermark since it is very likely that
        // finalizers released native managed allocations.
        UpdateMaxNativeFootprint();
    } else {
      if (!IsGCRequestPending()) {
        RequestConcurrentGC(self);
      }
    }
  }
}

void Heap::RegisterNativeFree(int bytes) {
  int expected_size, new_size;
  do {
      expected_size = native_bytes_allocated_.load();
      new_size = expected_size - bytes;
      if (new_size < 0) {
        ThrowRuntimeException("attempted to free %d native bytes with only %d native bytes registered as allocated",
                              bytes, expected_size);
        break;
      }
  } while (!native_bytes_allocated_.compare_and_swap(expected_size, new_size));
}

}  // namespace gc
}  // namespace art