summaryrefslogtreecommitdiffstats
path: root/runtime/gc/heap.h
blob: c631372d1552fde7713ee84fa971dc96c9db2af4 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
/*
 * Copyright (C) 2008 The Android Open Source Project
 *
 * Licensed under the Apache License, Version 2.0 (the "License");
 * you may not use this file except in compliance with the License.
 * You may obtain a copy of the License at
 *
 *      http://www.apache.org/licenses/LICENSE-2.0
 *
 * Unless required by applicable law or agreed to in writing, software
 * distributed under the License is distributed on an "AS IS" BASIS,
 * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
 * See the License for the specific language governing permissions and
 * limitations under the License.
 */

#ifndef ART_RUNTIME_GC_HEAP_H_
#define ART_RUNTIME_GC_HEAP_H_

#include <iosfwd>
#include <string>
#include <vector>

#include "allocator_type.h"
#include "atomic.h"
#include "base/timing_logger.h"
#include "gc/accounting/atomic_stack.h"
#include "gc/accounting/card_table.h"
#include "gc/gc_cause.h"
#include "gc/collector/gc_type.h"
#include "gc/collector_type.h"
#include "globals.h"
#include "gtest/gtest.h"
#include "jni.h"
#include "object_callbacks.h"
#include "offsets.h"
#include "reference_queue.h"
#include "safe_map.h"
#include "thread_pool.h"
#include "verify_object.h"

namespace art {

class ConditionVariable;
class Mutex;
class StackVisitor;
class Thread;
class TimingLogger;

namespace mirror {
  class Class;
  class Object;
}  // namespace mirror

namespace gc {
namespace accounting {
  class HeapBitmap;
  class ModUnionTable;
  class RememberedSet;
}  // namespace accounting

namespace collector {
  class ConcurrentCopying;
  class GarbageCollector;
  class MarkSweep;
  class SemiSpace;
}  // namespace collector

namespace space {
  class AllocSpace;
  class BumpPointerSpace;
  class DiscontinuousSpace;
  class DlMallocSpace;
  class ImageSpace;
  class LargeObjectSpace;
  class MallocSpace;
  class RosAllocSpace;
  class Space;
  class SpaceTest;
  class ContinuousMemMapAllocSpace;
}  // namespace space

class AgeCardVisitor {
 public:
  byte operator()(byte card) const {
    if (card == accounting::CardTable::kCardDirty) {
      return card - 1;
    } else {
      return 0;
    }
  }
};

// If true, use rosalloc/RosAllocSpace instead of dlmalloc/DlMallocSpace
static constexpr bool kUseRosAlloc = true;

// If true, use thread-local allocation stack.
static constexpr bool kUseThreadLocalAllocationStack = true;

// The process state passed in from the activity manager, used to determine when to do trimming
// and compaction.
enum ProcessState {
  kProcessStateJankPerceptible = 0,
  kProcessStateJankImperceptible = 1,
};
std::ostream& operator<<(std::ostream& os, const ProcessState& process_state);

std::ostream& operator<<(std::ostream& os, const RootType& root_type);

class Heap {
 public:
  // If true, measure the total allocation time.
  static constexpr bool kMeasureAllocationTime = false;
  // Primitive arrays larger than this size are put in the large object space.
  static constexpr size_t kDefaultLargeObjectThreshold = 3 * kPageSize;

  static constexpr size_t kDefaultStartingSize = kPageSize;
  static constexpr size_t kDefaultInitialSize = 2 * MB;
  static constexpr size_t kDefaultMaximumSize = 32 * MB;
  static constexpr size_t kDefaultMaxFree = 2 * MB;
  static constexpr size_t kDefaultMinFree = kDefaultMaxFree / 4;
  static constexpr size_t kDefaultLongPauseLogThreshold = MsToNs(5);
  static constexpr size_t kDefaultLongGCLogThreshold = MsToNs(100);
  static constexpr size_t kDefaultTLABSize = 256 * KB;
  static constexpr double kDefaultTargetUtilization = 0.5;
  static constexpr double kDefaultHeapGrowthMultiplier = 2.0;

  // Used so that we don't overflow the allocation time atomic integer.
  static constexpr size_t kTimeAdjust = 1024;

  // How often we allow heap trimming to happen (nanoseconds).
  static constexpr uint64_t kHeapTrimWait = MsToNs(5000);
  // How long we wait after a transition request to perform a collector transition (nanoseconds).
  static constexpr uint64_t kCollectorTransitionWait = MsToNs(5000);

  // Create a heap with the requested sizes. The possible empty
  // image_file_names names specify Spaces to load based on
  // ImageWriter output.
  explicit Heap(size_t initial_size, size_t growth_limit, size_t min_free,
                size_t max_free, double target_utilization,
                double foreground_heap_growth_multiplier, size_t capacity,
                const std::string& original_image_file_name,
                CollectorType foreground_collector_type, CollectorType background_collector_type,
                size_t parallel_gc_threads, size_t conc_gc_threads, bool low_memory_mode,
                size_t long_pause_threshold, size_t long_gc_threshold,
                bool ignore_max_footprint, bool use_tlab,
                bool verify_pre_gc_heap, bool verify_pre_sweeping_heap, bool verify_post_gc_heap,
                bool verify_pre_gc_rosalloc, bool verify_pre_sweeping_rosalloc,
                bool verify_post_gc_rosalloc);

  ~Heap();

  // Allocates and initializes storage for an object instance.
  template <bool kInstrumented, typename PreFenceVisitor>
  mirror::Object* AllocObject(Thread* self, mirror::Class* klass, size_t num_bytes,
                              const PreFenceVisitor& pre_fence_visitor)
      SHARED_LOCKS_REQUIRED(Locks::mutator_lock_) {
    return AllocObjectWithAllocator<kInstrumented, true>(self, klass, num_bytes,
                                                         GetCurrentAllocator(),
                                                         pre_fence_visitor);
  }

  template <bool kInstrumented, typename PreFenceVisitor>
  mirror::Object* AllocNonMovableObject(Thread* self, mirror::Class* klass, size_t num_bytes,
                                        const PreFenceVisitor& pre_fence_visitor)
      SHARED_LOCKS_REQUIRED(Locks::mutator_lock_) {
    return AllocObjectWithAllocator<kInstrumented, true>(self, klass, num_bytes,
                                                         GetCurrentNonMovingAllocator(),
                                                         pre_fence_visitor);
  }

  template <bool kInstrumented, bool kCheckLargeObject, typename PreFenceVisitor>
  ALWAYS_INLINE mirror::Object* AllocObjectWithAllocator(
      Thread* self, mirror::Class* klass, size_t byte_count, AllocatorType allocator,
      const PreFenceVisitor& pre_fence_visitor)
      SHARED_LOCKS_REQUIRED(Locks::mutator_lock_);

  AllocatorType GetCurrentAllocator() const {
    return current_allocator_;
  }

  AllocatorType GetCurrentNonMovingAllocator() const {
    return current_non_moving_allocator_;
  }

  // Visit all of the live objects in the heap.
  void VisitObjects(ObjectCallback callback, void* arg)
      SHARED_LOCKS_REQUIRED(Locks::heap_bitmap_lock_, Locks::mutator_lock_);

  void CheckPreconditionsForAllocObject(mirror::Class* c, size_t byte_count)
      SHARED_LOCKS_REQUIRED(Locks::mutator_lock_);
  void ThrowOutOfMemoryError(size_t byte_count, bool large_object_allocation);

  void RegisterNativeAllocation(JNIEnv* env, int bytes);
  void RegisterNativeFree(JNIEnv* env, int bytes);

  // Change the allocator, updates entrypoints.
  void ChangeAllocator(AllocatorType allocator)
      EXCLUSIVE_LOCKS_REQUIRED(Locks::mutator_lock_)
      LOCKS_EXCLUDED(Locks::runtime_shutdown_lock_);

  // Transition the garbage collector during runtime, may copy objects from one space to another.
  void TransitionCollector(CollectorType collector_type);

  // Change the collector to be one of the possible options (MS, CMS, SS).
  void ChangeCollector(CollectorType collector_type)
      EXCLUSIVE_LOCKS_REQUIRED(Locks::mutator_lock_);

  // The given reference is believed to be to an object in the Java heap, check the soundness of it.
  // TODO: NO_THREAD_SAFETY_ANALYSIS since we call this everywhere and it is impossible to find a
  // proper lock ordering for it.
  void VerifyObjectBody(mirror::Object* o) NO_THREAD_SAFETY_ANALYSIS;

  // Check sanity of all live references.
  void VerifyHeap() LOCKS_EXCLUDED(Locks::heap_bitmap_lock_);
  bool VerifyHeapReferences()
      EXCLUSIVE_LOCKS_REQUIRED(Locks::heap_bitmap_lock_, Locks::mutator_lock_);
  bool VerifyMissingCardMarks()
      EXCLUSIVE_LOCKS_REQUIRED(Locks::heap_bitmap_lock_, Locks::mutator_lock_);

  // A weaker test than IsLiveObject or VerifyObject that doesn't require the heap lock,
  // and doesn't abort on error, allowing the caller to report more
  // meaningful diagnostics.
  bool IsValidObjectAddress(const mirror::Object* obj) const
      SHARED_LOCKS_REQUIRED(Locks::mutator_lock_);

  // Faster alternative to IsHeapAddress since finding if an object is in the large object space is
  // very slow.
  bool IsNonDiscontinuousSpaceHeapAddress(const mirror::Object* obj) const
      SHARED_LOCKS_REQUIRED(Locks::mutator_lock_);

  // Returns true if 'obj' is a live heap object, false otherwise (including for invalid addresses).
  // Requires the heap lock to be held.
  bool IsLiveObjectLocked(mirror::Object* obj, bool search_allocation_stack = true,
                          bool search_live_stack = true, bool sorted = false)
      SHARED_LOCKS_REQUIRED(Locks::heap_bitmap_lock_, Locks::mutator_lock_);

  // Returns true if there is any chance that the object (obj) will move.
  bool IsMovableObject(const mirror::Object* obj) const;

  // Enables us to compacting GC until objects are released.
  void IncrementDisableMovingGC(Thread* self);
  void DecrementDisableMovingGC(Thread* self);

  // Clear all of the mark bits, doesn't clear bitmaps which have the same live bits as mark bits.
  void ClearMarkedObjects() EXCLUSIVE_LOCKS_REQUIRED(Locks::heap_bitmap_lock_);

  // Initiates an explicit garbage collection.
  void CollectGarbage(bool clear_soft_references);

  // Does a concurrent GC, should only be called by the GC daemon thread
  // through runtime.
  void ConcurrentGC(Thread* self) LOCKS_EXCLUDED(Locks::runtime_shutdown_lock_);

  // Implements VMDebug.countInstancesOfClass and JDWP VM_InstanceCount.
  // The boolean decides whether to use IsAssignableFrom or == when comparing classes.
  void CountInstances(const std::vector<mirror::Class*>& classes, bool use_is_assignable_from,
                      uint64_t* counts)
      LOCKS_EXCLUDED(Locks::heap_bitmap_lock_)
      SHARED_LOCKS_REQUIRED(Locks::mutator_lock_);
  // Implements JDWP RT_Instances.
  void GetInstances(mirror::Class* c, int32_t max_count, std::vector<mirror::Object*>& instances)
      LOCKS_EXCLUDED(Locks::heap_bitmap_lock_)
      SHARED_LOCKS_REQUIRED(Locks::mutator_lock_);
  // Implements JDWP OR_ReferringObjects.
  void GetReferringObjects(mirror::Object* o, int32_t max_count, std::vector<mirror::Object*>& referring_objects)
      LOCKS_EXCLUDED(Locks::heap_bitmap_lock_)
      SHARED_LOCKS_REQUIRED(Locks::mutator_lock_);

  // Removes the growth limit on the alloc space so it may grow to its maximum capacity. Used to
  // implement dalvik.system.VMRuntime.clearGrowthLimit.
  void ClearGrowthLimit();

  // Target ideal heap utilization ratio, implements
  // dalvik.system.VMRuntime.getTargetHeapUtilization.
  double GetTargetHeapUtilization() const {
    return target_utilization_;
  }

  // Data structure memory usage tracking.
  void RegisterGCAllocation(size_t bytes);
  void RegisterGCDeAllocation(size_t bytes);

  // Public due to usage by tests.
  void AddSpace(space::Space* space, bool set_as_default = true)
      LOCKS_EXCLUDED(Locks::heap_bitmap_lock_);
  void RemoveSpace(space::Space* space, bool unset_as_default = true)
      LOCKS_EXCLUDED(Locks::heap_bitmap_lock_);

  // Set target ideal heap utilization ratio, implements
  // dalvik.system.VMRuntime.setTargetHeapUtilization.
  void SetTargetHeapUtilization(float target);

  // For the alloc space, sets the maximum number of bytes that the heap is allowed to allocate
  // from the system. Doesn't allow the space to exceed its growth limit.
  void SetIdealFootprint(size_t max_allowed_footprint);

  // Blocks the caller until the garbage collector becomes idle and returns the type of GC we
  // waited for.
  collector::GcType WaitForGcToComplete(Thread* self) LOCKS_EXCLUDED(gc_complete_lock_);

  // Update the heap's process state to a new value, may cause compaction to occur.
  void UpdateProcessState(ProcessState process_state);

  const std::vector<space::ContinuousSpace*>& GetContinuousSpaces() const {
    return continuous_spaces_;
  }

  const std::vector<space::DiscontinuousSpace*>& GetDiscontinuousSpaces() const {
    return discontinuous_spaces_;
  }

  static mirror::Object* PreserveSoftReferenceCallback(mirror::Object* obj, void* arg);
  void ProcessSoftReferences(TimingLogger& timings, bool clear_soft,
                             IsMarkedCallback* is_marked_callback,
                             MarkObjectCallback* mark_object_callback,
                             ProcessMarkStackCallback* process_mark_stack_callback, void* arg)
      SHARED_LOCKS_REQUIRED(Locks::mutator_lock_)
      EXCLUSIVE_LOCKS_REQUIRED(Locks::heap_bitmap_lock_);
  void ProcessReferences(TimingLogger& timings, bool clear_soft,
                         IsMarkedCallback* is_marked_callback,
                         MarkObjectCallback* mark_object_callback,
                         ProcessMarkStackCallback* process_mark_stack_callback,
                         void* arg)
      SHARED_LOCKS_REQUIRED(Locks::mutator_lock_)
      EXCLUSIVE_LOCKS_REQUIRED(Locks::heap_bitmap_lock_);

  // Enable verification of object references when the runtime is sufficiently initialized.
  void EnableObjectValidation() {
    verify_object_mode_ = kVerifyObjectSupport;
    if (verify_object_mode_ > kVerifyObjectModeDisabled) {
      VerifyHeap();
    }
  }

  // Disable object reference verification for image writing.
  void DisableObjectValidation() {
    verify_object_mode_ = kVerifyObjectModeDisabled;
  }

  // Other checks may be performed if we know the heap should be in a sane state.
  bool IsObjectValidationEnabled() const {
    return verify_object_mode_ > kVerifyObjectModeDisabled;
  }

  // Returns true if low memory mode is enabled.
  bool IsLowMemoryMode() const {
    return low_memory_mode_;
  }

  // Returns the heap growth multiplier, this affects how much we grow the heap after a GC.
  // Scales heap growth, min free, and max free.
  double HeapGrowthMultiplier() const;

  // Freed bytes can be negative in cases where we copy objects from a compacted space to a
  // free-list backed space.
  void RecordFree(ssize_t freed_objects, ssize_t freed_bytes);

  // Must be called if a field of an Object in the heap changes, and before any GC safe-point.
  // The call is not needed if NULL is stored in the field.
  void WriteBarrierField(const mirror::Object* dst, MemberOffset /*offset*/,
                         const mirror::Object* /*new_value*/) {
    card_table_->MarkCard(dst);
  }

  // Write barrier for array operations that update many field positions
  void WriteBarrierArray(const mirror::Object* dst, int /*start_offset*/,
                         size_t /*length TODO: element_count or byte_count?*/) {
    card_table_->MarkCard(dst);
  }

  void WriteBarrierEveryFieldOf(const mirror::Object* obj) {
    card_table_->MarkCard(obj);
  }

  accounting::CardTable* GetCardTable() const {
    return card_table_.get();
  }

  void AddFinalizerReference(Thread* self, mirror::Object* object);

  // Returns the number of bytes currently allocated.
  size_t GetBytesAllocated() const {
    return num_bytes_allocated_;
  }

  // Returns the number of objects currently allocated.
  size_t GetObjectsAllocated() const LOCKS_EXCLUDED(Locks::heap_bitmap_lock_);

  // Returns the total number of objects allocated since the heap was created.
  size_t GetObjectsAllocatedEver() const;

  // Returns the total number of bytes allocated since the heap was created.
  size_t GetBytesAllocatedEver() const;

  // Returns the total number of objects freed since the heap was created.
  size_t GetObjectsFreedEver() const {
    return total_objects_freed_ever_;
  }

  // Returns the total number of bytes freed since the heap was created.
  size_t GetBytesFreedEver() const {
    return total_bytes_freed_ever_;
  }

  // Implements java.lang.Runtime.maxMemory, returning the maximum amount of memory a program can
  // consume. For a regular VM this would relate to the -Xmx option and would return -1 if no Xmx
  // were specified. Android apps start with a growth limit (small heap size) which is
  // cleared/extended for large apps.
  size_t GetMaxMemory() const {
    return growth_limit_;
  }

  // Implements java.lang.Runtime.totalMemory, returning the amount of memory consumed by an
  // application.
  size_t GetTotalMemory() const;

  // Implements java.lang.Runtime.freeMemory.
  size_t GetFreeMemory() const {
    return GetTotalMemory() - num_bytes_allocated_;
  }

  // Get the space that corresponds to an object's address. Current implementation searches all
  // spaces in turn. If fail_ok is false then failing to find a space will cause an abort.
  // TODO: consider using faster data structure like binary tree.
  space::ContinuousSpace* FindContinuousSpaceFromObject(const mirror::Object*, bool fail_ok) const;
  space::DiscontinuousSpace* FindDiscontinuousSpaceFromObject(const mirror::Object*,
                                                              bool fail_ok) const;
  space::Space* FindSpaceFromObject(const mirror::Object*, bool fail_ok) const;

  void DumpForSigQuit(std::ostream& os);


  // Do a pending heap transition or trim.
  void DoPendingTransitionOrTrim() LOCKS_EXCLUDED(heap_trim_request_lock_);

  // Trim the managed and native heaps by releasing unused memory back to the OS.
  void Trim() LOCKS_EXCLUDED(heap_trim_request_lock_);

  void RevokeThreadLocalBuffers(Thread* thread);
  void RevokeRosAllocThreadLocalBuffers(Thread* thread);
  void RevokeAllThreadLocalBuffers();
  void AssertAllBumpPointerSpaceThreadLocalBuffersAreRevoked();
  void RosAllocVerification(TimingLogger* timings, const char* name)
      EXCLUSIVE_LOCKS_REQUIRED(Locks::mutator_lock_);

  accounting::HeapBitmap* GetLiveBitmap() SHARED_LOCKS_REQUIRED(Locks::heap_bitmap_lock_) {
    return live_bitmap_.get();
  }

  accounting::HeapBitmap* GetMarkBitmap() SHARED_LOCKS_REQUIRED(Locks::heap_bitmap_lock_) {
    return mark_bitmap_.get();
  }

  accounting::ObjectStack* GetLiveStack() SHARED_LOCKS_REQUIRED(Locks::heap_bitmap_lock_) {
    return live_stack_.get();
  }

  void PreZygoteFork() NO_THREAD_SAFETY_ANALYSIS;

  // Mark and empty stack.
  void FlushAllocStack()
      EXCLUSIVE_LOCKS_REQUIRED(Locks::heap_bitmap_lock_);

  // Revoke all the thread-local allocation stacks.
  void RevokeAllThreadLocalAllocationStacks(Thread* self)
      EXCLUSIVE_LOCKS_REQUIRED(Locks::mutator_lock_)
      LOCKS_EXCLUDED(Locks::runtime_shutdown_lock_, Locks::thread_list_lock_);

  // Mark all the objects in the allocation stack in the specified bitmap.
  // TODO: Refactor?
  void MarkAllocStack(accounting::SpaceBitmap<kObjectAlignment>* bitmap1,
                      accounting::SpaceBitmap<kObjectAlignment>* bitmap2,
                      accounting::SpaceBitmap<kLargeObjectAlignment>* large_objects,
                      accounting::ObjectStack* stack)
      EXCLUSIVE_LOCKS_REQUIRED(Locks::heap_bitmap_lock_);

  // Mark the specified allocation stack as live.
  void MarkAllocStackAsLive(accounting::ObjectStack* stack)
      EXCLUSIVE_LOCKS_REQUIRED(Locks::heap_bitmap_lock_);

  // Unbind any bound bitmaps.
  void UnBindBitmaps() EXCLUSIVE_LOCKS_REQUIRED(Locks::heap_bitmap_lock_);

  // DEPRECATED: Should remove in "near" future when support for multiple image spaces is added.
  // Assumes there is only one image space.
  space::ImageSpace* GetImageSpace() const;

  // Permenantly disable compaction.
  void DisableCompaction();

  space::DlMallocSpace* GetDlMallocSpace() const {
    return dlmalloc_space_;
  }

  space::RosAllocSpace* GetRosAllocSpace() const {
    return rosalloc_space_;
  }

  space::MallocSpace* GetNonMovingSpace() const {
    return non_moving_space_;
  }

  space::LargeObjectSpace* GetLargeObjectsSpace() const {
    return large_object_space_;
  }

  // Returns the free list space that may contain movable objects (the
  // one that's not the non-moving space), either rosalloc_space_ or
  // dlmalloc_space_.
  space::MallocSpace* GetPrimaryFreeListSpace() {
    if (kUseRosAlloc) {
      DCHECK(rosalloc_space_ != nullptr);
      // reinterpret_cast is necessary as the space class hierarchy
      // isn't known (#included) yet here.
      return reinterpret_cast<space::MallocSpace*>(rosalloc_space_);
    } else {
      DCHECK(dlmalloc_space_ != nullptr);
      return reinterpret_cast<space::MallocSpace*>(dlmalloc_space_);
    }
  }

  void DumpSpaces(std::ostream& stream = LOG(INFO));

  // Dump object should only be used by the signal handler.
  void DumpObject(std::ostream& stream, mirror::Object* obj) NO_THREAD_SAFETY_ANALYSIS;
  // Safe version of pretty type of which check to make sure objects are heap addresses.
  std::string SafeGetClassDescriptor(mirror::Class* klass) NO_THREAD_SAFETY_ANALYSIS;
  std::string SafePrettyTypeOf(mirror::Object* obj) NO_THREAD_SAFETY_ANALYSIS;

  // GC performance measuring
  void DumpGcPerformanceInfo(std::ostream& os);

  // Returns true if we currently care about pause times.
  bool CareAboutPauseTimes() const {
    return process_state_ == kProcessStateJankPerceptible;
  }

  // Thread pool.
  void CreateThreadPool();
  void DeleteThreadPool();
  ThreadPool* GetThreadPool() {
    return thread_pool_.get();
  }
  size_t GetParallelGCThreadCount() const {
    return parallel_gc_threads_;
  }
  size_t GetConcGCThreadCount() const {
    return conc_gc_threads_;
  }
  accounting::ModUnionTable* FindModUnionTableFromSpace(space::Space* space);
  void AddModUnionTable(accounting::ModUnionTable* mod_union_table);

  accounting::RememberedSet* FindRememberedSetFromSpace(space::Space* space);
  void AddRememberedSet(accounting::RememberedSet* remembered_set);
  void RemoveRememberedSet(space::Space* space);

  bool IsCompilingBoot() const;
  bool RunningOnValgrind() const {
    return running_on_valgrind_;
  }
  bool HasImageSpace() const;

 private:
  void Compact(space::ContinuousMemMapAllocSpace* target_space,
               space::ContinuousMemMapAllocSpace* source_space)
      EXCLUSIVE_LOCKS_REQUIRED(Locks::mutator_lock_);

  void FinishGC(Thread* self, collector::GcType gc_type) LOCKS_EXCLUDED(gc_complete_lock_);

  static ALWAYS_INLINE bool AllocatorHasAllocationStack(AllocatorType allocator_type) {
    return
        allocator_type != kAllocatorTypeBumpPointer &&
        allocator_type != kAllocatorTypeTLAB;
  }
  static ALWAYS_INLINE bool AllocatorMayHaveConcurrentGC(AllocatorType allocator_type) {
    return AllocatorHasAllocationStack(allocator_type);
  }
  static bool IsMovingGc(CollectorType collector_type) {
    return collector_type == kCollectorTypeSS || collector_type == kCollectorTypeGSS ||
        collector_type == kCollectorTypeCC;
  }
  bool ShouldAllocLargeObject(mirror::Class* c, size_t byte_count) const
      SHARED_LOCKS_REQUIRED(Locks::mutator_lock_);
  ALWAYS_INLINE void CheckConcurrentGC(Thread* self, size_t new_num_bytes_allocated,
                                       mirror::Object** obj)
      SHARED_LOCKS_REQUIRED(Locks::mutator_lock_);

  // We don't force this to be inlined since it is a slow path.
  template <bool kInstrumented, typename PreFenceVisitor>
  mirror::Object* AllocLargeObject(Thread* self, mirror::Class* klass, size_t byte_count,
                                   const PreFenceVisitor& pre_fence_visitor)
      SHARED_LOCKS_REQUIRED(Locks::mutator_lock_);

  // Handles Allocate()'s slow allocation path with GC involved after
  // an initial allocation attempt failed.
  mirror::Object* AllocateInternalWithGc(Thread* self, AllocatorType allocator, size_t num_bytes,
                                         size_t* bytes_allocated, size_t* usable_size,
                                         mirror::Class** klass)
      LOCKS_EXCLUDED(Locks::thread_suspend_count_lock_)
      SHARED_LOCKS_REQUIRED(Locks::mutator_lock_);

  // Allocate into a specific space.
  mirror::Object* AllocateInto(Thread* self, space::AllocSpace* space, mirror::Class* c,
                               size_t bytes)
      SHARED_LOCKS_REQUIRED(Locks::mutator_lock_);

  // Need to do this with mutators paused so that somebody doesn't accidentally allocate into the
  // wrong space.
  void SwapSemiSpaces() EXCLUSIVE_LOCKS_REQUIRED(Locks::mutator_lock_);

  // Try to allocate a number of bytes, this function never does any GCs. Needs to be inlined so
  // that the switch statement is constant optimized in the entrypoints.
  template <const bool kInstrumented, const bool kGrow>
  ALWAYS_INLINE mirror::Object* TryToAllocate(Thread* self, AllocatorType allocator_type,
                                              size_t alloc_size, size_t* bytes_allocated,
                                              size_t* usable_size)
      SHARED_LOCKS_REQUIRED(Locks::mutator_lock_);

  void ThrowOutOfMemoryError(Thread* self, size_t byte_count, bool large_object_allocation)
      SHARED_LOCKS_REQUIRED(Locks::mutator_lock_);

  template <bool kGrow>
  bool IsOutOfMemoryOnAllocation(AllocatorType allocator_type, size_t alloc_size);

  // Returns true if the address passed in is within the address range of a continuous space.
  bool IsValidContinuousSpaceObjectAddress(const mirror::Object* obj) const
      SHARED_LOCKS_REQUIRED(Locks::mutator_lock_);

  void EnqueueClearedReferences();
  // Returns true if the reference object has not yet been enqueued.
  void DelayReferenceReferent(mirror::Class* klass, mirror::Reference* ref,
                              IsMarkedCallback is_marked_callback, void* arg)
      SHARED_LOCKS_REQUIRED(Locks::mutator_lock_);

  // Run the finalizers.
  void RunFinalization(JNIEnv* env);

  // Blocks the caller until the garbage collector becomes idle and returns the type of GC we
  // waited for.
  collector::GcType WaitForGcToCompleteLocked(Thread* self)
      EXCLUSIVE_LOCKS_REQUIRED(gc_complete_lock_);

  void RequestCollectorTransition(CollectorType desired_collector_type, uint64_t delta_time)
      LOCKS_EXCLUDED(heap_trim_request_lock_);
  void RequestHeapTrim() LOCKS_EXCLUDED(Locks::runtime_shutdown_lock_);
  void RequestConcurrentGC(Thread* self) LOCKS_EXCLUDED(Locks::runtime_shutdown_lock_);
  bool IsGCRequestPending() const;

  // Sometimes CollectGarbageInternal decides to run a different Gc than you requested. Returns
  // which type of Gc was actually ran.
  collector::GcType CollectGarbageInternal(collector::GcType gc_plan, GcCause gc_cause,
                                           bool clear_soft_references)
      LOCKS_EXCLUDED(gc_complete_lock_,
                     Locks::heap_bitmap_lock_,
                     Locks::thread_suspend_count_lock_);

  void PreGcVerification(collector::GarbageCollector* gc)
      LOCKS_EXCLUDED(Locks::mutator_lock_);
  void PreGcVerificationPaused(collector::GarbageCollector* gc)
      EXCLUSIVE_LOCKS_REQUIRED(Locks::mutator_lock_);
  void PrePauseRosAllocVerification(collector::GarbageCollector* gc)
      EXCLUSIVE_LOCKS_REQUIRED(Locks::mutator_lock_);
  void PreSweepingGcVerification(collector::GarbageCollector* gc)
      EXCLUSIVE_LOCKS_REQUIRED(Locks::mutator_lock_);
  void PostGcVerification(collector::GarbageCollector* gc)
      LOCKS_EXCLUDED(Locks::mutator_lock_);
  void PostGcVerificationPaused(collector::GarbageCollector* gc)
      EXCLUSIVE_LOCKS_REQUIRED(Locks::mutator_lock_);

  // Update the watermark for the native allocated bytes based on the current number of native
  // bytes allocated and the target utilization ratio.
  void UpdateMaxNativeFootprint();

  // Find a collector based on GC type.
  collector::GarbageCollector* FindCollectorByGcType(collector::GcType gc_type);

  // Create the main free list space, typically either a RosAlloc space or DlMalloc space.
  void CreateMainMallocSpace(MemMap* mem_map, size_t initial_size, size_t growth_limit,
                             size_t capacity);

  // Given the current contents of the alloc space, increase the allowed heap footprint to match
  // the target utilization ratio.  This should only be called immediately after a full garbage
  // collection.
  void GrowForUtilization(collector::GarbageCollector* collector_ran);

  size_t GetPercentFree();

  static void VerificationCallback(mirror::Object* obj, void* arg)
      SHARED_LOCKS_REQUIRED(Locks::heap_bitmap_lock_);

  // Swap the allocation stack with the live stack.
  void SwapStacks(Thread* self);

  // Clear cards and update the mod union table.
  void ProcessCards(TimingLogger& timings, bool use_rem_sets);

  // Signal the heap trim daemon that there is something to do, either a heap transition or heap
  // trim.
  void SignalHeapTrimDaemon(Thread* self);

  // Push an object onto the allocation stack.
  void PushOnAllocationStack(Thread* self, mirror::Object** obj)
      SHARED_LOCKS_REQUIRED(Locks::mutator_lock_);

  // What kind of concurrency behavior is the runtime after? Currently true for concurrent mark
  // sweep GC, false for other GC types.
  bool IsGcConcurrent() const ALWAYS_INLINE {
    return collector_type_ == kCollectorTypeCMS || collector_type_ == kCollectorTypeCC;
  }

  // All-known continuous spaces, where objects lie within fixed bounds.
  std::vector<space::ContinuousSpace*> continuous_spaces_;

  // All-known discontinuous spaces, where objects may be placed throughout virtual memory.
  std::vector<space::DiscontinuousSpace*> discontinuous_spaces_;

  // All-known alloc spaces, where objects may be or have been allocated.
  std::vector<space::AllocSpace*> alloc_spaces_;

  // A space where non-movable objects are allocated, when compaction is enabled it contains
  // Classes, ArtMethods, ArtFields, and non moving objects.
  space::MallocSpace* non_moving_space_;

  // Space which we use for the kAllocatorTypeROSAlloc.
  space::RosAllocSpace* rosalloc_space_;

  // Space which we use for the kAllocatorTypeDlMalloc.
  space::DlMallocSpace* dlmalloc_space_;

  // The main space is the space which the GC copies to and from on process state updates. This
  // space is typically either the dlmalloc_space_ or the rosalloc_space_.
  space::MallocSpace* main_space_;

  // The large object space we are currently allocating into.
  space::LargeObjectSpace* large_object_space_;

  // The card table, dirtied by the write barrier.
  UniquePtr<accounting::CardTable> card_table_;

  // A mod-union table remembers all of the references from the it's space to other spaces.
  SafeMap<space::Space*, accounting::ModUnionTable*> mod_union_tables_;

  // A remembered set remembers all of the references from the it's space to the target space.
  SafeMap<space::Space*, accounting::RememberedSet*> remembered_sets_;

  // The current collector type.
  CollectorType collector_type_;
  // Which collector we use when the app is in the foreground.
  CollectorType foreground_collector_type_;
  // Which collector we will use when the app is notified of a transition to background.
  CollectorType background_collector_type_;
  // Desired collector type, heap trimming daemon transitions the heap if it is != collector_type_.
  CollectorType desired_collector_type_;

  // Lock which guards heap trim requests.
  Mutex* heap_trim_request_lock_ DEFAULT_MUTEX_ACQUIRED_AFTER;
  // When we want to perform the next heap trim (nano seconds).
  uint64_t last_trim_time_ GUARDED_BY(heap_trim_request_lock_);
  // When we want to perform the next heap transition (nano seconds).
  uint64_t heap_transition_target_time_ GUARDED_BY(heap_trim_request_lock_);
  // If we have a heap trim request pending.
  bool heap_trim_request_pending_ GUARDED_BY(heap_trim_request_lock_);

  // How many GC threads we may use for paused parts of garbage collection.
  const size_t parallel_gc_threads_;

  // How many GC threads we may use for unpaused parts of garbage collection.
  const size_t conc_gc_threads_;

  // Boolean for if we are in low memory mode.
  const bool low_memory_mode_;

  // If we get a pause longer than long pause log threshold, then we print out the GC after it
  // finishes.
  const size_t long_pause_log_threshold_;

  // If we get a GC longer than long GC log threshold, then we print out the GC after it finishes.
  const size_t long_gc_log_threshold_;

  // If we ignore the max footprint it lets the heap grow until it hits the heap capacity, this is
  // useful for benchmarking since it reduces time spent in GC to a low %.
  const bool ignore_max_footprint_;

  // If we have a zygote space.
  bool have_zygote_space_;

  // Minimum allocation size of large object.
  size_t large_object_threshold_;

  // Guards access to the state of GC, associated conditional variable is used to signal when a GC
  // completes.
  Mutex* gc_complete_lock_ DEFAULT_MUTEX_ACQUIRED_AFTER;
  UniquePtr<ConditionVariable> gc_complete_cond_ GUARDED_BY(gc_complete_lock_);

  // Reference queues.
  ReferenceQueue soft_reference_queue_;
  ReferenceQueue weak_reference_queue_;
  ReferenceQueue finalizer_reference_queue_;
  ReferenceQueue phantom_reference_queue_;
  ReferenceQueue cleared_references_;

  // True while the garbage collector is running.
  volatile CollectorType collector_type_running_ GUARDED_BY(gc_complete_lock_);

  // Last Gc type we ran. Used by WaitForConcurrentGc to know which Gc was waited on.
  volatile collector::GcType last_gc_type_ GUARDED_BY(gc_complete_lock_);
  collector::GcType next_gc_type_;

  // Maximum size that the heap can reach.
  const size_t capacity_;

  // The size the heap is limited to. This is initially smaller than capacity, but for largeHeap
  // programs it is "cleared" making it the same as capacity.
  size_t growth_limit_;

  // When the number of bytes allocated exceeds the footprint TryAllocate returns NULL indicating
  // a GC should be triggered.
  size_t max_allowed_footprint_;

  // The watermark at which a concurrent GC is requested by registerNativeAllocation.
  size_t native_footprint_gc_watermark_;

  // The watermark at which a GC is performed inside of registerNativeAllocation.
  size_t native_footprint_limit_;

  // Whether or not we need to run finalizers in the next native allocation.
  bool native_need_to_run_finalization_;

  // Whether or not we currently care about pause times.
  ProcessState process_state_;

  // When num_bytes_allocated_ exceeds this amount then a concurrent GC should be requested so that
  // it completes ahead of an allocation failing.
  size_t concurrent_start_bytes_;

  // Since the heap was created, how many bytes have been freed.
  size_t total_bytes_freed_ever_;

  // Since the heap was created, how many objects have been freed.
  size_t total_objects_freed_ever_;

  // Number of bytes allocated.  Adjusted after each allocation and free.
  Atomic<size_t> num_bytes_allocated_;

  // Bytes which are allocated and managed by native code but still need to be accounted for.
  Atomic<size_t> native_bytes_allocated_;

  // Data structure GC overhead.
  Atomic<size_t> gc_memory_overhead_;

  // Heap verification flags.
  const bool verify_missing_card_marks_;
  const bool verify_system_weaks_;
  const bool verify_pre_gc_heap_;
  const bool verify_pre_sweeping_heap_;
  const bool verify_post_gc_heap_;
  const bool verify_mod_union_table_;
  bool verify_pre_gc_rosalloc_;
  bool verify_pre_sweeping_rosalloc_;
  bool verify_post_gc_rosalloc_;

  // RAII that temporarily disables the rosalloc verification during
  // the zygote fork.
  class ScopedDisableRosAllocVerification {
   private:
    Heap* const heap_;
    const bool orig_verify_pre_gc_;
    const bool orig_verify_pre_sweeping_;
    const bool orig_verify_post_gc_;

   public:
    explicit ScopedDisableRosAllocVerification(Heap* heap)
        : heap_(heap),
          orig_verify_pre_gc_(heap_->verify_pre_gc_rosalloc_),
          orig_verify_pre_sweeping_(heap_->verify_pre_sweeping_rosalloc_),
          orig_verify_post_gc_(heap_->verify_post_gc_rosalloc_) {
      heap_->verify_pre_gc_rosalloc_ = false;
      heap_->verify_pre_sweeping_rosalloc_ = false;
      heap_->verify_post_gc_rosalloc_ = false;
    }
    ~ScopedDisableRosAllocVerification() {
      heap_->verify_pre_gc_rosalloc_ = orig_verify_pre_gc_;
      heap_->verify_pre_sweeping_rosalloc_ = orig_verify_pre_sweeping_;
      heap_->verify_post_gc_rosalloc_ = orig_verify_post_gc_;
    }
  };

  // Parallel GC data structures.
  UniquePtr<ThreadPool> thread_pool_;

  // The nanosecond time at which the last GC ended.
  uint64_t last_gc_time_ns_;

  // How many bytes were allocated at the end of the last GC.
  uint64_t last_gc_size_;

  // Estimated allocation rate (bytes / second). Computed between the time of the last GC cycle
  // and the start of the current one.
  uint64_t allocation_rate_;

  // For a GC cycle, a bitmap that is set corresponding to the
  UniquePtr<accounting::HeapBitmap> live_bitmap_ GUARDED_BY(Locks::heap_bitmap_lock_);
  UniquePtr<accounting::HeapBitmap> mark_bitmap_ GUARDED_BY(Locks::heap_bitmap_lock_);

  // Mark stack that we reuse to avoid re-allocating the mark stack.
  UniquePtr<accounting::ObjectStack> mark_stack_;

  // Allocation stack, new allocations go here so that we can do sticky mark bits. This enables us
  // to use the live bitmap as the old mark bitmap.
  const size_t max_allocation_stack_size_;
  UniquePtr<accounting::ObjectStack> allocation_stack_;

  // Second allocation stack so that we can process allocation with the heap unlocked.
  UniquePtr<accounting::ObjectStack> live_stack_;

  // Allocator type.
  AllocatorType current_allocator_;
  const AllocatorType current_non_moving_allocator_;

  // Which GCs we run in order when we an allocation fails.
  std::vector<collector::GcType> gc_plan_;

  // Bump pointer spaces.
  space::BumpPointerSpace* bump_pointer_space_;
  // Temp space is the space which the semispace collector copies to.
  space::BumpPointerSpace* temp_space_;

  // Minimum free guarantees that you always have at least min_free_ free bytes after growing for
  // utilization, regardless of target utilization ratio.
  size_t min_free_;

  // The ideal maximum free size, when we grow the heap for utilization.
  size_t max_free_;

  // Target ideal heap utilization ratio
  double target_utilization_;

  // How much more we grow the heap when we are a foreground app instead of background.
  double foreground_heap_growth_multiplier_;

  // Total time which mutators are paused or waiting for GC to complete.
  uint64_t total_wait_time_;

  // Total number of objects allocated in microseconds.
  AtomicInteger total_allocation_time_;

  // The current state of heap verification, may be enabled or disabled.
  VerifyObjectMode verify_object_mode_;

  // Compacting GC disable count, prevents compacting GC from running iff > 0.
  size_t disable_moving_gc_count_ GUARDED_BY(gc_complete_lock_);

  std::vector<collector::GarbageCollector*> garbage_collectors_;
  collector::SemiSpace* semi_space_collector_;
  collector::ConcurrentCopying* concurrent_copying_collector_;

  const bool running_on_valgrind_;
  const bool use_tlab_;

  friend class collector::GarbageCollector;
  friend class collector::MarkSweep;
  friend class collector::SemiSpace;
  friend class ReferenceQueue;
  friend class VerifyReferenceCardVisitor;
  friend class VerifyReferenceVisitor;
  friend class VerifyObjectVisitor;
  friend class ScopedHeapLock;
  friend class space::SpaceTest;

  class AllocationTimer {
   private:
    Heap* heap_;
    mirror::Object** allocated_obj_ptr_;
    uint64_t allocation_start_time_;
   public:
    AllocationTimer(Heap* heap, mirror::Object** allocated_obj_ptr);
    ~AllocationTimer();
  };

  DISALLOW_IMPLICIT_CONSTRUCTORS(Heap);
};

}  // namespace gc
}  // namespace art

#endif  // ART_RUNTIME_GC_HEAP_H_